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ABSTRACT

Traveling waves and stationary bumps are spatiotemporal structures of activity
that have been verified experimentally to exist in different cortical regions of
the brain. Activity is characterized by the output firing rate of spikes of the
neuronal population and is often described mathematically by neural network
firing rate models. Neurons are coupled in a nonlocal fashion generating a
system of spatially-extended, nonlinear integrodifferential equations, in which
the integral kernel represents the spatial distribution of synaptic connections.
Such equations, in the absence of an input, support stationary and traveling
waves similar to those found in the real cortex. We build upon previous work
by analyzing the effect of stationary and traveling persistent inputs on an exci-
tatory neural network model with local inhibition that represents disinhibited
cortical tissue slices. For weak local inhibition and a smooth firing rate function,
we show that the system supports traveling fronts, exhibiting a front bifurcation
analogous to that found in reaction-diffusion equations. Furthermore, a weak,
stationary input inhomogeneity can induce a Hopf bifurcation of the front
leading to an oscillatory front. Using a Heaviside firing rate function, we study
the response of the system to strong inputs. In particular, the activity of the
system can lock to a unimodal input to form a localized bump of activity,
traveling with the speed of the input. As the strength of the input is reduced,
or the velocity varied appropriately, the bump loses stability, undergoing a Hopf
bifurcation to a stable, spatially-localized oscillation or breather. If the network
supports traveling pulses in the absence of an input, a further reduction of the
input induces a secondary instability leading to a breather which periodically
emits traveling pulses. These results form testable predictions for disinhibited
cortical slice experiments. The theory is also extended to two-dimensional
networks for radially symmetric, stationary inputs; while the excitatory weight
function parallels the one-dimensional case with radially symmetric pulses and
breathers, it is found that a Mexican hat weight function generates asymmet-
ric breathers due to the higher order spatial modes of the linearization that
dominate the instability.
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NOTATION AND SYMBOLS

Rn n-dimensional Euclidean space

Cn n-dimensional complex Euclidean space

Cn(R,R) Bounded, n-times continuously differentiable functions f : R −→ R

Cn(R,C) Bounded, n-times continuously differentiable functions f : R −→ C

L2(R) Lebesgue square integrable functions f : R −→ R
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Iν Modified Bessel function of the first kind of order ν

Kν Modified Bessel function of the second kind of order ν

Lν Modified Struve function of order ν

exp Exponential function ex

erfc Complementary error function

sgn Signum function

r Two-dimensional spatial vector set in polar coordinates (r, θ)
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X ≡ Y X is defined by Y
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CHAPTER 1

INTRODUCTION

The brain is arguably one of the most complicated objects in nature to study
and understand. Consequently, one expects any such model, be it a theoretical
word model or a mathematical model, to be highly oversimplified and, thus,
not representative of the brain itself or any parts thereof. Of course, with
this attitude surely no progress would be made. While much is understood
biologically and mathematically about the generation of neuronal spikes—large
short-term fluctuations of the transmembrane electric potential believed to be
the medium of neural communication—it is quite a daunting task to couple
neurons together and understand their collective behavior. One of the primary
goals of neuroscience is to understand the collective behavior of neurons: how
does each neuron contribute to the network, what are the emergent properties
of the interconnection, and, ultimately, how do such properties lead to brain
function?

One method to accomplish this is to generate mathematical models, describ-
ing the biophysics of individual neurons, their connections, and the dynamics
they obey, and allow the behavior to unfold by means of approximation and
computer simulation. One of the fundamental issues with this method is that
the increasing complexity of the model leads to an increasing difficultly in
interpretation of the results. Another approach constitutes using mathematical
analysis of highly simplified, yet analytically tractable mathematical models to
make more definitive statements about the mathematical structure underlying
the behavior of the model. Such definitive statements, potentially, can be
related to the biology to describe one or more of the dominant features of
the system. Contrary to the field of fluid dynamics and its Navier-Stokes
equations, the field of mathematical neuroscience, or neurophysics, currently
has not agreed upon one or even a small collection of models satisfactory enough
to constitute the “brain equations.” This is partly due to the immaturity of
the field but is largely due to the incredibly complex and diverse types and
networks of neurons, which are compounded by intricate connections that can
change on fast and slow time-scales. Thus, it is an exciting time to develop
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and analyze models and determine testable predictions which, when compared
with experimental results, can determine which models are useful, why they
are useful, and what they are lacking. Regardless of the final judgment, many
of the models that describe networks of neurons generate dynamical systems
that exhibit rich behavior and are, thus, interesting purely from a mathematical
point of view. In this dissertation we shall study the effect of current inputs into
a simplified, spatially-extended, continuum model of one- and two-dimensional,
cortical tissue in the form of nonlinear, integrodifferential equations describing
the evolution of the average activity of the neurons, coupled synaptically in
a manner that is dependent on the distance between neurons. Such equa-
tions are infinite-dimensional dynamical systems and are amenable to the use
of bifurcation theory, perturbation theory, and other techniques of applied
mathematics, in order to characterize the different states of behavior and their
associated transitions. In particular, we shall study the existence, stability, and
bifurcations of stationary and traveling waves, which are induced by stationary
and moving stimulus inputs to the neural medium.

1.1 Activity Bumps and Waves in Neural
Populations

1.1.1 Experimental Background

There is increasing experimental evidence supporting the existence of spa-
tiotemporal structures in the brain, specifically in the cortex, as technology
overcomes the difficulty in experimentation over spatial domains [96, 35, 25].
Recent experimental work has enabled neuroscientists to look at spatially dis-
tributed connections, confirming that spatial structure is an important feature.
It is surely reasonable to expect spatial structure to play a role in the processing
of visual information that is conducted by many different brain regions. For
example, the prefrontal cortex is a cortical region found to be involved in
complex problem solving and planning future actions, suggesting that these
tasks require short term, or working memory [67]. In delay response tasks,
primates are trained to remember the spatial location of a sensory cue, e.g., a
food reward. Physiological experiments show that, during the period when the
primate is remembering, spatially localized groups of neurons continuously fire,
either until the task is finished or until enough time has passed that the activity
has degraded [35, 75, 2]. Moreover, there is a correspondence between the
spatial location of the visual stimulus and the localized group of active neurons,
indicating that a spatial map of the visual field may be encoded in the firing
patterns of the network of neurons. Such a map changes in time so that at two
different experimental sessions, the same stimulus and location may correspond
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to different groups of neurons, yet the result of remembering the correct spatial
location is achieved. In the simplest case, one can think of such behavior,
mathematically, as a bump, that is, a stable, unimodal stationary solution of
a system of equations; an initial localized disturbance of the system, perhaps
due to a transient input, initiates the bump, which is subsequently sustained
by the system. The next step is to understand multiple bump solutions, as
well as suprathreshold solutions with more complicated geometries. As the
solution becomes more complex, numerical solutions may be more appropriate
for studying the existence of such solutions; however, it seems possible that
basic principles, uncovered from studying simpler solutions, may serve to guide
one’s understanding of the irregularly shaped solutions that are more likely to
be seen in the cortex.

Another class of spatiotemporal structures found in the cortex are trav-
eling waves of electrical activity. Such waves have been observed in vivo in
the somatosensory cortex of behaving rats [79], turtle and mollusk olfactory
bulbs [60, 65], turtle cortex [85] and visuomotor cortices in cat [90]. Often
these traveling waves occur during periods without sensory stimulation, with
a subsequent presentation of a stimulus inducing a switch to synchronous
oscillatory behavior [25]. This suggests that determining the conditions under
which cortical wave propagation can occur is important for understanding the
normal processing of sensory stimuli. Although there is no extensive evidence
for waves thus far, it has been suggested by many investigators that the absence
of waves, relative to the common observation of oscillatory behavior, is a result
of the experimental objectives and techniques. In the case of the mollusk
Limax, for which olfaction is the primary sense, it was found using intracellular
recordings and optical imaging that, during intervals without an odor stimulus,
approximately plane waves of electrical activity propagate from one end of
the lobe to the other in a periodic fashion as shown in Figure 1.1 [60]. Two
explanations for the propagation of oscillatory type waves are that (i) there is a
subpopulation of intrinsically oscillating neurons, the pacemaker, whose output
propagates along a chain of excitable neurons or groups of neurons, and (ii)
there is a population of coupled, intrinsically oscillating neurons, and the wave
motion originates by stable differences in the phases of the rhythmic output
among all of the oscillators [60]. There is strong evidence for the latter, that
these neurons intrinsically oscillate with a spatial gradient of frequencies such
that when connected, a spatial gradient of phases is observed; the active part of
the plane wave corresponds to a group of neurons whose phases are associated
with firing. Furthermore, this observation is in agreement with theoretical pre-
dictions arising from simplified models of coupled neural oscillators. Conversely,
when an odor stimulus is presented, the waves cease and the neuronal behavior
becomes synchronous across the lobe, possibly arising from sparse long-range
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Figure 1.1. Succesive images of the plane wave motion of the membrane

potential in the olfactory lobe of the Mollusk Limax over the course of one cycle.

Red indicates depolarization and purple indicates hyperpolarization. The time

scale is 112 ms/frame and the bar is 100 µm. Adapted from Ermentrout and

Kleinfeld [25, 60].

connections that become active due to the increased activity associated with
the presentation of the stimulus. It has been found experimentally that neurons
are most sensitive to changes in their input during the half-period preceding
the firing of an action potential. One idea explains that the computational role
of waves is to ensure that, at any point prior to the introduction of a stimulus,
there is a group of neurons that are maximally responsive to the stimulus input,
while only a fraction of the neurons are unresponsive [60]. This is related to
the “searchlight hypothesis” introduced by Francis Crick [20].

Traveling waves in cortical tissue are also believed to occur in vivo during
epilepsy and migraines in humans [17], strongly indicating that such waves can
have nontrivial effects on the function of the brain. The two main classes of
epileptic seizures are partial seizures, which originate in a localized, or focal,
region of the brain, and generalized seizures, which begin simultaneously every-
where within a region of the brain. Partial seizures can generalize very rapidly,
obscuring this distinction, since they are observed through electroencephalog-
raphy (EEG), which measures the dynamics of electric field potentials on the
scalp, inferring the activity within the brain. Furthermore, partial seizures can
spread to envelop the entire cortex, implying that the activity associated with
the seizure is capable of propagating spatially [76]. A few apparent pathways
for propagation that should be considered are (i) connections lying within the
cortex, (ii) white matter (mylenated axons), which connect adjacent and distant
areas of cortex, and (iii) reciprocal connections between cortical and subcortical
regions.



5

Figure 1.2. Multielectrode recording of neurons in a thalamic slice, illustrat-

ing the propagation of a traveling wave of spikes along a line. Adapted from

[72].

In the case of intracortical spread of epileptic activity (i), one of the primary
experimental paradigms is the generation of traveling waves of activity, also
referred to as epileptiform discharges, in disinhibited cortical slice preparations
[15, 17, 36, 110, 82, 83]. Such waves can be measured using multielectrode
recordings, which are distributed spatially over the tissue as shown in Figure
1.2, or optical imaging using voltage sensitive dyes (see Figure 1.1). The
cortex has a layered structure with strong (vertical) connections between layers
such that electrical activity travels faster between layers than across layers.
Vertical slice preparations that are pharmacologically disinhibited generate
discharges, or pulses of activity, which spread horizontally across layers when
the slice is electrically stimulated in an appropriate fashion. For example, the
drug bicuculline is an antagonist of GABAA, the dominant, fast inhibitory
neurotransmitter. The idea is that, when excitatory cells are active, they
excite the inhibitory cells, which subsequently regulate the excitation; however,
if inhibition is impaired, synchronous excitatory activity overwhelms and can
propagate outward from a focal region, entraining other neurons. Note, the
propagation velocity of these synaptically generated waves is of the order 0.06
m/s, which is much slower than the typical speed of 0.5 m/s found for action
potential propagation along axons. It has been proposed that disinhibition,
i.e., the suppression of the effect of inhibitory connections in the network, is a
potential mechanism for the spreading waves observed in epilepsy [17].
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Recently, Steven Schiff et al. [87] have confirmed a fundamental prediction
of a Wilson-Cowan-type firing rate model that was proposed by Pinto and
Ermentrout to model traveling waves in disinhibited cortical slices. The model
features the simplification of a Heaviside firing rate function, which conse-
quently enforces a hard threshold, see section 1.1.2. The theory predicts that
either no traveling wave exists or at most one (numerically) stable traveling
wave exists. The velocity of the wave depends on the threshold, increasing
the velocity, if the threshold is reduced, and decreasing the velocity, if the
threshold is increased, ultimately leading to propagation failure at nonzero
speed and width [80, 87]. To modulate neuronal thresholds experimentally,
Schiff et al. use electric fields, which have also been shown to modulate activity
propagation in cardiac tissue [87]. The effect is due to the polarization of
asymmetric neurons, which occurs very quickly (20 ms) and can be maintained
for seconds to minutes. Threshold modulation in this case seems to be a change
in the relative difference between the membrane potential of the neuron and
the threshold for firing; rather than threshold modulation, it should probably
be viewed as a change in the resting potential, since a sufficiently strong electric
field causes the neuron to fire repetitively, similar to current injection. In any
case both views are mathematically equivalent, as far as the model is concerned.

The experiments were performed on rat neocortical slices, which were phar-
macologically disinhibited using picrotoxin, a blocker of the inhibitory neuro-
transmitter GABAA. Layer 5 neurons, which are necessary to initiate and
maintain propagation of traveling waves, have long apical dendrites which
facilitate polarization by electric fields. A positive electric field is one that
is oriented in the direction from dendrite to cell body, having the effect of
increasing the membrane potential; hence a positive (negative) electric field is
used to decrease (increase) threshold. A stimulating electrode, placed in layers
5-6 at one end of the slice, generated waves with a 0.15 ms current pulse of
0.1-1.0 mA. As shown in Figure 1.3, spatially localized electric fields, in addition
to electric fields applied to the entire slice, were studied revealing that positive
electric fields (lowered thresholds) produced increased wave speeds and that
negative electric fields (increased thresholds) produced decreased wave speeds,
with propagation failure occurring at nonzero speeds. This agreement between
theory and experiment is important because it offers support for the use and
analysis of firing rate models. However, more predictions of the theory need to
be tested to gain full confidence in the ability of the model to describe cortical
tissue. One such prediction, lying at the heart of this dissertation, will be
discussed later.

Another example of spatiotemporal behavior related to sensory inputs is
found in the head direction system of rats, which is located in the hippocampal
formation and other closely related areas. It is found that the direction of
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Figure 1.3. Control of wave propagation in cortical slice preparations

using electric fields. (a) Extracellular recordings are made during positive

(top traces), zero (middle traces), and negative (lower traces) electric field

application. The activity wave arrived at R2 earlier during positive field

(top) and later during negative field (lower), relative to zero field (middle)

application. (b) Wave speed (bottom) normalized by baseline speed and

failure rate (top) as a function of field amplitude is shown for three separate

experiments. As the field amplitude became more positive (negative), the speed

increased (decreased). As the field amplitude became increasingly negative, the

propagation failure rate increased to complete failure. Adapted from [87].
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the rat’s head is encoded into the firing patterns of a special group of cells,
referred to as head-direction (HD) cells: regardless of the position of the rat, a
unique subset of these HD cells fires in response to the direction of the head,
with each cell exhibiting a tuned response about a single preferred direction
indicated by the maximum response [94]. While it is clear that the HD network
is highly influenced by visual cues for orientation, it is found that HD cells
continue to exhibit directional properties in the absence of orienting visual
landmarks or upon entering a novel environment. Moreover, the preferred
direction seems to be initiated by the placement of the rat at the beginning
of the experimental session [94]. This suggests that the HD cells may use
information from the angular movement of the head to determine orientation.
One source of the information would arise from inputs from the vestibular
system which is responsible for maintaining the vertical orientation of the head,
with respect to gravity, when the body undergoes movement. Interestingly it
was found that lesions of the vestibular system cause the loss of the direction
signal in thalamic HD cells [94].

