Calculus Challenge 2002

- 1. Find the sum: $\frac{1}{4} + \frac{3}{16} + \frac{5}{64} + \frac{7}{256} + \cdots$
- 2. Find $\lim_{x\to\infty} [(x^6+x^5)^{\frac{1}{6}}-(x^6-x^5)^{\frac{1}{6}}].$
- 3. The horizontal line y=c,c>0 intersects the curve $y=2x-3x^3$ in the first quadrant as shown. Find c so that the areas of the two shaded regions are equal.
- 4. Find $\lim_{n\to\infty} \sum_{k=1}^n \frac{n}{k^2+n^2}$
- 5. Find $\int \frac{dx}{x(x+1)(x+2)+\cdots+(x+m)}$, where m is a positive integer.
- 6. Let C be the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}}$ where $x \geq 0$ and $y \geq 0$. Find the length of the longest line segment that lies in the first quadrant and is tangent to C.