Calculus Challenge, Spring 2005

Solutions

1. Observe
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3. Let g(x) = f(z) — x. Then ¢(0) > 0 and ¢g(1) < 0. By intermediate value
theotem there exists ¢ € [0, 1] such that g(c) = 0, whence the conclusion.

4. Substitute x = m — z. Then, dv = —dz, x = 0 implies z = 7, and z = 7
implies z = 0, so
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5. Let € > 0, and let § = . Then, for any |z| < ¢, | f(x)| = 0 if x is rational and

|f(z)] = |z| < e if @ is irrational. Thus, f is continuous at 0. For a # 0 and
rational, |f(x)| = 0 or |z|. For e < |a|, any § > 0, there is an |z —a| < § such
that |z| > |al, so f is not continuous at a. For a irrational, |f(z)— f(a)| = |a|

or |x — al, so again we fail for € < |al.

6. Let lim, ., f(z) = L. We note f is continuous at —a if the limit lim,_,_, f(x)
exists and equals f(—a) = L if f is even, —L if f is odd. This limit is
equivalent to lim, ., f(—z) =: (x). If f is even, f(—xz) = f(x), so (x) = L.
If fisodd, f(—z) = —f(z), so (x) = —L. We conclude f is continuous at

—aQ.