There have been a fair number of studies of the HD system with varying
degrees of detail, most of which have employed attractor networks to ensure
the sustained firing associated with a particular direction [68, 115, 86, 40, 94,
112, 111, 99]. Most of these networks are firing rate models of excitatory
and inhibitory cell populations on a ring, which are reciprocally coupled by
connections whose strengths decrease with the difference in preferred orienta-
tion. Note, the topology of these connections allows for neurons with similar
preference to be strongly connected yet spatially disparate. When the rodent
is fixated in a particular direction, the attractor network approaches a stable
bump solution representing a group of neurons with preferences about the
preferred direction continuously firing, thus establishing the neural correlate
of the current direction of the head. Though it is not usually mentioned
explicitly, the rotational invariance of the ring is apparently supported by the
finding that the HD cells are coupled such that the rotation angles for preferred
directions of different HD cells are always the same. That is, if a visual cue
is moved or the animal becomes disoriented, causing the preferred direction
of each cell to change, the angular difference between the previous direction
and the new direction will be roughly the same for all cells [100, 115]. Each
study subsequently differs by what brain region(s) are modeled and how the
HD system updates to establish the new direction after the head is rotated.
However, each study is similar in that it assumes that inputs representing
angular velocity information modify the network in some form to cause the
bump to move. As the bump moves, the system integrates the information
and should precisely determine the angular distance traversed. This introduces
an interesting mathematical problem associated with traveling waves: not only
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must the HD system have the ability to support stable traveling waves, it also
must be able to handle the transient approach to and from the wave, as the
input is initiated and terminated.

These examples illustrate that the spatial connectivity of networks of neu-
rons plays an important role in shaping the corresponding activity patterns and
their role in brain function. To be able to understand these complicated net-
works, a basic theory must be developed to establish some of the fundamental
principles of spatiotemporal structures. Firing rate models track the activity
patterns of neuronal populations and, therefore, will be useful in understanding
systems where spatiotemporal activity patterns play a role in neural processing.

1.1.2 Theoretical Background

In this section we review the previous mathematical work related to the
formation of stationary pulse or bump solutions and traveling wave solutions
in neural network, firing rate models on infinite domains. Although the brain
is not infinite in extent, if the majority of the activity occurs on a bounded
subdomain, the infinite domain is a reasonable approximation that highly facil-
itates mathematical analysis. Furthermore, it is mathematically advantageous
to consider continuum models when analyzing spatially extended systems. Al-
though neuron cell bodies form a sort of discrete lattice, it is natural to view
a sufficiently large population as a neural continuum. In fact, a 1 mm3 patch
of cortical tissue contains 105 neurons, and, since neurons collect inputs from
a large number of cells, the effect of a single neuronal input on the firing
rate of a cell is minor. Implicit in many firing rate models is the assumption
that the fields that represent neuronal activity evolve according to first order
dynamics. This assumption ascends from the first order dynamics of the RC
circuit-type model for the cell body, though the associated time constants are
not necessarily the same; see Chapter 2. With some additional assumptions,
spatially extended, neural firing rate models offer a surprisingly high degree
of analytic tractability, shedding insight into the existence and bifurcation of
bumps and waves.

In 1973 Wilson and Cowan [109, 108] derived a set of one-dimensional
equations describing the averaged activity of an excitatory–inhibitory pair of
populations reciprocally coupled in a nonlocal fashion, projecting within the
population, in addition to the opposite population.

τe
∂ue

∂t
= −ue + wee ∗ Fee(ue) − wei ∗ Fei(ui),

τi
∂ui

∂t
= −ui + wie ∗ Fie(ue) − wii ∗ Fii(ui), (1.1)
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where (
wab ∗ Fab(ub)

)
(x) =

∫ ∞

−∞

wab(x, y)Fab(ub(y, t))dy.

ue, ui represent the activity of the excitatory and inhibitory populations, re-
spectively. wab are Gaussian-like functions, referred to as synaptic weight

functions that represent the connectivity pattern between neurons, often taken,
as a first approximation, to weaken with distance w(x, y) = w(|x − y|). Fab

are sigmoidal functions representing the firing rates of the neurons, which
effectively activate the connections between neurons. A heuristic derivation
of (1.1) is presented in Chapter 2. Wilson and Cowan [109] performed nu-
merical simulations on their model, which revealed that, in the absence of
an input, an initial, small, local depolarization can give rise to a stationary,
localized pulse or bump of activity. Amari [1] considered a scalar version of
this model, assuming the weight function to be a Mexican hat, shown in Figure
1.4, to model inhibition as having a peripheral or lateral effect, with excitation
dominant locally. One of the implications of this model is that inhibition acts
instantaneously, whereupon the excitatory population u evolves according to

τ
∂u

∂t
(x, t) = −u(x, t) +

∫

R

w(x − y)f(u(y, t))dy

Furthermore, taking the smooth firing rate function, instead, to be a Heaviside
function, he provided an analytically tractable way to study this dynamical
system. Amari focussed on stationary pulse solutions and found that inhibition
was necessary to stabilize such solutions [1]. A brief description of his analysis
is included in Appendix B.1.

Pinto and Ermentrout [81] considered similar one-dimensional stationary
pulse solutions in (1.1) under the simplification Fee(u) = Fie(u) = H(U − κ),
Fei(u) = u. For a large range of parameter values, Gaussian-like weight
functions generate a stationary pulse existence problem with a Mexican hat
that is equivalent to that of Amari’s, demonstrating that a Mexican hat weight
distribution can arise under more general circumstances. According to Amari’s
stability analysis, when a pair of pulses exists, the larger is stable, and the pair
annihilate in a saddle-node bifurcation. Applying a linear stability analysis
to their generalization, Pinto and Ermentrout found that a sufficiently large
difference in time constants (slow inhibition) can lead to a Hopf bifurcation
of the pulse. The bifurcation was determined, numerically, to be subcritical,
causing the medium to relax to the rest state rather than to stable periodic
solutions [81]. They were also able to extend the existence of stationary pulses
to a particular class of smooth sigmoidal functions Fee, Fei using singular
perturbation theory. The pulse was constructed from connecting an excited
small region about the origin to the surrounding resting medium via a pair of
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Figure 1.4. General shape of the Mexican hat weight functions, often taken

to represent short-range excitation and long-range inhibition, though it can

arise under more general circumstances.

symmetric traveling fronts (described below) in the limit ǫ −→ 0. This result
confirms that stationary pulses do persist for smooth firing rate functions,
which are more biologically relevant, since averaging tends to smooth out a
discontinuous neuronal firing rate. Furthermore, it complements the numerical
results of Wilson and Cowan, who have demonstrated that such pulses exist for
smooth firing rates away from the singular limit. Most importantly, it indicates
that the analytical results obtained using the Heaviside firing rate function are,
at the least, characteristic of those for a smooth firing rate.

Others have examined similar models in one and two dimensions, finding
multiple bump solutions in one dimension, and single and multiple bump
solution in two-dimensions [101, 107, 64, 62, 92]. Taylor [101] considered the
existence and stability of two-dimensional pulses in a scalar, lateral inhibition
(Mexican hat) network. Curiously, he only considered linear stability with
respect to radially symmetric perturbations. It turns out that, in the case
of a Mexican hat weight function, this criterion is insufficient to study the
stability of such pulses. For particular parameter values it is shown in Chapter
5 of this dissertation [33], as well as in [10], that nonradially symmetric modes
can become unstable prior to the radially symmetric mode. To my knowl-
edge, the work of Chapter 5 constitutes the first proper stability analysis of
two-dimensional bumps.
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Laing and Troy [63] found that, while two-bump solutions exist in a scalar
Mexican hat network with Heaviside firing rate, they are numerically unstable.
In order to stabilize two-bump solutions, they needed a weight function that
resembled a Mexican hat weight function with at least three zeros rather than
one. In the case of two dimensions, they find, numerically, the coexistence
of solitary and two-bump solutions. To generate two-dimensional multibump
solutions for a smooth firing rate, Laing and Troy [62] considered an oscillatory
weight function—resembling a Mexican hat, which continually alternates be-
tween positive and negative—for which a scalar, Amari-type equation could be
transformed into a fourth-order PDE. Using numerical methods to study the
existence and stability (AUTO) of solutions composed of one or more concen-
tric rings of activity, they found a single ring destabilized into a three-bump
solution, a double ring into a seven-bump solution, and a triple ring into an
eleven-bump solution. The symmetry of the spatial eigenmode that dominates
the instability determines the number of bumps that emerged.

To contrast the case of stationary pulses and nonlocal inhibition, Amari
found that traveling waves existed in a network in which the inhibitory cells at
x were activated only by local excitatory cells at x. A brief description of his
analysis is given in Appendix B.2. Ermentrout and McLeod [26] take a step
back and examine traveling front solutions of the following one-dimensional
firing rate model for a purely excitatory scalar network with a smooth firing
rate and more general temporal dynamics,

u(x, t) =

∫ t

−∞

α(t− τ)

∫ ∞

−∞

w(|x − y|)F (u(y, τ))dy dτ, (1.2)

under the assumptions that w is a non-negative, even function, that α is
a positive, monotonically decreasing function, and that F is monotonically
increasing so that f(u) = −v + F (v) has precisely 3 roots, u1 < u2 < u3, with
f ′(u1), f

′(u3) < 0 and f ′(u2) > 0. Consequently, the system has two stable
spatially homogeneous solutions u1, u3; a traveling wave is a spatially inhomo-
geneous, translationally-invariant solution, which approaches u3 at −∞ and u1

at +∞, traveling with constant speed. Incidentally, α represents the synaptic
time-course and, when taken to be a decaying exponential, leads to first order
temporal dynamics. To prove the existence and uniqueness of traveling fronts,
they viewed (1.2) as a continuation of the bistable reaction-diffusion equation

∂v

∂t
=
∂2v

∂x2
+ f(v),

proven by Fife and McLeod [31] to support similar stable, unique traveling
front solutions. Furthermore, the speed of the wave has the same sign as

∫ u3

u1

f(u)du,
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and, since the function f is cubic-like, wave fronts travel with positive (negative)
speed, when the threshold of F is low (high), whereas stationary fronts exist
when the negative and positive areas of the cubic exactly balance. It is by using
this general result that Pinto and Ermentrout were able to construct singular
stationary pulses for smooth firing rate functions [81]. This clearly opens the
way to develop analogous perturbation constructions that are ubiquitous in
the reaction-diffusion literature [104, 55, 30]. In the case of the Heaviside firing
rate, Ermentrout and McLeod also explicitly determined the profile of the front
solutions and the dependence of wave speed on the firing rate threshold [26].

To model disinhibited cortical tissue, Pinto and Ermentrout [80] considered
a network of purely excitatory neurons u, intrinsically modulated by a negative
feedback mechanism, such as spike-rate adaptation or synaptic depression.
Spike-rate adaptation is a phenomenon whereby a constant current injection
to a neuron elicits an attenuated response of the firing rate over time; it is
thought to be produced by slow potassium currents that become active after
continual firing and tend to hyperpolarize (reduce excitability) the cell. Since
the feedback ̺ is intrinsic, its effect is only local, with the neuronal population
evolving according to

τ
∂u

∂t
(x, t) = −u(x, t) +

∫ ∞

−∞

w(x − x′)f(u(x′, t))dx′ − ̺(x, t)

1

ε

∂̺

∂t
(x, t) = −β̺̂(x, t) + u(x, t), (1.3)

which can be thought of as an integrodifferential analogue of the FitzHugh-
Nagumo equation. Similarly Pinto and Ermentrout [80] were able to construct
a singular traveling pulse solution for a smooth firing rate, using the work of
Ermentrout and McLeod [26]. In the case of a Heaviside firing rate away from
the singular limit and the seemingly unnecessary simplification of setting β = 0,
they demonstrate the existence of a pair of traveling pulses for relatively small
ǫ using a shooting argument. Of the pair, the faster and wider pulse is found
numerically to be stable, with the pair annihilating in a saddle-node bifurcation.
Note in Chapter 6 existence curves are produced for the full model (β 6= 0)
which are qualitatively similar, though more restricted within parameter space.

In the case of a Heaviside firing rate function, Zhang [116] has recently
confirmed the stability of the traveling front in the scalar equation (1.2) for a
Heaviside firing rate, as well as the (faster) pulse of (1.3) in the singular limit
ǫ −→ 0, using Evans functions, a technique used to study the stability of trav-
eling waves in unbounded domains. Arising from the linear stability analysis
of a constant speed traveling wave, the Evans function is simply a complex
analytic function whose zeros identify with the eigenvalues of the linearization.
Once the essential spectrum is shown to be negative, the Evans function may
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be used to study the eigenvalues to determine the linear stability of the wave.
Such a function was first introduced by John Evans, who rigorously considered
the stability of traveling waves in a general class of reaction–diffusion equa-
tions which includes the Hodgkin–Huxley and FitzHugh–Nagumo equations
and models action-potential conduction along an infinite nerve axon [27, 28, 52].
In contrast with the general class of equations for which the theory of Evans
functions applies, the Evans function can be calculated explicitly for neural
integrodifferential equations with Heaviside firing rate, greatly facilitating the
stability analysis.

The above studies have all considered the connections and inputs in the
cortex to be homogeneous and isotropic. The real cortex, however, is more
realistically modeled as an inhomogeneous medium. Inhomogeneities in the
synaptic weight distribution w may arise due to the patchy nature of long-range
horizontal connections in superficial layers of cortex. For example, in primary
visual cortex the horizontal connections tend to link cells with similar stimulus
feature preferences such as orientation and ocular dominance [70, 113, 4]. The
variation of the feature preferences across cortex is approximately periodic and
this induces a corresponding periodic modulation in the horizontal connections.
It has been shown that an inhomogeneous, periodic modulation in the strength
of synaptic interactions induced by long-range patchy connections can lead to
wavefront propagation failure of fronts in the scalar, excitatory neural network
[8]. If the wavelength of the periodic inhomogeneity is much shorter than the
characteristic wavelength of the front, then averaging theory can be used to
achieve an effective homogenization of the neural medium along similar lines
to those previously developed for a model of calcium waves [58] and for a
model of chemical waves in a bistable medium [56]. Another important source
of spatial inhomogeneity is the external input I(x). Such inputs would arise
naturally from sensory stimuli in the case of the intact cortex and could be
introduced by external stimulation in the case of cortical slices. The analysis
and effect of such inputs is the subject of this dissertation.

One of the only studies concerning the effect of an inhomogeneous input in a
Wilson-Cowan type model was done by Xie and Giese [111] in a scalar network
with asymmetric lateral inhibition. Such a network consists of a Mexican hat
weight function w◦, which is shifted asymmetrically from the center such that
w(x, x′) = w◦(x − x′ − s) for some fixed displacement s. This displacement
introduces a form of directional selectivity, in which the network responds
preferentially to stimuli moving in a particular direction, and has thus been
suggested as a possible recurrent mechanism for the directional selectivity of
neurons in visual cortex [98, 68]. In a sense the shifted weight function causes
the stationary bump of Amari’s model to travel, instead, with constant speed.
In this network Xie and Giese [111] have analyzed the existence and stability
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of traveling pulses that are locked to an input moving with constant speed,
providing a vague account of the conditions of existence, the associated regions
of parameter space supporting such waves, and precisely how such waves lose
stability. They effectively construct the associated Evans function, although
they do not identify it as such, and show how the pulse can destabilize when the
stimulus velocity differs significantly from the natural velocity of unidirectional
intrinsic waves; this instability generates a transition to a so-called lurching

wave, which travels forward in a discontinous, periodic fashion.
From our analysis of their model (not included here), we have found that,

although the wave loses stability in a Hopf bifurcation, the bifurcation ap-
pears, numerically, to be subcritical exhibiting a sharp jump to lurching waves.
Interestingly, we additionally find that, when the strength of the nonlocal
inhibition is reduced, the lurching wave undergoes a smooth transition to a
pulse-emitting solution; initially, the nascent waves fail to propagate, until the
inhibition is sufficiently reduced that they propagate indefinitely. In order
for a pulse-emitting solution to exist, it is necessary that the medium, in the
absence of the input, support (natural) traveling waves. The pulse-emitter is
the response of the system to the input, characterized by its ability to stimulate
the surrounding medium, periodically shedding natural traveling pulses.

Yet another neural system in which a traveling pulse can undergo a Hopf
bifurcation, leading to the formation of lurching waves, is a synaptically coupled
integrate–and–fire network with discrete axonal delays [37, 39]. Here a pulse
consists of a single propagating spike, and the instability is due to fluctuations
in the sequence of neuronal firing times, which start to grow at a critical value
of the delay [7]. This example applies to intrinsic waves in a homogeneous
network.

1.2 Content of Dissertation

While it is important to understand the ability of neural networks to self-
sustain persistent activity, it is of enormous importance to understand the
effect of inputs, as they are fundamental to neural processing in the brain.
From anatomy alone, it is clear that the seemingly endless number of regions
and subregions of the brain are in communication with each other via inputs
arising from action potentials transmitted along axonal projections. Of course,
the effects of such inputs can be quite complex and subtle. However, it is very
surprising that almost no one has examined the effects of simple, sustained,
inhomogeneous inputs in neuronal firing rate models, especially in the wake
of the work of Amari. As will be demonstrated in this dissertation, localized
inputs generate interesting and nontrivial behavior in neural network models,
offering experimentally testable predictions to compare with real cortical tissue.
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Inputs into and from within the cortex are often highly selective regarding
the layer into which they project. For example, inputs from the retina project
mainly into layer 4 of the primary visual cortex in the form of a map; thus a
small, stationary point stimulus in the visual field results in a small localized
sustained input in the layer 4 of the visual cortex. Alternately, inputs in vivo

could simply represent a local region of enhanced depolarization or excitability.
In vitro such inputs would represent a current injection from electrodes or the
effect induced by applying an external electric field to the tissue.

In the neural network models analyzed herein, the effect of localized in-
puts can be generally classified by three modes of activity viewed either in a
stationary or traveling frame: (i) spatially localized stationary solution, (ii)
spatially localized periodic solutions, (iii) periodic pulse-emitting solutions.
The transition to periodic solutions arises from either super- or subcritical Hopf
bifurcations and is the result of a temporal interplay between excitation and
local inhibition. However similar results occur in the case of nonlocal inhibition.
We often refer to the spatially localized periodic solutions as breathing pulses
or breathers, since they resemble pulses inhaling and exhaling.

The emergence of the three types of solutions can be described in a simple
senario. Consider an excitatory neuronal population with slow adaptation
(local inhibition) subject to a localized current input. For sufficiently large
current input, the neural response approaches a stationary pulse solution,
which represents a spatially localized group of neurons continuously firing with
the surrounding medium quiescent. In this case the effects of excitation and
adaptation are in equilibrium. As the strength of the current input is reduced,
the stationary pulse undergoes a supercritical Hopf bifurcation, rendering it
unstable. Instead a new stable solution emerges, a breather, resembling a pulse
whose amplitude is periodically modulated in time. In this case the balance
between excitation and adaptation has been lost, and an endless tug-of-war
ensues. The amplitude of oscillations grows increasingly large as the input
strength is reduced further. Ultimately, reduction of the input leads to a
secondary instability leading to a sharp transition to a solution that exhibits
breathings and the emission of traveling pulses. However, the inclusion of
nonlocal inhibition can serve to preclude the emission of such waves. Fi-
nally a sufficient reduction in the input causes the entire medium to relax
to a subthreshold state, with a small, subthreshold bump reflecting the input.
Interestingly, upon reexamination of the paper of Wilson and Cowan, we found
that they also numerically found stable breathers and pulse-emitters induced by
localized inputs [109]. Hence the analysis presented herein provides an analytic
approach to identifying the emergence of breathing solutions and, furthermore,
provides a testable prediction of the effect of adaptation in the response to a
persistent localized input in a disinhibited cortical slice.
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One application of breathers may be to bind correlated inputs. A fun-
damental problem in neuroscience, known as the binding problem [41, 95],
is to determine how neural circuits manage to realize a contiguous stimulus.
Returning to vision for example, throughout the visual cortex neurons possess
minute windows to the visual field know as receptive fields. Thus, there is a
small fraction of the visual field to which a neuron in the visual cortex responds,
yet the brain has the ability to bind the myriad of fragmented features of the
visual world into one seamless image. In particular, it is able to perceive
the contiguity of an cohesive object. One clue that has been discovered is
that the neurons whose receptive fields align with the object share a similar
periodic modulation of their firing rates [41, 95]. The current approach to
explaining this behavior is using coupled oscillating neurons. However, since
inputs from one region of the brain to another are relatively weak, inputs from
the stimulus may be in a regime that generates breathing solutions in the visual
cortex. It is possible that these breathers interact and synchronize, inducing
the synchronous fluctuations in firing rate, and may serve as a rudimentary
level for the binding of a stimulus.

As mentioned earlier, it is thought that focal epilepsy has the ability to
spread and entrain large regions of the brain, in particular, the cortex. In con-
trast to the idea that the traveling waves arise from coherent neural oscillators,
the pulse-emitter illustrates that a weak input or a local depolarization can
entrain a local region of disinhibited tissue to act as a pacemaker, generating
the periodic spread of waves through the excitable tissue. Though this is most
likely not the entire explanation, it nevertheless may play some role in onset
or sustainment of epileptic seizures.

Another application of breathers, suggested by Wilson and Cowan [109], is
edge detection. It is well documented that the primate visual system is tuned to
detect edges or sharp contrast. In their numerical studies, Wilson and Cowan
used a step-like localized input and found that the amplitude of oscillation of
the breather was the largest near the edge. They suggested that this strong
modulation may be responsible for the enhancement of the feature contrast.

Hereupon we summarize the contents of the dissertation. Chapter 2 pro-
vides a brief description of the biological and mathematical basis for the some
of the models and ideas central to mathematical neuroscience. Beginning
with a short summary of the anatomy and physiology of neurons and neural
communication, we proceed by offering heuristic derivations of mathematical
models from the cellular level to the population level. The firing rate models of
section 2.3.3 are the final culmination of a series of mathematical simplifications
and define the class of models studied herein.
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Each subsequent chapter concentrates on different problems associated with
the Pinto and Ermentrout model with the inclusion of an inhomogeneous input
function I,

τ
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞

w(x − x′)f(u(x′, t))dx′ − β̺(x, t) + I(x, t)

1

ǫ

∂̺(x, t)

∂t
= −̺(x, t) + u(x, t). (1.4)

Notice that the parameter β now represents the strength of the local negative
feedback, whereas before it related to the decay of local inhibition; see equation
(1.3); for positive β, the two systems are qualitatively similar, however, the
effects of taking β −→ 0 are different.

We begin Chapter 3 by considering traveling front solutions of (1.4) with
I = 0, which exist for sufficiently weak adaptation strength (small β). Weak
adaptation reduces the value of the elevated spatially homogeneous state, thus
the profile of the front resembles a shrunken version of the front in the scalar
system (β = 0). We then carry out a perturbation expansion in powers of the
wavespeed c to show that a stationary front can undergo a supercritical pitch-
fork bifurcation at a critical rate of negative feedback ǫc, leading to bidirectional
front propagation. In the case of a spatially homogeneous input, the fronts
bifurcate according to a codimension 2 cusp bifurcation. Analogous to the case
of reaction diffusion systems, the front bifurcation acts as an organizing center
for a variety of nontrivial dynamics including the formation of oscillatory fronts
or breathers. We show how the latter can occur through a Hopf bifurcation from
a stationary front in the presence of a weak stationary input inhomogeneity.
The fact that the nonlocal integrodifferential equation (1.4) exhibits behavior
similar to a reaction diffusion system might not be surprising, particularly
given that for the exponential weight distributions w(x) = e−|x|, equation (1.4)
can be reduced to a PDE of the reaction–diffusion type. It is important to
emphasize, however, that our results hold for a more general class of weight
distribution w(x) for which a corresponding (finite–order) PDE cannot be
constructed. Hence, the analysis is a nontrivial extension of known results
for reaction–diffusion equations.

Finally, we analyze the existence and stability of stationary fronts in an
exactly solvable model, which is obtained by taking the high gain limit γ → ∞
of the sigmoid function f such that f(u) = H(u− κ) where H is the Heaviside
function and κ a threshold. The exactly solvable model allows the study of
oscillatory fronts beyond the weak input regime. Rather than perturbing about
the homogeneous case, we are able to consider a large input amplitude for
which wave propagation failure occurs due to the pinning of a stationary front.
A subsequent reduction in the amplitude of the input then induces a Hopf



19

instability leading to the formation of a breather. We conclude our analysis of
the exactly solvable model, by deriving conditions for the locking of a traveling
front to a moving input, and show how locking depends on both the amplitude
and speed of the input. The idea of locking to a moving input will be explored
more deeply within the context of pulses in Chapter 6.

This chapter illustrates the primary differences between analyzing the model
with a smooth and Heaviside firing rate. The smooth firing rate allows us to
apply perturbation theory in a straightforward manner in the case of fronts,
which is beneficial since smooth firing rates are more biologically relevant,
matching the input–output characteristics of populations of neurons quite well.
However, they present great difficulties in finding exact solutions, calculating
the dependence of wave speeds on parameters, and addressing stability, and,
moreover, present even greater hurdles when considering traveling pulse solu-
tions. On the other hand, while the Heaviside firing rate introduces its own
set of problems in the way of carrying perturbation theory to higher orders, it
enables us to determine explicitly the existence, stability and bifurcations of
stationary and traveling fronts, and more importantly pulses, in the presence
of external inputs, without any restrictions on the size of the input. Although
it is difficult to carry out a nonlinear analysis to determine the direction
of bifurcation, we can use numerical simulations to examine the transition
associated with the bifurcation and, moreover, explore the behavior beyond
the bifurcation, outside of the applicable regime of the analysis.

In Chapter 4 we develop the analytical theory for the existence and stability
of stationary pulse solutions which are induced by a unimodal input. In order
to construct exact wave solutions, we consider a Heaviside firing rate, in which
case (1.4) becomes

τ
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞

w(x − x′)H
(
u(x′, t) − κ

)
dx′ − β̺(x, t) + I(x)

1

ǫ

∂̺(x, t)

∂t
= −̺(x, t) + u(x, t), (1.5)

where κ represents the firing rate threshold. In the absence of an input,
a stationary pulse solution, if it exists, is unstable, acting as a separatrix
that either generates a pair of counter-propagating pulses or a return to the
resting state. However, a stationary pulse is stabilized by a sufficiently large
input, leading to wave propagation failure of an approaching wave. The stable
pulse disappears in one of two ways, (i) for (ǫ > β) a stable-unstable pair
of stationary pulses simply annihilate in a saddle-node bifurcation, and (ii)
for (ǫ < β), the stable pulse loses stability in a Hopf bifurcation. Although
there are multiple bifurcation senarios, the following illustrates the general
idea. Stationary pulses exist for all input strengths above the saddle-node point
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and are stable for sufficiently large inputs. A supercritical or subcritical Hopf
bifurcation (determined numerically) occurs at some value of input strength
above the saddle-node point, leading either to a periodic modulation of the sta-
tionary pulse or breather, in the supercritical case, or to a subthreshold bump,
in the subcritical case. The breather subsequently undergoes a secondary
instability leading to a pulse-emitter, a breather-like solution that periodically
emits traveling pulses into the surrounding medium. Interestingly the breather
may lose stability due to a subcritical period-doubling bifurcation. The ev-
idence for this is that a cascade of supercritical period-doubling bifurcations
occurs for increasingly large input widths, followed by a sharp transition to the
pulse-emitter. Furthermore, for a range of inputs after the transition to the
emitter, there is mode–locking between the oscillation frequency of the breather
and the rate of wave emission, giving way ultimately to regular emission.
The pulse-emitter eventually disappears for sufficiently small inputs, and the
medium approaches a subthreshold bump, i.e., the rest state. Interestingly, the
breather and pulse-emitter can persist at inputs below the saddle-node point,
i.e., below the minimum input necessary for the existence of a stationary pulse.
Finally, analogous forms of oscillatory waves are also shown to occur in a more
biophysically realistic conductance–based model that features a slow potassium
current to induce spike-rate adaptation, lending further support for the ability
of firing rate models to describe the activity of detailed biophysical models.

In Chapter 5 we extend our analysis to radially symmetric pulses in a
two–dimensional network, which is defined by either an excitatory (positive)
weight function or a Mexican hat weight function. The Mexican hat weight,
in this case, arises from the excitatory-inhibitory model (1.1), with the firing
rate assumptions proposed by Pinto and Ermentrout, subject to the additional
assumptions that the excitatory population exhibits adaptation and the fast

inhibitory population operates in quasi-steady-state. While many of the results
from the one-dimensional case carry over, the Mexican hat weight function is
capable of producing nonradially symmetric breathers. Furthermore, other
spatially-localized solutions seem to coexist, including spatially-localized ro-
tating solutions, or rotors, some of which exhibit a breathing motion. The
difference in the effect of the different weight functions is exemplified by the
fact that, depending on the strength and width of the input, higher order spatial
modes associated with the linearization may dominate the instability, whereas
in the excitatory case the lowest order, radially symmetric mode always domi-
nates. Although we do not include it, the two-dimensional excitatory-inhibitory
verision of (1.1) under the firing rate assumptions proposed by Pinto and
Ermentrout, interestingly, follows the behavior of the excitatory case. However,
we expect the full three variable model to have qualitatively similar results to
the quasi-steady-state approximation.
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In Chapter 6 we consider the effect of localized inputs moving with constant
speed, in which case (1.5) becomes

τ
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞

w(x − x′)H
(
u(x′, t) − κ

)
dx′ − β̺(x, t) + I(x− vt)

1

ǫ

∂̺(x, t)

∂t
= −̺(x, t) + u(x, t). (1.6)

Working in the moving frame of the input, we use the input strength I and
speed v as bifurcation parameters, to determine the existence of stimulus–
locked pulses, and construct existence tongues in the (v, I)–plane, whose tips
at I = 0 correspond to the intrinsic waves of the homogeneous network. To
illustrate the general approach, we begin by considering the simpler case of
zero negative feedback (β = 0), for which equation (1.6) reduces to a scalar
equation in u. The corresponding existence tongues for stimulus–locked fronts
and their stability are completely determined analytically.

We then consider the existence of stimulus–locked pulses in the full vector
system (1.6), numerically solving a set of nonlinear functional equations in order
to construct the associated tongues. In the particular case of an exponential
weight distribution, we find that there are two tongues in the positive v domain,
corresponding to an unstable/stable pair of right–moving intrinsic waves. We
determine the stability of the waves within these existence tongues by first
constructing the Evans function and then numerically calculating its zeros. We
show that, as the input is reduced, a stimulus-locked wave within the tongue
of the unstable intrinsic wave can undergo a Hopf bifurcation leading to the
emergence of a traveling oscillatory wave. The latter takes the form of either
a breather or a pulse-emitter in the moving frame of the stimulus, depending
upon the direction of bifurcation. In the limit v → 0 our results reduce to
those obtained for stationary inputs (Chapter 4). Finally, we present numerical
simulations illustrating the formation of traveling breathers and pulse-emitters.





CHAPTER 2

BIOPHYSICS AND MATHEMATICAL

MODELS

2.1 Anatomy and Physiology

The primary function of the nervous system is the communication and pro-
cessing of information. The nerve cell, or neuron, is the fundamental unit of
the nervous system, and it is believed that electrochemical signals transmitted
from neuron to neuron are the carriers of this information. The human nervous
system encompasses a vast network of 1012 neurons, and a 1 mm3 patch of
cortical tissue contains 105 neurons.

A neuron generally is composed of two parts, the cell body (soma) and
the neurites. The cell body contains all of the subcellular organelles found
in a typical animal cell, and the size of the soma ranges from 5-120 µm in
diameter. Neurites are long cylindrical projections from the cell body and are
classified by two types: dendrites and axons. Dendrites are highly branched
extensions of the cell body that can reach 1 mm in length; they are extensions
in that they also contain organelles and are capable of protein synthesis, unlike
axons. A neuron may have one or more dendrites, collectively referred to as
the dendritic tree. Nerve cells typically have a single axon, usually emerging
from the cell body at a junction called the axon hillock. Axon diameters range
from 0.2 to 20 µm in humans and vary in length from a few µm to over a meter.
Axons often branch, particularly towards their distal end; these branches are
called axon collaterals, the ends of which are swollen terminals (boutons) and
usually contain mitochondria and vesicles. Axon terminals form the presynaptic

component of the neuron.
Neurons exhibit great diversity in their functional and morphological char-

acteristics. Some neurons have extensive dendritic trees, whereas others have
no dendrites or axons. It is possible that there are more than 10,000 different
morphological classes of neurons in the brain. Hence, while the nervous system
seems homogeneous in that it is comprised of neurons, the myriad of functions
and morphologies of the neurons renders it a highly complex and diverse system.
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As a simplifying assumption, we will have a generic neuron in mind, one with
a soma, dendritic tree, and axon.

As described later in more detail, the communication and processing of
infomation is primarily due to the movement of ions (charged atoms) across
the cell membrane of neurons. Ion channels embedded in the membranes
of the soma and axons control of the influx and efflux of ions, allowing for
changes in the potential inside the cell or axon. Although there are neurons
that intrinsically oscillate, in the absence of inputs, the membrane potential of
most neurons approaches a constant value, refered to as the resting potential

or equilibrium potential. Incidentally, the intracellular potential of the cell at
rest is less than the extracellular potential, resulting in a polarization across
the membrane of the cell. A cascade of events is possible whereby an increase
in potential in the soma triggers an increase in the potential of the axon, and
a pulse is propagated along the axon. This is the means by which informa-
tion from a neuron is initially transmitted, rendered possible by the active
properties of the ion channels. Therefore, it is recognized that the potential
difference across the cell, or transmembrane potential, is an important physical
quantity to describe the communication of information: the fluctuations in the
transmembrane potential are signals and embody the information.

Upon entering the terminal bouton, the form of transmission of information
undergoes a fundamental change from electrical to chemical in nature. The
terminal bouton, essentially the end of the presynaptic neuron, makes a point
of contact, or synapse, with the dendrite of the postsynaptic neuron. As
the signal reaches the terminal bouton of the presynaptic neuron, vessicles
containing chemicals called neurotransmitters are released into the extracellular
junction between the two neurons, or synaptic cleft (30 nm wide). These
neurotrasmitters bind to receptors on the postsynaptic neuron, which sub-
sequently open ion channels on the postsynaptic neuron, inducing a change
in transmembrane potential. This process is known as synaptic transmission

and is the fundamental means of neuron-to-neuron communication. Although
several neurotransmitters are involved, triggering different synaptic currents
with various time courses, we shall, for mathematical reasons, employ a more
abstract and generic notion of synaptic transmission. In the firing rate models
we consider, synaptic transmission is characterized by the following assumption:
there is a functional relationship between the output firing rate of the postsy-

naptic neuron and the activity of the presynaptic neuron. Synaptic coupling is
then determined by the weighted sum of the corresponding firing rates, arising
from all presynaptic connections to the postsynaptic neuron.

The transmission process in dendrites, once believed to be entirely pas-
sive with electric potential spreading via diffusion, is facilitated by voltage
dependent ion channels embedded in the dendritic shaft (primarily sodium)



25

and in dendritic spines, small mushroom-shaped appendages lining the shaft
(primarily calcium). The dendrites integrate the signals received from the
neurons to which they are connected and modify the potential of the soma
accordingly. Subsequently, there is a threshold or dichotomy of behavior of the
soma. If the transmembrane potential of the soma increases by a small amount,
eventually it will return to the resting potential; however, if transmembrane
potential is increased by a sufficient amount, ion channels open causing a
dramatic increase in the transmembrane potential which is followed by a return
to rest. This dramatic increase and decrease is known as an action potential,
and the cell is said to fire. This induces the pulse, mentioned earlier, in
the axon, and the process repeats itself. It is this feature of neurons, i.e.,
the generation and transmission of signals, that distinguishes neurons from
most other cells. Moreover, this property makes neural networks an excitable
medium, thought to be an advantageous characteristic that allows signals to
be distinguished from background noise [59]. Interestingly, the ion channels
associated with the dendrites also facilitate the reverse direction of information
transfer in the form of backward propagating spikes, which is thought to modify
the action and effect of the synapse.

The patterns of synaptic connections between neurons in the nervous sys-
tem are extremely complex and are one of the major sources of mathematical
difficulty. Some neurons make connections with neurons nearby; others con-
nect to neurons up to a meter away. Neurons have a distinct direction of
primary signal propagation (not including back–propagating spikes), as they
receive synaptic input at the dendritic end and transmit synaptic output at
the axonal end, however there is great diversity in the connectivity patterns
between neurons. For example, neurons can make reciprocal synapses onto
their presynaptic cells, make lateral syapses with parallel neurons, or make
serial synapses forming local loops. Hence, although there is a polarization
with respect to transmission within neurons, this does not necessarily imply a
polarization of transmission within a population of neurons.

As the word implies, the cerebral cortex is a layered structure, composed
primarily of the six-layered neocortex, which is responsible for voluntary move-
ment, sensory perception, and cognitive function. The cortex reveals a high
density of neuron cell bodies with each layer containing different proportions of
neurons. Two primary types of neurons are pyramidal neurons, which provide
the excitatory output signals of the layer, and the stellate cells, which act as
inhibitory interneurons. The strong vertical coupling between cortical layers
permits, as a first approximation, the treatment of the three-dimensional cortex
as a two-dimensional vertical sheet. Moreover, if we are considering patterns
of activity to be small relative to the size of the cortex, then it is reasonable to
consider the sheet as infinite (R2) in order to facilitate mathematical analysis.
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2.2 Mathematical Models: Cellular Level

To understand models representing populations of neurons, we develop equa-
tions, that describe the subcellular behavior of neurons, then proceed to in-
tegrate different aspects of this behavior into systems of coupled neurons,
with the natural extension to a neuronal continuum. The resulting models
form the basic classes of equations that we will use to study populations of
synaptically coupled neurons, by applying both mathematical analysis and
numerical simulation.

We begin by describing the fundamental governing equation of the indi-
vidual neuron based on the capacitive properties of the membrane and the
ion channels within the membrane. Subsequently, we extend this to include
synaptic currents, the currents due to interneuronal connection. Finally, we
briefly discuss axonal and dendritic effects, in a simplified context, suited to
the neuronal population framework.

2.2.1 Membrane and Ion Channels

Neurons, like other cells, contain ions and molecules, which carry positive or
negative charge. For the most part, the net charge within a neuron is negative,
and, due to the fact that the intracellular space is a conductor, free charges, e.g.,
ions, repel each other and collect on the interior surface of the membrane. The
cell membrane, a bilipid layer approximately 3-4 nm thick and impermeable to
most ions, acts as a capacitor, separating charges lying on the inner and outer
surfaces. However, embedded into this bilipid layer are numerous channels
that permit ions to pass from the intracellular space to the extracellular space,
or vice versa. These ion-conducting channels usually permit a single type
of ion, and the flow of molecules though these channels can be modulated
by many factors, including transmembrane potential (voltage-gated ion chan-
nels), concentration of intracellular messengers (Ca2+-dependent ion channels),
and the extracellular concentration of neurotransmitters and neuromodulators
(synaptic receptor channels) [21]. In addition there are a number of pumps
which, by consuming energy, aid in maintaining concentration gradients of ions
across the cell membrane.

Transmembrane potential, the potential difference across the membrane, is

V = Vi − Ve,

where Vi and Ve denote the intracellular and extracellular potentials, respec-
tively. Due to intracellular resistance to current flow, transmembrane potential
can vary substantially depending upon the location of measurement, especially
during the course of an action potential. However, in situations where spatial
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variation of transmembrane potential is not thought to be important, the
neuron can be represented as a compartment, whereby a single value, varying
in time, defines the potential of the whole neuron. Consider the soma as a
compartment with uniform membrane potential V with excess charge Q on the
inside surface and equal, but opposite, charge on the outside surface. We can
then define membrane capacitance Cm by

Cm =
Q

V
. (2.1)

Since capacitance is proportional to the total surface area of the cell, we
can define the specific capacitance, or capacitance per unit area, a useful
quantity that is approximately the same for all neurons, cm ≈ 10 nF/mm2.
Differentiating (2.1) with respect to time we obtain

Cm
dV

dt
=
dQ

dt
, (2.2)

which describes how a current dQ
dt entering into the cell changes the transmem-

brane potential of the cell. We can rewrite this equation as

Cm
dV

dt
= Iion(t), (2.3)

where Iion denotes all such ionic currents.

Next we must determine which ionic currents are responsible for dominant
changes in membrane potential and how to model these currents. We begin
by defining what is known as the Nernst or reversal potential. There are
two factors governing the movement of charged particles, electric potential
gradient and concentration gradient. Positive (negative) charges flow down
(up) potential gradients and down (down) concentration gradients. Consider
the situation where we have a species of ion, say Q, with a positive charge
and with different concentrations on either side of a membrane. If ion-specific
channels, specific to ion Q, open, then Q ions will flow across the membrane,
due to the concentration gradient. This will cause an increase in positive charge
building on the membrane, resulting in an increase of the transmembrane
potential. Consequently this will make it increasingly difficult for more Q
charges to traverse the membrane. The flow of ions will stop when the flow
due to diffusion exactly balences the flow due to the electric potential gradient.
The corresponding potential is refered to as the Nernst potential; the synonym,
reversal potential, refers to the fact that a departure from that potential results
in either an positive (inward) or negative (outward) current.
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The reversal potential is given by

VQ =
RT

zF
ln

(
[Q]e
[Q]i

)
,

where the [Q]i and [Q]e denote the intracellular and extracellular concentrations
of the ion Q, R the universal gas constant, F Faraday’s constant, T the absolute
temperature, and z the charge on the ion Q [59]. The number of ions that cross
the membrane is small relative to the total number of ions in either the intra- or
extracellular space, which allows us to assume that the concentrations do not
change. This maintains electroneurality, disregarding the charge that builds on
the interface. It also allows us to assume that the reversal potental is constant,
a helpful simplification that spares us from explicitly keeping track of the ion
concentrations.

Heuristically, we define the current-voltage relation in Ohmic fashion as

IQ ∝ gQ(V − VQ, )

where gQ > 0 represents the conductance or inverse resistance. In this case, if
V − VQ > 0 (V − VQ < 0), a positive charge will flow out of (into) the cell as
the cell approaches the equilibrium value of the reversal potential. Conversely,
this situation is reversed in the case of negative ions. Since we wish to define
a positive current as positive charge moving into the cell, we take

IQ = −gQ(V − VQ),

= gQ(VQ − V )

with the same form but opposite sign in the case of negative charge. For
most ion channels, gQ is a dynamic quantity, which, for example, depends on
transmembrane potential in the case of voltage-dependent ion channels. This
is where the excitable properties of neural tissue arise. The conductance gQ

often is written as the product of a constant maximal conductance, ḡQ, and a
function of one or more dynamical variables which describe the opening and
closing of gates of the channels. Much experimental and theoretical work
has been devoted to understanding these currents. In 1952 Hodgkin and
Huxley [47] pioneered a set of experimental methods to determine the functional
dependence of the dynamically evolving, ionic permeability of the membrane
on transmembrane potential in the squid axon. Their Nobel prize winning
work established the most convincing and thorough evidence for the mechanism
of neural excitability, by relating the excitability of the membrane and its
ionic permeability to an explicit set of nonlinear equations and, furthermore,
demonstrating the ability of their equations to generate familiar neuroelectric
phenomena, such as action potentials, via, then arduous, numerical simulation.



29

In the case of the squid giant axon, studied by Hodgkin and Huxley [47, 59],
the currents were determined to be

Iion = INa + IK + IL,

INa = ḡNam
3h(V Na − V ),

IK = ḡKn
4(V K − V ), (2.4)

IL = ḡL(V L − V ),

ḡNa = 120; ḡK = 36; ḡL = 0.3;

V Na = 115; V K = −12; V L = 10.6,

where INa and IK represent the inward sodium and outward potassium currents,
respectively, and IL is a leak current representing all approximately linear cur-
rents. Transmembrane potential and reversal potentials are measured in mV,
the conducances ḡi are in units of mS/cm2, and the capacitance C is in µF/cm2.
Note, Hodgkin and Huxley chose VL such that the resting transmembrane
potential of the cell would be zero, but, in general, it is around -70 mV [47, 59].
This means the cell membrane is polarized, in which case, currents tending to
increase the transmembrane potential are termed depolarizing, while currents
tending to decrease the transmembrane potential are called hyperpolarizing.
In the Hodgkin-Huxley model, the Na+-current, initially, depolarizes the cell,
thereby exciting it, and, subsequently, the K+-current hyperpolarizes the cell,
driving it towards its resting negative value.

The gating variables m,n, h, which describe the dynamics of the opening
and closing of channel gates, are modeled as voltage-dependent by

dw

dt
= αw(V )(1 − w) + βw(V )w, w ∈ {m,n, h}.

The important feature of this model is the threshold behavior of the membrane
potential. The threshold behavior can be seen in (2.3) and (2.4), by noticing
that, since the change in potential is proportional to Iion, for small deviations
of V above the resting potential, Iion < 0 resulting in the membrane potential’s
return to rest, whereas, for sufficiently large positive deviations, Iion > 0 result-
ing in a dramatic autocatalytic increase before returning to rest. As mentioned
earlier, this excursion in the transmembrane potential of the cell is called an
action potential and is illustrated in Figure 2.1 for the Hodgkin-Huxley model.
Neurons differ widely in their ion channel properties and types. However, many
neurons behave in a qualitatively similar way to the Hodgkin-Huxley model,
in which case it can be used as an archetype. An example of another type of
behavior not supported by the Hodgkin-Huxley model is bursting, whereby the
cell periodically alternates between a mode of rapid firing (the burst) and a
quiescent interval.
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Figure 2.1. Action Potential for the Hodgkin-Huxley model.

2.2.2 Synapses

We model synaptic currents as described in section 2.1.1, i.e.,

Isyn = gsyn(t)(Vsyn − V ),

since they too are generated by the opening of ion channels. Synaptic currents
form the basis of one of the primary topics of this dissertation—the effect of
synaptic connectivity of neurons.

Synaptic transmission at a spike-mediated chemical synapse begins when
an action potential invades the presynaptic terminal bouton and activates
voltage-dependent Ca2+ channels, leading to a rise in the concentration of
Ca2+ within the terminal. This causes vessicles containing neurotransmitter
molecules to fuse with the cell membrane and release their contents into the
synaptic cleft between the pre- and postsynaptic neurons. Binding of the trans-
mitter molecules leads to the opening of ion channels that modify the conduc-
tance of the postsynaptic neuron, completing the transmission. Postsynaptic
ion channels can either be directly activated by binding to the transmitter
(ionotropic receptors) or indirectly when the transmitter binds to a distinct
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receptor that affects ion channels through an intracellular second-messenger
signaling pathway (metabotropic receptors). This second class is often referred
to as neuromodulation and is associated with neurotrasmitters such as sero-
tonin, dopamine, norepinephrine and acetylcholine, which have a variety of
important effects on the functioning of the nervous system [67, 21].

Synaptic connections can either be excitatory or inhibitory: if the effect
is to increase (decrease) the probability that the postsynaptic cell fires, it is
classified as excitatory (inhibitory). Hence, the effect of a specific neurotrans-
mitter can be either excitatory or inhibitory, depending on which receptors
are activated. In addition, synaptic transmission falls into two broad classes
based on time-course: fast transmission, which is associated with ionotropic
receptors, and slow transmission, which is associated with metabotropic recep-
tors. The time-scale of the synapse will enter as an additional parameter(s) in
our models and can be used to distinguish different types of synapses. When
associated with AMPA receptors, glutamate is the dominant fast, excitatory
neurotransmitter in the central nervous system, though when associated with
NMDA receptors its effect is slow. Conversely, GABAA is the dominant, fast,
inhibitory neurotransmitter whereas GABAB is slow [67, 9, 21].

Single-channel recording techniques have been used to show that voltage-
dependent currents arise from populations of individual ion channels under-
going rapid transitions between conducting and nonconducting states. The
macroscopic behavior of these currents can be accurately captured by using
kinetic models that describe transitions between conformational states of these
ion channels. These types of models, of which Hodgkin-Huxley is an example,
are called Markov models [61, 22]. Although one can bring great detail into
these models by describing many different states, the essential properties of ion
channel activation can be captured by simplified kinetic models with two states.
This helps to simplify mathematical analysis and numerical computation in
models that do not require the detail of multistate models.

The simplest model describing the states for a receptor channel is

O
k+(V,[T])

⇄
k−(V )

C,

where O and C represent the open and closed states of the channel, [T] the
neurotransmitter concentration, and k+, k− the voltage-dependent forward and
backward rate constants [61, 22]. If s denotes the fraction of receptors in the
open state, then it evolves by the first-order kinetic equation

ds

dt
= k+[T](1 − s) − k−s. (2.5)
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Letting the system be in the inital state, s = s0 with V = V0 and [T] = [T]0
for t < t0, assume an instantaneous change in [T] and V occurs such that for
t > t0, both [T] = [T]1 and V = V1. In this case (2.5) yields

s(t− t0) = s∞ + (s0 − s∞) exp

(−(t− t0)

τ

)
(2.6)

where

s∞ =
k+(V1, [T]1)

k+(V1, [T]1) + k−(V1)
,

τ =
1

k+(V1, [T]1) + k−(V1)
.

A synaptic current could then be described by

Isyn(t− t0) = ḡsyns(t− t0)(Vsyn − V ), (2.7)

where Isyn = 0 for t < t0 and t0 represents the time at which an action potential

in the presynaptic neuron causes the release of neurotransmitter. Another

important, slightly more complex scheme is the second order gating scheme:

C
r1([T])

⇄
r2

C1

r4 տ ւ r3

O

where C, C1 are closed states, O is the opened state, and r1, r2, r3, r4 are
voltage-independent rate constants. Assume transmitter concentration [T]
occurs as a δ-function, with a release event occuring at t = t0, i.e.

r1([T]) = r̂1δ(t− t0).

Also, assume that the state C is always considered to be in excess when com-
pared with C1 and O. This would occur if very few receptors bind transmitter,
so that nearly all receptor molecules remain in form C. The fraction of channels
in state C is therefore considered constant and approximately equal to 1. This
yields the following system of equations

dc

dt
= r1δ(t− t0) − (r2 + r3)c, (2.8)

ds

dt
= r3c− r5s, (2.9)

where c, s represent the fraction of receptors in the form C1 and O, respectively.
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The solution of this system is

s(t− t0) = r1r3
exp

(
− (t−t0)

τ1

)
− exp

(
− (t−t0)

τ2

)

1
τ2

− 1
τ1

, (2.10)

where τ1 = 1
r2+r3

and τ2 = 1
r4

. This function has the feature that the rise time
and decay time are independent. However, letting τ2 −→ τ1 (or r4 −→ r2+r3)
equation (2.7) becomes

s(t− t0) = r1r3(t− t0) exp

(
− (t− t0)

τ1

)
, (2.11)

which is the so-called α-function introduced in 1967 by Rall [21]. This function
has the nice property of being a smooth function, resembling the time course
of the synaptic gating variable, which can replace the synaptic gating variable
to simplify mathematical analysis or numerical computation. However, in the
scheme described above, it is technically valid for s≪ 1.

2.2.3 Axons and Dendrites

To complete the story, one can construct models that include great detail in the
branching structure of dendrites and the gating dynamics of the ion channels
responsible for action potential generation along axons. However, our goal
is to construct models that describe the behavior of populations of neurons
and facilitate mathematical analysis; hence we must restrict the level of detail.
The Hodgkin-Huxley ODE model represents a patch of membrane in the squid
axon [47, 59]. In a spatial Hodgkin-Huxley continuum PDE model, which
would describe conduction along an infinite axon, there exists a constant speed
traveling pulse, or action potential [59]. We can incorporate this information
into the α-function (2.11), or any other function representing the synaptic time
course, as an axonal delay τa. Axonal delay should depend on the distance the
signal travels to reach the postsynaptic neuron, e.g.

τa = τd +
x− y

ca
, (2.12)

where τd is a constant delay and ca is the axonal conductance velocity [38].
As a first approximation, we can neglect the axonal delay in the case of
traveling waves, which are slow relative to the axonal conduction velocity.
Experimentally, action-potential propagation along a cortical axon is roughly
2-4 m/s [80], which is two orders of magnitude faster than the wave speed
measured in cortical tissue, 20-100 mm/s [15]. However, we should mention
that axonal delay does have nontrivial consequences for traveling waves.
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In the case of dendrites, we consider the diffusive spreading of potential,
and, to first approximation, we take dendritic conduction to be instantaneous.
However, as mentioned earlier, some dendritic trees possess active ion channels
and, furthermore, can be quite extensive, indicating that time delays due to
synapses on distal branches may be important. Bressloff derived a factor to
include the passive dendritic effects in terms of the spacetime Greens function.
If y is the location of synaptic current input on the dendrite at time t, then the
effective synaptic current entering the soma is given by

G(y, t) =
e−t/τd

√
πDt

e−y2/4DtH(t), (2.13)

where τd is the membrane time constant of the cable, D is the diffusivity, and
H is the Heaviside function [5, 7].

2.3 Mathematical Models: Systems Level

We move now to a description of models at the systems level, since we wish
to analyze the behavior of populations of neurons rather than individual cells.
We have discussed the many modes of transmission for a neural signal and
incorporated these into mathematical models. The following subsections offer
heuristic derivations of three different classes of models that are studied when
considering spatiotemporal structures of neural activity. We begin with models
that incorporate the most biophysical detail and follow with two simplifications
that capture different aspects of the first class. The integrate-and-fire models
assume that the shape and time course of the action potentials of a cell are not
as important as the timing of these events and the dynamics between them;
consequently, the action potential is replaced by an instantaneous spike, which,
in appropriate cases, can be represented by a δ-function. The rate models, on
the other hand, assume that the individual spikes of a neuron can be replaced by
smooth neuronal firing rate. Rate models will be the focus of this dissertation.

2.3.1 Biophysical Models

When considering a population of neurons, we couple individual neurons synap-
tically to construct a network. Assume we have N neurons synaptically coupled
together, each of which is represented by a single compartment. The transmem-
brane potential Vi of the ith cell evolves according to

Cm
dVi

dt
= I ion

i (t) + Isyn

i (t), (2.14)
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where Isyn

i denotes the total synaptic current entering into cell i, and I ion
i

denotes the voltage-dependent membrane currents entering cell i . We shall
assume that the form of the current can be described by a relation of the form

I = g(t)(Vr − V ), (2.15)

where g represents a time-dependent conductance and Vr is the reversal po-
tential associated with the channels. In particular, we use the Hodgkin-Huxley
model, discussed in section 2.2.1, to describe the the neuronal membrane
dynamics as a four-dimensional dynamical system; implicit in this assumption
is that the membrane properties of the neurons in the population are identical.
At this point different currents and dynamics can be included to represent
different types of neurons, though we do not consider this here.

The synaptic current into cell i from the firing of cell j is modeled by

Iij = ḡijsij(V
syn

ij − V ),

where ḡij denotes the total synaptic conductance from cell j to cell i, sij

denotes the synaptic gating variable associated with the synapsing of the cell
j onto cell i, and V syn

ij is the corresponding reversal potential. The structure of
the connection strength between any two cells is determined by gij and is zero,
if two cells are not connected. The full model is then:

Cm
dVi

dt
= IHH(mi, ni, hi, t) +

N∑

k=1

ḡiksik(V
syn

ik
− V ),

dwi

dt
= αw(Vi)(1 − wi) − βw(Vi)wi; w ∈ {m,n, h} (2.16)

dsij

dt
= αsij (1 − sij) − βsijsij,

where i, j ∈ {1, .., N}, IHH
i (m,n, h, t) denotes the membrane current for the

Hodgkin-Huxley model, αw, βw represent the opening and closing rates for
the ion channels associated with the Hodgkin-Huxley dynamics, and αsij , βsij

represent the opening and closing rates associated with the synapse made from
cell j to cell i.

To reduce this model to a lower order dynamical system, we make a number
of preliminary simplifications. We assume the synaptic gating dynamics from
cell j to any cell i are completely described by a single gating variable associated
with cell j, i.e.,

sij = sj.

Second we assume that the synaptic reversal potential associated with the
synapse from cell j to cell i is independent of the presynaptic cell,

V syn

ik = V syn

i .
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This reduces (2.16) to the simplified model

Cm
dVi

dt
= IHH(mi, ni, hi, t) +

N∑

k=1

ḡiksk(V
syn

i
− V ),

dwi

dt
= αw(Vi)(1 − wi) − βw(Vi)wi; w ∈ {m,n, h} (2.17)

dsi

dt
= αsi(1 − si) − βsisi; i ∈ {1, .., N},

where, for example, we take the opening and closing rates of the synaptic ion
channels to be

αsi
= K(Vi) =

K0

1 + exp
(

Vi−VT

Vs

) , βsi
= β.

In this case as Vi crosses threshold VT , K(Vi) is large and si rises almost to
1 at a rate proportional to K0. After the action potential concludes, si decays
to 0 with time constant β−1. This was first introduced by Wang and Rinzel
[105] and theoretically justified by Destexhe et al. [22, 24]. This model has
been used elsewhere by Golomb et al. [36] and constitutes a variation of the
biophysical model used in numerical simulations in Chapter 4.

Next, we introduce spatial dependence into the model in order to investigate
the types of spatial patterns of activity generated by such systems of equations.
At this point we have been ambiguous about the location of neurons in space
and very general about the synaptic conductances that define the strength
of synaptic connection between neurons. Though in general we are thinking
of neurons in R

3, as mentioned at the end of section 2.1, most mathematical
treatments consider two-dimensional ordered populations of neurons on a sheet,
due to the strong vertical coupling between cortical layers. In the case of thin
vertical cortical slices, which are studied in vitro, this can further be reduced to
a one-dimensional line of neurons. Though most of the horizontal connections
are lost in such slices, it is believed that much of the vertical connectivity is
preserved. The strong coupling of the vertical connections between the cortical
layers causes the neurons along a vertical line to fire together. The vertical line
can be collapsed to a point, reducing the domain to a one-dimensional line.
Now we can define some sort of structure for ḡij. It is reasonable to assume,
as a first approximating assumption, that the strength of connection between
two neurons depends only on the distance between those neurons, i.e.,

ḡij = g(|i− j|),

in particular, that g decreases with distance. Although there is evidence to sup-
port this assumption in local neighborhoods of neurons within the cortex and
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other brain regions, it is not necessarily valid outside of these neighborhoods.
Note, we use the terms homogeneous and isotropic to describe the synaptic
connectivity functions. These are defined in one dimension as

w(x, y) = W(x− y) (homogeneous)

w(x, y) = W(|x− y|) (homogeneous, isotropic)

where homogeneous is synonymous with translationally invariant.
As mentioned earlier, we are interested in continuum models of neuronal

populations: assuming that we can define smooth functions V, s, w satisfying
(2.18) and assuming that g scales proportionally to the distance between neu-
rons, we can approximate (2.17) by the continuum equations:

Cm
∂V

∂t
(x, t) = IHH(m,n, h, t) +

∫ ∞

−∞

g(|x− y|)s(x, t)(Vsyn − V (x, t)),

∂w

∂t
(x, t) = αw(V )(1 − w(x, t)) − βw(V )w(x, t); w ∈ {m,n, h},

∂s

∂t
(x, t) = αs(1 − s(x, t)) − βss(x, t), (2.18)

where we have made the additional simplifications that the synaptic reversal
potential and the channel opening and closing rates are identical for all neurons,

V syn

i = Vsyn, αsi = αs, βsi = βs,

and that g(z) is a positive function, symmetric in z, and monotonically decreas-
ing for z > 0, e.g., e−|z|/σ or e−(z/σ)2 . Even with the numerous simplifications
we have made, this biophysical model is still very difficult to study analytically;
instead it will be one of the primary models that will be simulated numerically
to compare with the analytical and numerical results of the rate models.

Another common simplification is to assume that the time-course of the
synaptic variable is specified by a function

si = α
(
(t− ti)

+
)
,

where

(τ)+ =

{
τ τ > 0,
0 otherwise,

(2.19)

rather than evolving according to a differential equation. Here tj is the firing
time of cell j, and α(t) is some type of α-function, e.g., βe−βt, β2te−βt, or
e−t/τ1−e−t/τ2

τ1−τ2
[24]. This simplification has been used in many numerical and

analytical treatments of neuronal network models [7, 38, 37, 24], and we shall
apply it both to the integrate-and-fire and rate models. From this point on,
the symbol α will be used to denote any such function that explicitly describes
the synaptic time course.
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2.3.2 Integrate-and-Fire Population Model

The integrate-and-fire class of models arises from the assumption that the
actual shape and time course of the action-potential are not important and,
consequently, can be disregarded, allowing us to discard the membrane ionic
currents. Before the mechanisms that generate action-potentials were under-
stood, Lapicque first introduced this type of model in 1907 in order to generate
spikes [21]. We retain the linear leakage current term to model the membrane
conductance, a good approximation for subthreshold transmembrane potential
in some neurons [21]. We define a threshold value of transmembrane potential
Vth such that, if the transmembrane potential reaches the threshold from below,
the neuron fires an instantaneous spike and the transmembrane potential is
reset to some value Vreset. With this in mind, it is reasonable to assume that

Vsyn − V (x, t) ≈ V syn

0 ,

where V syn

0 is a constant since it varies substantially only during the action-
potential, which has been collapsed into an instant of time. For simplicity,
define the constant gsyn and weight function w such that

g(z) = gsynw
(
|z|
)
,

where w is positive and symmetric, monotonically decreasing in |z|, and nor-
malized in some sense such that the parameter gsyn measures the full weight
of the strength of synaptic connection. If we also allow the time course of the
synaptic gating variable to be described as the α-function, and let T (x) denote
the time at which V (x, T (x)−) = Vth, the model becomes

Cm
∂V

∂t
(x, t) = ḡL(VL − V (x, t)) + ḡsynV0

∫ ∞

−∞

w(|x − y|)α(t− T (y))dy,

if V (x, t−) = Vth then V (x, t+) = Vreset. (2.20)

We can nondimensionalize this equation by defining the following

v =
VL − V

V0
, vth =

VL − Vth

V0
, vreset =

VL − Vreset

V0
,

gsyn =
ḡsyn

ḡL

, τ = gLCm,

to obtain the integrate-and-fire model :





τ
∂v

∂t
(x, t) = −v(x, t) + gsyn

∫ ∞

−∞

w(|x − y|)α(t− T (y))dy,

if v(x, t−) = vth then v(x, t+) = vreset.

(2.21)
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2.3.3 Rate Models

Rate models contrast the integrate-and-fire neuron by representing the output
of a neuron in terms of a smooth firing rate function rather than a spike train
which contains the precise firing times of the neuron. Suppose the total synaptic
current entering cell i is given by

ui(t) =
∑

k

gikα(t− Tm
k )(V syn

ik − Vk), (2.22)

where gik is the synaptic conductance from cell k to cell i, Tm
k is the mth firing

time of cell k, α is any α-function, V syn is the reversal potential associated
with the synaptic ion channels, and Vk is the membrane potential of cell k.
This sum can be defined over finitely or infinitely many neurons. However, in
the infinite case we restrict the functions g such that this sum is finite for all
i. Since we are considering a time-scale much greater than the duration of an
action-potential, we make the approximation that

V syn

ik − Vk ≈ V 0

ik,

where V 0
ik

is a constant. We can then define function

wik = gikV
0

ik,

which can generate excitatory or inhibitory connections between neurons, as
V 0 can be positive or negative. Moreover, supposing the firing times of neuron
j can be written as a sequence of δ-function spikes

ρj(τ) =
∑

m∈Z

δ(τ − Tm
j ),

we can rewrite (2.22) as

ui(t) =
∑

k

wik

∫ t

−∞

α(t− τ)ρk(τ)dτ. (2.23)

At this point, we wish to replace the sequence of spikes by a smooth firing
rate function, ak(t), which is justified only if relevant network quantities are
relatively insensitive to trial-to-trial fluctuations in spike-trains. Experiments
depict that the trial-to-trial variability in neuronal spiking is often large, sug-
gesting that the replacing of the exact spike train by a firing rate in this context
would be invalid. However, if a neuron receives uncorrelated inputs from a
large number of cells, the mean of the total input grows linearly with the
total number of synapses, whereas the standard deviation grows as the square
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root of the total number of synapses; this suggests that the replacement by a
firing rate becomes more accurate as the number of synapses increases. This
is not true if the inputs are indeed correlated, which occurs, for example, if
presynaptic neurons fire synchronously. In addition temporal averaging, due to
slow synapses and membrane and dendritic effects, can reduce the spike-train
variability, lending support for the replacement by firing rate [21, 9]. With
these considerations in mind, we let α(τ) = ( 1

τs
e−τ/τs)+ and replace the exact

spike train ρk by a smooth firing rate ak; subsequently, differentiating

ui(t) =
∑

k

wik

∫ t

−∞

α(t− τ)ak(τ)dτ. (2.24)

with respect to t, yields

τs
dui

dt
(t) = −ui(t) +

∑

k

wikak(t). (2.25)

In order to close the system, we must determine a relationship between
the firing rate ai of a neuron and the total current input ui into that neuron.
Neurons fire at a steady rate given a constant current injection, a property
found both in experiments with real neurons as well as in numerical experiments
with biophysical or integrate-and-fire neurons. Moreover, the firing rate is
ideally a monotonically increasing, bounded function, as neuronal firing tends
to saturate with increasing current injection. Let F (u) denote the steady-

state firing rate in terms of input curent u where F is a bounded, smooth,
monotonically increasing, positive function, e.g., logistic function or hyperbolic
tangent. If a neuron is firing in steady-state, we take

ai = F (ui). (2.26)

However, the firing rate is directly related to the intrinsic membrane properties
of the neuron and, in general, evolves dynamically with respect to fluctuations
in the membrane potential and synaptic current. Often the firing rate dynamics
are taken to evolve according to a first-order differential equation in time,
assuming that it evolves in a fashion similar to the cell membrane. Some
venture as far to say that the time constants are the same; however, there is no
reason to expect this since the dynamics are not the same [21]. Supposing the
first-order dynamics are appropriate, then we allow the firing rate to approach
the steady-state firing rate, with time constant τm, yielding the system,






τs
dui

dt
(t) = −ui(t) +

∑

k

wikak(τ),

τm
dai

dt
(t) = −ai(t) + F (ui(t)).

(2.27)

Two limits allow us to simplify this system further: τs ≫ τm and τm ≫ τs.
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Suppose τs ≫ τm, then if we scale time by

τ =
t

τs
,

the system becomes






dui

dτ
(τ) = −ui(τ) +

∑

k

wikak(τ),

ǫ
dai

dτ
(τ) = −ai(τ) + F (uiτ)),

(2.28)

where ǫ = τm

τs
≪ 1. Since we have a small parameter, we can take the second

equation in (2.28) to be in quasi-steady state, i.e.,

ai(τ) = F (ui(τ)).

Substituting this into the first equation of (2.28), we obtain

dui

dτ
(τ) = −ui(τ) +

∑

k

wikF
(
uk(τ)

)
, τs ≫ τm. (2.29)

Conversely, if τm ≫ τs, the analogous argument yields

dai

dτ
(τ) = −ai(τ) + F

(
∑

k

wikak(τ)

)
, τm ≫ τs. (2.30)

The assumption τs ≫ τm means the firing rates instantaneously follow
time-varying inputs, while τm ≫ τs implies that the synaptic time course is
negligible and synaptic current dynamics are instantaneous. One method to
determine when the first assumption is valid is to consider the firing rate in an
integrate-and-fire model subject to a time-varying current injection. Chance
[14, 21] did this experiment with I(t) = I0 + I1 cos(ωt) as an input current and
found that, if the time-independent portion of the current I0 was sufficiently
large that it maintained fairly rapid firing of the cell, the steady-state ai(τ) =
F (ui(τ)) successfully describes the behavior of the time-dependent firing rate
for many different frequencies ω. However, if during the oscillation cycle, the
input current is significantly below the threshold, the firing rate dynamics are
delayed and attenuated at high frequencies. This discussion pertains to a single
cell, whereas we have input from many cells converging on a single cell. Suppose
a wave of activity is passing across a line of neurons, neurons ahead of the
wave will receive input, since the range of synaptic inputs is non-local; one
could imagine that this total input might be large enough that (2.26) is valid.
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Another argument in support of (2.26) is that, if the rate of change of the total
synaptic input ∑

k

wikF (uk(τ))

is slow, then dai

dt is small and the firing rate is approximately at steady-state.
One could also imagine that an approaching wave could increase the synaptic
input into cells ahead of the wave slow enough that (2.26) is valid. It would be
interesting to examine the validity of this assumtion in the case of traveling
waves by comparing, numerically, the full system (2.28) with the reduced
system (2.29) for different parameter values, in particular ǫ.

By the same continuum approximation described previously, we obtain the
continuum version of these equations:

∂u

∂τ
(x, τ) = −u(x, τ) +

∫ ∞

−∞

w(x, y)F
(
u(y, τ)

)
dy, τs ≫ τm. (2.31)

Conversely, if τm ≫ τs, we would have

∂a

∂τ
(x, τ) = −a(x, τ) + F

(∫ ∞

−∞

w(x, y)a(y, τ)dy

)
, τm ≫ τs. (2.32)

For convenience we have only considered one type of neuron, but, as mentioned
earlier, we are interested in considering populations of excitatory and inhibitory
neurons. The difference arises in the sign of the term involving the reversal
potential. In either case, excitation will have a positive effect by increasing
the net synaptic input to a cell while inhibition will have a negative effect by
decreasing the net synaptic input to a cell. If we take a rate model of the form
(2.31), we can introduce individual excitatory and inhibitory populations as

τe
∂ue

∂t
= −ue + wee ∗ Fee(ue) − wei ∗ Fei(ui), (2.33)

τi
∂ui

∂t
= −ui + wie ∗ Fie(ue) − wii ∗ Fii(ui), (2.34)

where (
wab ∗ Fab(ub)

)
(x) =

∫ ∞

−∞

wab(x, y)Fab

(
ub(y, t)

)
dy,

e, i denote the excitatory and inhibitory populations respectively, and wmn are
positive synaptic weight functions from population n to population m. Since
excitatory and inhibitory populations are different, we allow synaptic time con-
stants, firing rates, and weight functions to be different. These two equations
and variations thereof form a primary class of firing rate models for neuronal
populations, and are essentially the Wilson-Cowan equations introduced in
1973 [108, 109].



CHAPTER 3

ON FRONT BIFURCATIONS IN AN

EXCITATORY NEURAL NETWORK

Consider the system of integrodifferential equations

τs
∂u

∂t
(x, t) = −u(x, t) +

∫ ∞

−∞

w(x − x′)f
(
u(x′, t)

)
dx′ − βv(x, t) + I(x)

1

ǫ

∂v

∂t
(x, t) = −v(x, t) + u(x, t), (3.1)

representing a continuum model of one-dimensional cortical tissue, in which
u(x, t) is a neural field that represents the local activity of a population of
excitatory neurons at position x ∈ R, I(x) is an external input current, τs
is a synaptic time constant (assuming first–order synapses), f(u) denotes the
neuronal output firing rate function and w(x−x′) is the strength of connections
from neurons at x′ to neurons at x. The synaptic weight distribution w(x) is
taken to be a positive, even function of x, such that

∫
R
w(x)dx <∞. The neural

field v(x, t) represents some form of local negative feedback mechanism such as
spike frequency adaptation or synaptic depression, with β, ǫ determining the
relative strength and rate of feedback. The nonlinear function f is usually
taken to be a smooth sigmoid function, i.e. a bounded, smooth, monotonically
increasing function, e.g.,

f(u) =
1

1 + e−γ(u−κ)
(3.2)

with gain γ and threshold κ. The units of time are fixed by setting τs = 1; a
typical value of τs is 10 ms.

A number of previous studies have considered the existence and stability
of traveling wave solutions of equation (3.1) in the case of a uniform input
I, which is equivalent to a shift in the threshold κ. In particular, it has been
shown that in the absence of any feedback (β = 0), the resulting scalar network
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can support the propagation of traveling fronts [26, 49], whereas traveling
pulses tend to occur when there is significant negative feedback [109, 1, 80].
In this chapter, we show that such feedback can also have a nontrivial effect
on the propagation of traveling fronts, due to the occurrence of a symmetry
breaking front bifurcation analogous to that found in reaction-diffusion systems
[89, 43, 93, 44, 3, 91, 84, 66]. We begin by deriving conditions for the existence
of traveling wavefronts in the case of a homogeneous network (section 3.1). We
then carry out a perturbation expansion in powers of the wavespeed c to show
that a stationary front can undergo a supercritical pitchfork bifurcation at a
critical rate of negative feedback, leading to bidirectional front propagation
(section 3.2). As in reaction-diffusion systems, the front bifurcation acts as an
organizing center for a variety of nontrivial dynamics including the formation
of oscillatory fronts or breathers. We show how the latter can occur through a
Hopf bifurcation from a stationary front in the presence of a weak stationary
input inhomogeneity (section 3.3). Finally, we analyze the existence and sta-
bility of stationary fronts in an exactly solvable model, obtained by taking the
high gain limit γ → ∞ of the sigmoid function f such that f(u) = H(u − κ)
where H is the Heaviside function (section 3.4). The exactly solvable model
allows us to study oscillatory fronts beyond the weak input regime. Rather
than perturbing about the homogeneous case, we now consider a large input
amplitude for which wave propagation failure occurs, due to the pinning of a
stationary front. A subsequent reduction in the amplitude of the input then
induces a Hopf instability leading to the formation of a breather. We conclude
our analysis of the exactly solvable model, by deriving conditions for the locking
of a traveling front to a moving input and showing the dependence of locking
on both the amplitude and speed of the input.

The major advantage of the exactly solvable model is that it allows us
to determine explicitly the existence and stability of stationary and traveling
fronts in the presence of external inputs, without any restrictions on the size
of the input. Though, it has the disadvantage of restricting the nonlinear
function f to a step function, which is less realistic than the smooth nonlinearity
(3.2), matching quite well the input–output characteristics of populations of
neurons. As we show in this chapter, such an analysis can be carried out
for smooth f provided that the input amplitude is sufficiently weak. That
the nonlocal integrodifferential equation (3.1) exhibits behavior similar to a
reaction-diffusion system might not be surprising, particularly given that, for
the exponential weight w(x) = e−|x|, equation (3.1) can be reduced to a PDE
of the reaction–diffusion type. It is important to emphasize, however, that our
results hold for a more general class of weight distributions w(x) for which a
corresponding (finite–order) PDE cannot be constructed. Hence, the analysis
is a nontrivial extension of known results for reaction–diffusion equations.



45

3.1 Fronts in a Homogeneous Network

In this section we investigate the existence of traveling front solutions of equa-
tion (3.1) for homogeneous inputs, by combining results on scalar networks [26]
with an extension of the analysis of front bifurcations in nonscalar reaction–
diffusion equations [43, 3].

The scalar case. The existence of traveling front solutions in scalar, homoge-
neous networks was previously analyzed by Ermentrout and Mcleod [26]. Their
analysis can be applied to a scalar version of equation (3.1) obtained by taking
ǫ → ∞, so that v = u, and setting I(x) = −h with h a constant input. This
leads to the scalar integrodifferential equation

∂u

∂t
(x, t) = −(1 + β)u(x, t) +

∫ ∞

−∞

w(x − x′)f
(
u(x′, t)

)
dx′ − h. (3.3)

Without loss of generality, we choose h such that κ = 0 in the sigmoid function
(3.2). The weight distribution w is assumed to be a positive, even, continuously
differentiable function of x with unit normalization

∫
R
w(y)dy = 1. Suppose

that the function
Fh,β(u) = f(u) − (1 + β)u − h (3.4)

has precisely three zeros u = U±(h, β), U0(h, β) with U− < U0 < U+ and
F ′

h,β(U±) < 0. It can then be shown that (modulo uniform translations) there
exists a unique traveling front solution of (3.3) such that u(x, t) = U(ξ), ξ =
x− ct, with U(ξ) → U± as ξ → ∓∞ [26]. The speed of the wave satisfies

c = c(h, β) =
Γh,β∫∞

−∞ u′2f ′(u)dξ
, (3.5)

where

Γh,β =

∫ U+

U−

Fh,β(u)du. (3.6)

Since the denominator of equation (3.5) is positive definite, the sign of c is
determined by the sign of the coefficient Γh,β ; see Figure 3.1. In particular,
suppose that h = 0.5 and f is given by the sigmoid function (3.2) so that
f(u)−h = tanh(u/2γ)/2. It follows that, for 0 < 1+β < γ/4, there exists a pair
of stable homogeneous fixed points with U− = −U+, which in turn implies that
Γh,β = 0 and the front solution is stationary, see Figure 3.1. The corresponding
function Fh,β(u) has the inflection symmetry Fh,β(−u) = −Fh,β(u). Note, the
stationary solution of (3.3) is also an ǫ–independent solution of the full system
(3.1) with I(x) = −h but is not necessarily the only solution (see below).
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Figure 3.1. Balance condition for the speed of a traveling wave front in a

scalar excitatory network with u(x, t) = U(x − ct) such that U(∓∞) = U±.

The solid curve is f(u) = 1/(1 + e−γu) with γ = 8 and the dashed line is

g(u) = (1 + β)u+ h. The wavespeed c is positive (negative) if the grey shaded

area is larger (smaller) than the black shaded area. (a) h = 0.5, β = 0.5 such

that c = 0. (b) h = 0.4, β = 0.5 such that c > 0.

The regime ǫ ≫ 1. In the large ǫ regime, the neural field v varies on a much
faster time scale than u. Introducing the stretched time coordinate τ = t/δ
with δ = ǫ−1 ≪ 1, we have

∂u

∂τ
(x, τ) = δ

(
−u(x, τ) +

∫ ∞

−∞

w(x − x′)f
(
u(x′, τ)

)
dx′ − βv(x, τ) − h

)

∂v

∂τ
(x, τ) = −v(x, τ) + u(x, τ). (3.7)

To leading order in δ, u is independent of τ so we can explicitly solve for v

v(x, t) = v0(x)e
−ǫt + u(x, t)(1 − e−ǫt). (3.8)

Thus, after an initial transient of duration t ∼ O(ǫ−1), the field v adiabatically
follows the field u, with the latter evolving according to the scalar equation
(3.3). It follows that in the large ǫ regime there exists a unique traveling wave
solution of the full system with (u(x, t), v(x, t)) = (U(x − ct), V (x − ct)) such
that (U, V ) → (U±, U±) as ξ → ∓∞ and c = c(h, β), U± = U±(h, β). The front
is stable in the large ǫ regime provided that the solution of the corresponding
scalar equation is stable, which is found to be the case numerically. If Γh,β = 0,
the front is stationary, persisting for all ǫ, but may destabilize as ǫ is reduced.
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The regime 0 < ǫ ≪ 1. In the small ǫ regime, additional front solutions can
be constructed that connect the two fixed points (u, v) = (U±(h, β), U±(h, β)).
This follows from the observation that the neural field v remains approximately
constant on the length scale over which u varies, that is, within the transition
layer of the front. Suppose that the system is prepared in the down state
(U−, U−) and is perturbed on its left-hand side to induce a transition to the
upper state (U+, U+). In this case v ≈ U− within the transition layer and this
generates a front propagating to the right whose speed is approximately given
by equation (3.5) with h → h + βU−, that is, c = c(h + βU−, 0). If, on the
other hand, the system is prepared in the up state (U+, U+) and is perturbed
on its right-hand side to induce a transition to the down state (U−, U−), then
a left-propagating front is generated with c = c(h+ βU+, 0). Note from (3.6)

Γh+βU−,0 > Γh,β + β

∫ U+

U−

(u− U−)du, Γh+βU+,0 < Γh,β + β

∫ U+

U−

(u − U+)du

so Γh+βU−,0 > Γh,β > Γh+βU+,0. Hence, the existence of fronts propagating in
opposite directions clearly holds when h, β are chosen such that Γh,β = 0.

3.2 Front Bifurcation

The above analysis suggests that, if Γh,β = 0, then at some critical rate of
feedback ǫ = ǫc, a pair of counter–propagating fronts bifurcate from a station-
ary front. Moreover, all of the front solutions exhibit the same asymptotic
behavior (U(ξ), V (ξ)) → (U±, U±) as ξ → ∓∞. Following along analogous
lines to Hagberg and Meron [43], we carry out a perturbation expansion, in
powers of the speed c about this critical point, and show that the stationary
solution undergoes a pitchfork bifurcation.

Setting I(x) = −h and
(
u(x, t), v(x, t)

)
=
(
U(ξ), V (ξ)

)
in (3.1) yields

−cU ′ = −U + w ∗ f(U) − βV − h

−cV ′ = ǫ(−V + U) (3.9)

where U ′ = dU/dξ, ξ = x− ct, and ∗ denotes the convolution operator,

w ∗ U =

∫ ∞

−∞

w(ξ − ξ′)U(ξ′)dξ′. (3.10)

Suppose β and h are fixed such that Γh,β = 0, and denote the corresponding
stationary solution by (U, V ). Expand the fields U, V as power series in c:

U(ξ) = U(ξ) + cU1(ξ) + c2U2(ξ) + · · ·
V (ξ) = V (ξ) + cV1(ξ) + c2V2(ξ) + · · · (3.11)
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Note that the higher order terms Un(ξ), Vn(ξ), n ≥ 1, should all decay to zero
as ξ → ±∞, since the stationary solution already has the correct asymptotic
behavior. Also expand ǫ according to

ǫ = ǫc + cǫ1 + c2ǫ2 + · · · (3.12)

Substitute these expansions into (3.52) and Taylor expand f(U) about U :

f(U) = f(U) +
∑

n≥1

fn(U − U)n, fn =
1

n!

dnf

dUn

∣∣∣∣
U=U

. (3.13)

Collecting all terms at successive orders of c then generates a hierarchy of
equations for the perturbative corrections Un, Vn. The lowest order equation
recovers the conditions for a stationary solution:

(1 + β)U + h = w ∗ f(U)

V = U. (3.14)

At order c we have

−U ′
= −U1 + w ∗ [f1U1] − βV1 (3.15)

−V ′
= ǫc(−V1 + U1) + ǫc(−V + U). (3.16)

The term −βV1 in (3.15) can be eliminated using (3.16). Since V = U , we find

MU1 =

(
β

ǫc
− 1

)
U

′
, V1 = U1 +

U
′

ǫc
(3.17)

where M is the linear operator

MU = −(1 + β)U + w ∗ [f1U ]. (3.18)

Since the functions Un(ξ), Vn(ξ) decay to zero as ξ → ±∞, we will assume that
M acts on the space L2(R) and introduce the generalized inner product

〈U |V 〉 =

∫ ∞

−∞

f ′
(
U(ξ)

)
U(ξ)V (ξ)dξ (3.19)

for all U, V ∈ L2(R). With respect to this space, M is self-adjoint and has the

null vector U
′1:

MU
′
= M†U

′
= 0. (3.20)

1We could equally well proceed by taking the standard inner product 〈U |V 〉 =
R ∞

−∞
U(ξ)V (ξ)dξ. The adjoint of M is then given by M†U = −(1 + β)U + f1w ∗ U ,

which has the null vector f1U
′
where f1 = f ′(U).
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Applying the Fredholm alternative to (3.17) then gives the solvability condition

〈U ′|U ′〉
(
β

ǫc
− 1

)
= 0. (3.21)

Since f ′
(
U(ξ)

)
> 0 for all ξ, it follows that 〈U ′|U ′〉 > 0 and thus ǫc = β. This

in turn means that MU1 = 0, and hence U1 = AU
′
for some constant A. Since

U
′

is the generator of uniform translations, we are free to choose the origin
such that A = 0. Under this choice,

U1 = 0, V1 =
U

′

ǫc
. (3.22)

At order c2 we obtain

−U ′
1 = MU2 + β(−V2 + U2) + w ∗ [f2U

2
1 ] (3.23)

−V ′
1 = ǫc(−V2 + U2) + ǫ1(−V1 + U1) + ǫ2(−V + U). (3.24)

Substituting for −V2 + U2 in (3.23), and using (3.22), V = U , β = ǫc yields

MU2 =
1

ǫc

(
U

′′ − ǫ1U
′
)
, V2 = U2 +

1

ǫ2c

(
U

′′ − ǫ1U
′
)
. (3.25)

Applying the Fredholm alternative to (3.25) yields the solvability condition

〈U ′|U ′′〉 = ǫ1〈U
′|U ′〉. (3.26)

In order to evalute the inner product 〈U ′|U ′′〉, we use the result

(1 + β)
d2U

dξ2
=

∫ ∞

−∞

w(ξ − ξ′)
d2f(U(ξ′))

dξ′2
dξ′, (3.27)

which follows from differentiating equation (3.14) with respect to ξ and using
the asymptotic properties of w. Then, since w′(ξ) is an odd function of ξ,

〈U ′|U ′′〉 =

∫ ∞

−∞

f ′(U(ξ))U
′
(ξ)U

′′
(ξ)dξ

=

∫ ∞

−∞

df(U(ξ))

dξ
U

′′
(ξ)dξ

=
1

1 + β

∫ ∞

−∞

∫ ∞

−∞

df(U(ξ))

dξ
w(ξ − ξ′)

d2f(U(ξ′))

dξ′2
dξ′dξ

=
1

1 + β

∫ ∞

−∞

∫ ∞

−∞

df(U(ξ))

dξ
w′(ξ − ξ′)

df(U(ξ′))

dξ′
dξ′dξ

= 0. (3.28)
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This last step follows from the fact that, if h(x) is an odd function,

K ≡
∫

R

∫

R

h(x − y)ϕ(x)ϕ(y)dxdy = −
∫

R

∫

R

h(y − x)ϕ(y)ϕ(x)dydx ≡ −K,

implying that K = 0. Hence, ǫ1 = 0 and

MU2 =
U

′′

ǫc
, V2 = U2 +

U
′′

ǫ2c
. (3.29)

At order c3 we obtain

−U ′
2 = MU3 + β(−V3 + U3) + 2w ∗ [f2U1U2] + w ∗ [f3U

3
1 ] (3.30)

−V ′
2 = ǫc(−V3 + U3) + ǫ1(−V2 + U2) + ǫ2(−V1 + U1) + ǫ3(−V + U). (3.31)

Substituting for −V2 + U2 in (3.30) and using (3.22), (3.29), V = U , β = ǫc,
ǫ1 = 0 gives

MU3 =
1

ǫ2c

(
U

′′′ − ǫ2ǫcU
′
)
, V3 = U3 +

1

ǫ3c
(U

′′′
+ ǫ2cU

′
2 − ǫ2ǫcU

′
). (3.32)

Applying the Fredholm alternative to (3.32) yields the solvability condition

ǫ2 =
〈U ′|U ′′′〉
ǫc〈U

′|U ′〉
< 0. (3.33)

The sign of ǫ2 is determined using (3.27) and that w(ξ) is positive and even:

〈U ′|U ′′′〉 =

∫ ∞

−∞

f ′(U(ξ))U
′
(ξ)U

′′′
(ξ)dξ

=

∫ ∞

−∞

df(U(ξ))

dξ
U

′′′
(ξ)dξ

= −
∫ ∞

−∞

d2f(U(ξ))

dξ2
U

′′
(ξ)dξ

= − 1

1 + β

∫ ∞

−∞

∫ ∞

−∞

d2f(U(ξ))

dξ2
w(ξ − ξ′)

d2f(U(ξ′))

dξ′2
dξ′dξ

< 0. (3.34)
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Hence ǫ2 < 0.
Combining these various results, we find that

U(ξ) = U(ξ) + O(c2)

V (ξ) = U(ξ) +
c

ǫc
U

′
(ξ) + O(c2) (3.35)

and

ǫ = ǫc + c2ǫ2 + O(c3). (3.36)

Equation (3.36) implies that the stationary front undergoes a pitchfork bifur-
cation, which is supercritical since ǫ2 < 0. (This assumes of course that the
stationary front is stable for ǫ > ǫc. This can be confirmed numerically, and
also proven analytically in the high gain limit, see section 3.4). Close to the
bifurcation point the shape of the propagating fronts is approximately the same
as the stationary front, except that the recovery variable V is shifted relative
to U by an amount proportional to the speed c, that is

U(ξ) ≈ U(ξ), V (ξ) ≈ U(ξ + c/ǫc). (3.37)

An analogous result was previously obtained for reaction–diffusion equations
[43]. It is important to emphasize that the occurrence of a pitchfork bifurcation
from a stationary front does not require any underlying inflection symmetries of
the nonlinear function f (see also [3]). We only require that the scalar equation
(3.3) supports a stationary front for appropriate choices of h, β. The fact that
the weight distribution w(x) is even means that there must be a pitchfork
bifurcation from a stationary solution rather than a transcritical bifurcation as
in the case of a nonsymmetric w.

3.3 The Effect of a Weak Input Inhomogeneity

Now suppose that both ǫ and h are allowed to vary. We then expect a
codimension 2 cusp bifurcation in which the pitchfork bifurcation unfolds into a
saddle–node bifurcation, with the stationary front replaced by a traveling front
in the large ǫ regime. More interestingly, as in the case of reaction–diffusion
systems [93, 44, 3], the pitchfork bifurcation acts as an organizing center for
a variety of dynamical phemomena, including the formation of breathers due
to the presence of a weak input inhomogeneity. These breathers consist of
periodic reversals in propagation that can be understood in terms of a dynamic
transition between the pair of counter–propagating fronts that is induced by the
weak intrinsic perturbation. Such a transition involves an interaction between
a translational degree of freedom and an order parameter that determines the
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direction of propagation. In order to unravel this interaction, it is necessary to
extend the perturbation analysis of section 3.2 along analogous lines to previous
treatments of reaction–diffusion systems [93, 44, 3].

Suppose that the system (3.1) undergoes a pitchfork bifurcation from a
stationary state when ǫ = ǫc = β and I(x) = −h. Introduce the small
parameter δ according to ǫ−ǫc = δ2χ and introduce a weak input inhomogenity
by taking I(x) = −h + δ3η(x). Since any fronts are slowly propagating, we
rescale time according to τ = δt so that equation (3.1) becomes

δ
∂u(x, τ)

∂τ
= −u(x, t) +

∫ ∞

−∞

w(x − x′)f(u(x′, τ))dx′ − βv(x, τ) − h+ δ3η(x)

δ
∂v(x, τ)

∂τ
= (ǫc + δ2χ) [−v(x, τ) + u(x, τ)] . (3.38)

Motivated by equation (3.35), we introduce the ansatz that sufficiently close to
the pitchfork bifurcation, the solutions of equation (3.38) can be expanded in
the form

u(x, τ) = U(x− p(τ)) + δ2u2(x, τ) + δ3u3(x, τ) + · · · (3.39)

v(x, τ) = U(x− p(τ)) + δ
a(δτ)

ǫc
U

′
(x− p(τ)) + δ2v2(x, τ) + δ3v3(x, τ) + · · ·

Here p is identified with the translational degree of freedom, whereas a repre-
sents the order parameter associated with changes in propagation direction.
Note that a is assumed to evolve on a slower timescale than p. We now
substitute the ansatz (3.39) into equation (3.38) and expand in powers of δ
along similar lines to the perturbation calculation of section 3.2.

At order δ we find that

pτ = a, (3.40)

where pτ = dp/dτ . At order δ2 we obtain the pair of equations

Mu2 = a2U
′′

ǫc
, v2 = u2 + a2U

′′

ǫ2c
, (3.41)

after setting pτ = a. The solvability condition for equation (3.41) is automati-
cally satisfied. At order δ3 we have

∂u2

∂τ
= Mu3 + β[−v3 + u3] + η

∂v2
∂τ

+
U

′
aτ̂

ǫc
= ǫc[−v3 + u3] − aχ

U
′

ǫc
(3.42)
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with τ̂ = δτ . Using equation (3.41), the following equation for u3 is obtained:

Mu3 =
1

ǫ2c

(
a3U

′′′ − aχǫcU
′ − aτ̂ ǫcU

′
)
− η. (3.43)

Applying the Fredholm alternative to equation (3.43) yields an amplitude
equation for a:

aτ̂ = −χa+ a3 〈U ′|U ′′′〉
ǫc〈U

′|U ′〉
− ǫc

〈U ′|η〉
〈U ′|U ′〉

. (3.44)

Finally, rescaling p, a and η we obtain the pair of equations

pt = a

at = (ǫc − ǫ)a+
〈U ′|U ′′′〉
ǫc〈U

′|U ′〉
a3 − ǫc

〈U ′|η〉
〈U ′|U ′〉

. (3.45)

Note that U = U(x − p) so that the final coefficient on the right–hand side
of equation (3.45) will be p–dependent in the case of an inhomogeneous input
η = η(x).

Cusp bifurcation for homogeneous inputs. It is clear from equation (3.45)
that, when η = 0, we recover the pitchfork bifurcation of a stationary front as
found in section 3.2. In particular, for ǫ < ǫc there are three constant speed
solutions of equation (3.45) such that at = 0, pt = a = c, corresponding to an
unstable stationary front and a pair of stable counter–propagating fronts with
speeds

c = ±

√√√√(ǫc − ǫ)ǫc
〈U ′|U ′〉

|〈U ′|U ′′′〉|
. (3.46)

If η is nonzero but constant, on the other hand, the final term on the right-hand

side of (3.45) reduces to the constant coefficient ǫcη(f(U+) − f(U−))/〈U ′|U ′〉,
and the pitchfork bifurcation unfolds to a saddle–node bifurcation. There
are two saddle-node lines in the (η, ǫ)–plane corresponding to the condition
dG(a)/da = 0 where at = G(a):

ηsn = ± 2

3
√

3

(ǫc − ǫ)3/2

ǫ
1/2
c

〈U ′|U ′〉3/2

(f(U+) − f(U−))|〈U ′|U ′′′〉|1/2
(3.47)

and the corresponding speed along these lines is

csn = ±

√√√√(ǫc − ǫ)ǫc
〈U ′|U ′〉

3|〈U ′|U ′′′〉|
. (3.48)
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Hopf bifurcation for a weak inhomogeneity. The introduction of a
weak input inhomogeneity can lead to a Hopf instability of the stationary
front. We shall illustrate this by considering the particular example of the
step inhomogeneity

η(x) =

{
s/2 if x ≤ 0
−s/2 if x > 0

(3.49)

with s > 0. For such an input we find that

〈U ′|η〉 =
s

2

[
2f(U(−p)) − f(U+) − f(U−)

]
. (3.50)

Recall from section 3.1 that when h = 0.5 the homogeneous network with f
given by equation (3.2) supports a stationary front solution for which U± =
±0.5/(1+β), and U(0) = 0 such that f(U+)+f(U−) = 2f(0). Hence, equation
(3.45) has a fixed point at p = 0, a = 0. Linearization about this fixed point
shows that there is a Hopf bifurcation of the stationary front at ǫ = ǫc with
Hopf frequency

ωH =

√√√√sǫcf ′(0)|U ′
(0)|

〈U ′|U ′〉
. (3.51)

The supercritical or subcritical nature of the Hopf bifurcation can then be de-
termined by evaluating higher–order terms in a, p. However, this is complicated
by the fact that we do not have an analytical expression for the stationary front
solution U , in contrast to the case of a reaction–diffusion equation with a cubic
nonlinearity [3]. (Note that as in the case of reaction-diffusion equations [3],
one can develop a more intricate perturbation analysis that takes into account
O(δ2) inhomogeneities and corresponding shifts in the Hopf bifurcation point.
Here we have followed a simpler approach in order to illustrate the basic ideas
underlying the perturbative treatment of the integrodifferential equation (3.1)).

3.4 Exactly Solvable Model

We now consider the high gain limit γ → ∞, for which equation (3.2) reduces
to f(u) = H(u− κ) where H is the Heaviside function H(u) = 1 if u > 0 and
H(u) = 0 if u ≤ 0. The advantage of using a threshold nonlinearity is that
explicit analytical expressions for front solutions can be obtained, which allows
us to derive conditions for the Hopf instability of a stationary front without
any restrictions on the size of the input inhomogeneity. Numerical simulations
of the full system establish that the bifurcation is supercritical and that it
generates an oscillatory modulation of the stationary front in the form of a
breather.
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3.4.1 Traveling Fronts (Homogeneous Case)

We begin by deriving exact traveling front solutions of equation (3.1) for f(u) =
H(u − κ) and a homogeneous input I(x) = 0. That is, we seek a solution of
the form u(x, t) = U(ξ), ξ = x− ct, c > 0, such that

U(x) > κ, x ∈ (−∞, 0); U(0) = κ,

U(x) < κ, x ∈ (0,+∞); U(∓∞) = U±.

Setting v(x, t) = V (ξ), we then have

−cU ′(ξ) + U(ξ) =

∫ 0

−∞

w(ξ − ξ′)dξ′ − βV (ξ) (3.52)

−c
ǫ
V ′(ξ) = −V (ξ) + U(ξ). (3.53)

Differentiating the first equation and substituting into the second, we obtain a
second order ODE with boundary conditions at ξ = 0 and ±∞:

−c2U ′′(ξ) + c[1 + ǫ]U ′(ξ) − ǫ[1 + β]U(ξ) = −cw(ξ) − ǫW (ξ)

U(0) = κ

U(∓∞) = U± (3.54)

where

W (ξ) =

∫ ∞

ξ

w(y)dy. (3.55)

Here U± are the homogeneous fixed point solutions

U+ =
1

1 + β
, U− = 0. (3.56)

We have used the fact that w has unit normalization,W (−∞) ≡
∫

R
w(y)dy = 1.

It follows that a necessary condition for the existence of a front solution is
κ < U+.

In order to establish the existence of a traveling front, we solve the boundary
value problem on the domains ξ ≤ 0 and ξ ≥ 0 and match the solutions at ξ = 0.
For further mathematical convenience, we take the weight distribution to be
an exponential function

w(x) =
1

2d
e−|x|/d (3.57)

where d determines the range of the synaptic interactions. We fix the spatial
scale by setting d = 1; a typical value of d is 1 mm. We first consider the case
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of right–moving waves (c > 0). On the domain ξ ≥ 0, the particular solution
is U>(ξ) = κe−ξ with κ related to the speed c according to the self-consistency
condition

κ =
c+ ǫ

2(c2 + c[1 + ǫ] + ǫ[1 + β])
, c ≥ 0. (3.58)

In the domain ξ ≤ 0 the solution consists of complementary and particular
parts:

U<(ξ) = A+eµ+ξ + A−eµ−ξ + Aeξ + U+, (3.59)

where

µ± =
1

2c

[
1 + ǫ±

√
(1 + ǫ)2 − 4ǫ(1 + β)

]
. (3.60)

The coefficient A is obtained by direct substitution into the differential equation
for U , whereas the coefficients A± are determined by matching solutions at the
boundary ξ = 0, that is, U<(0) = κ and U ′

<(0) = −κ. Thus we find

A =
c− ǫ

2(c2 − c[1 + ǫ] + ǫ[1 + β])
, (3.61)

A+ =
µ−U+ + (µ− − 1)A− (1 + µ−)κ

µ+ − µ−
, (3.62)

A− =
−µ+U+ + (1 − µ+)A + (1 + µ+)κ

µ+ − µ−
. (3.63)

In the limit β → 0 we recover the standard result for an excitatory network
without feedback [26]:

U(ξ) =






1

2(c+ 1)
e−ξ for ξ > 0

1 + (κ− 1)eξ/c +
1

2(c− 1)

[
eξ − eξ/c

]
for ξ < 0

(3.64)

with

κ =
1

2(c+ 1)
, c ≥ 0. (3.65)

A similar analysis can be carried out for left–moving waves. Now the speed
c is determined by the particular solution in the domain ξ ≤ 0, which takes
the form U<(ξ) = −κ̂eξ + U+ with κ̂ = (1 + β)−1 − κ. This leads to the
self-consistency condition

κ̂ = − c− ǫ

2(c2 − c[1 + ǫ] + ǫ[1 + β])
, c ≤ 0. (3.66)

The existence of traveling front solutions can now be established by finding
positive real solutions of equation (3.58) and negative real solutions of equation
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(3.66). For concreteness, we will assume that the threshold κ is fixed and
determine the solution branches as a function of the feedback parameters ǫ, β
with 1/κ− 1 > β > 0. The roots of equation (3.58) and (3.66) can be written
explicitly as

c =
1

2



−
(

1 + ǫ− 1

2κ

)
±

√(
1 + ǫ− 1

2κ

)2

− 4ǫ

(
1 + β − 1

2κ

)

 (3.67)

and

c =
1

2



+

(
1 + ǫ− 1

2κ̂

)
±

√(
1 + ǫ− 1

2κ̂

)2

− 4ǫ

(
1 + β − 1

2κ̂

)

 . (3.68)

Using the fact that sgn
(
1 + β − 1

2κ

)
= −sgn

(
1 + β − 1

2κ̂

)
, we find that there

are three bifurcation scenarios as shown in Figure 3.2:
(i) If 2κ(1+β) = 1 then there exists a stationary front for all ǫ. At a critical

value of ǫ the stationary front undergoes a pitchfork bifurcation leading to the
formation of a left and a right–moving wave. This is the high-gain limit of the
front bifurcation analyzed in section 3.2 for smooth f .

(ii) If 2κ(1 + β) > 1 then there is a single left–moving wave for all ǫ.
There also exists a pair of right–moving waves that annihilate in a saddle-node
bifurcation at a critical value of ǫ that approaches zero as β → 0.

(iii) If 2κ(1 + β) < 1 then there is a single right–moving wave for all ǫ.
There also exists a pair of left–moving waves that annihilate in a saddle-node
bifurcation at a critical value of ǫ that approaches zero as β → 0.
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Figure 3.2. Plot of wavefront speed c as a function of ǫ for various values of

β and a fixed threshold κ = 0.25: (i) 2κ(1 + β) = 1, (ii) 2κ(1 + β) > 1, (iii)

2κ(1 + β) < 1. Stable (unstable) branches are shown as solid (dashed) curves.
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3.4.2 Stability Analysis of Stationary Fronts

Stationary front solutions of (3.1) with f(u) = H(u − κ) in the case of an
inhomogeneous input I(x) satisfy the equation

(1 + β)U(x) =

∫ x0

−∞

w(x − x′)dx′ + I(x). (3.69)

Suppose that I(x) is a monotonically decreasing function of x. Since the
system is no longer translation invariant, the position of the front is pinned
to a particular location x0 where U(x0) = κ. Monotonicity of I(x) ensures
that U(x) > κ for x < x0 and U(x) < κ for x > x0. The center x0 satisfies

(1 + β)κ =
1

2
+ I(x0) (3.70)

under the normalization
∫∞

0 w(y)dy = 1/2. Equation (3.70) implies that in
contrast to the homogeneous case, there exists a stationary front over a range
of threshold values (for fixed β); changing the threshold κ simply shifts the
position of the center x0. In the particular case of the exponential weight
distribution (3.57), we have

(1 + β)U(x) =





ex0−x

2
+ I(x), x > x0

1 − ex−x0

2
+ I(x), x < x0.

(3.71)

If the stationary front is stable then it will prevent wave propagation.
Stability is determined by writing u(x, t) = U(x)+p(x, t) and v(x, t) = V (x)+
q(x, t), with V (x) = U(x), and expanding equation (3.1) to first-order in (p, q):

∂p(x, t)

∂t
= −p(x, t) +

∫ ∞

−∞

w(x − x′)H ′(U(x′))p(x′, t)dx′ − βq(x, t)

1

ǫ

∂q(x, t)

∂t
= −q(x, t) + p(x, t). (3.72)

We assume that p, q ∈ L2(R). The spectrum of the associated linear operator
is found by taking p(x, t) = eλtp(x) and q(x, t) = eλtq(x). Using the identity

dH(U(x))

dU
=
δ(x− x0)

|U ′(x0)|
(3.73)

we obtain the equation
(
λ+ 1 +

ǫβ

λ+ ǫ

)
p(x) =

w(x − x0)

|U ′(x0)|
p(x0). (3.74)
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Equation (3.74) has two classes of solution. The first consists of any function
p(x) such that p(x0) = 0, for which λ = λ◦± where

λ◦± =
−(1 + ǫ) ±

√
(1 + ǫ)2 − 4ǫ(1 + β)

2
. (3.75)

Note that λ◦± belong to the essential spectrum since they have infinite multi-
plicity. The second class of solution is of the form p(x) = Aw(x − x0), A 6= 0,
for which λ is given by the roots of the equation

λ+ 1 +
ǫβ

λ+ ǫ
=

1

2|U ′(x0)|
. (3.76)

Since

U ′(x0) =
1

1 + β

[
I ′(x0) −

1

2

]
, (3.77)

it follows that λ = λ±, where

λ± =
−Λ ±

√
Λ2 − 4(1 − Γ)ǫ(1 + β)

2
(3.78)

with
Λ = 1 + ǫ− (1 + β)Γ (3.79)

and

Γ =
1

1 + 2D
, D = |I ′(x0)|. (3.80)

We have used the fact that I ′(x0) ≤ 0. The eigenvalues λ± determine the
discrete spectrum.

3.4.3 Hopf Bifurcation to a Breathing Front

Equation (3.78) implies that the stationary front is locally stable provided that
Λ > 0 or, equivalently, the gradient of the inhomogeneous input at x0 satisfies

D > Dc ≡ 1

2

β − ǫ

1 + ǫ
. (3.81)

Since D ≥ 0, it follows that the front is stable when β < ǫ, that is, when the
feedback is sufficiently weak or fast. On the other hand, if β > ǫ then there is
a Hopf bifurcation at the critical gradient D = Dc. The corresponding critical
Hopf frequency is

ωH =

√
2Dcǫ(1 + β)

2Dc + 1
=
√
ǫ(β − ǫ). (3.82)

Note that the frequency only depends on the size and rate of the negative
feedback, but is independent of the details of the synaptic weight distribution
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and the size of the input. This should be contrasted with the correspond-
ing Hopf frequency in the case of a smooth nonlinearity f and a weak step-
inhomogeneity; see equation (3.51). The latter depends on the input amplitude
and the form of the stationary solution U , which itself depends on the weight
distribution w.

In order to investigate the nature of solutions around the Hopf bifurcation
point, we consider the particular example of a smooth ramp inhomogeneity

I(x) = −s
2

tanh(γx), (3.83)

where s is the size of the step and γ determines its steepness. A stationary
front will exist provided that

s > s̄ ≡ |1 − 2κ(1 + β)|. (3.84)

The gradient D = sγ sech2(γx0)/2 depends on x0, which is itself dependent on
β and κ through equation (3.70). Using the identity sech2x = 1 − tanh2 x, it
follows that

D =
γ

2s

(
s2 − s̄2

)
. (3.85)

Substituting into the expression for the critical slope Dc, equation (3.81), yields
an expression for the critical value of s that determines the Hopf bifurcation
points:

sc =
1

2γ


β − ǫ

1 + ǫ
+

√(
β − ǫ

1 + ǫ

)2

+ 4s̄2γ2


 . (3.86)

The critical height sc is plotted as a function of β for various values of ǫ and
fixed κ, γ in Figure 3.3. Note that in the homogeneous case (s = 0) a stationary
solution only exists at the particular value of β given by β = 1/(2κ) − 1.
This solution is stable for ǫ > β and unstable for ǫ < β, consistent with the
pitchhfork bifurcation shown in Figure 3.2. Close to the front bifurcation ǫ = β,
the Hopf bifurcation occurs in the presence of a weak input inhomogeneity,
which is the case considered in section 3.1. Now, however, it is possible to
determine the bifurcation curve without any restrictions on the size of the
input.

Numerically solving the full system of equations (3.1) for a step input I(x),
exponential weights w(x) and threshold nonlinearity f(u) = H(u − κ) shows
that the Hopf bifurcation is supercritical, in which there is a transition to a
small amplitude breather whose frequency of oscillation is approximately equal
to the Hopf frequency ωH . As the input amplitude s is reduced beyond the Hopf
bifurcation point, the amplitude of the oscillation increases until the breather
itself becomes unstable and there is a secondary bifurcation to a traveling front.
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Figure 3.3. Stability phase diagram for a stationary front in the case of a

step input I(x) = −s tanh(γx)/2 where γ is the steepness of the step and s

its height. Hopf bifurcation lines (solid curves) in (β, s)–parameter space are

shown for various values of ǫ. In each case the stationary front is stable above

the line and unstable below it. The shaded area denotes the region of parameter

space where a stationary front solution does not exist. The threshold κ = 0.25

and γ = 0.5.

This is illustrated in Fig. 3.4, which shows a space-time plot of the developing
breather as the input amplitude is slowly reduced. As we shall see in Chapter
4, analogous results occur for pulses in the presence of stationary Gaussian
inputs, where a reduction in the input amplitude induces a Hopf bifurcation to
a pulse–like breather. Interestingly, the localized breather can itself undergo a
secondary instability leading to the periodic emission of traveling waves.
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3.4.4 Locking to a Moving Input

We conclude our analysis of the exactly solvable model by considering the effects
of a moving input stimulus. This is interesting from a number of viewpoints.
First, introducing a persistent stationary input into an in vitro cortical slice
can damage the tissue, whereas a moving input (at least if it is localized) will
not. Second, in vivo inputs into the intact cortex are typically nonstationary,
as exemplified by inputs to the visual cortex induced by moving visual stimuli.
We consider the particular problem of whether or not a traveling front can lock
to a step–like input I(x) = I0χ(x− vt) traveling with constant speed v, where

χ(x) =





−1, x > 0
0, x = 0

+1, x < 0.

Such a front moves at the same speed as the input but may be shifted in space
relative to the input.

We proceed by introducing the traveling wave coordinate ξ = x − vt and
deriving existence conditions for a front solution U(ξ) satisfying U(ξ0) = κ,
U(ξ) → 0 as ξ → ∞, and U(ξ) → (1 + β)−1 as ξ → −∞. Substituting into
equation (3.1) gives

−vU ′(ξ) = −U(ξ) +

∫ ξ0

−∞

w(ξ − η)dη − βV (ξ) + I0χ(ξ)

−vV ′(ξ) = ǫ(−V (ξ) + U(ξ)). (3.87)

Setting W (ξ) =
∫∞

ξ
w(η)dη, we rewrite this set of equations in the matrix form

LS ≡
(
vU ′ − U − βV
vV ′ + ǫU − ǫV

)
= −

(
NE

0

)
, (3.88)

where
S = (U, V )T , NE(ξ) = W (ξ − ξ0) + I0χ(ξ). (3.89)

We use variation of parameters to solve this linear equation. The homogeneous
problem LS = 0 has the two linearly independent solutions,

S+(ξ) =

(
β

m+ − 1

)
exp(µ+ξ) (3.90)

S−(ξ) =

(
β

m− − 1

)
exp(µ−ξ) (3.91)

where

µ± =
m±

v
, m± =

1

2

(
1 + ǫ±

√
(1 − ǫ)2 − 4ǫβ

)
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By variation of parameters we define

S(ξ) =
[
S+

∣∣S−

](
a(ξ)
b(ξ)

)
,

where [A|B] denotes the matrix whose first column is defined by the vector A
and whose second column is defined by the vector B. Then

LS = v
∂

∂ξ

([
S+

∣∣S−

]( a(ξ)
b(ξ)

))
−
(

1 β
−ǫ ǫ

)([
S+

∣∣S−

]( a(ξ)
b(ξ)

))

= v
[
S+

∣∣S−

] ∂
∂ξ

(
a(ξ)
b(ξ)

)
, (3.92)

since LS± = 0. Thus equation (3.88) reduces to

[
S+

∣∣S−

] ∂
∂ξ

(
a(ξ)
b(ξ)

)
= −1

v

(
NE

0

)
. (3.93)

The matrix
[
S+

∣∣S−

]
is invertible. Introducing the vector–valued functions

Z+(ξ) =

(
1 −m−

β

)
exp(−µ+ξ) (3.94)

Z−(ξ) = −
(

1 −m+

β

)
exp(−µ−ξ) (3.95)

we have

[
S+

∣∣S−

][
Z+

∣∣Z−

]T
=
[
Z+

∣∣Z−

]T[
S+

∣∣S−

]
= β(m+ −m−)I,

where I denotes the identity matrix. Multiplying equation (3.93) by
[
Z+

∣∣Z−

]T

finally yields the first–order equation

∂

∂ξ

(
a(ξ)
b(ξ)

)
= − 1

vβ(m+ −m−)

[
Z+

∣∣Z−

]T( NE(ξ)
0

)
. (3.96)

In order to solve equation (3.96) we need to specify the sign of v. First,
suppose that v > 0, which corresponds to a right–moving front. Integrating
over the interval [ξ,∞) gives

(
a(ξ)
b(ξ)

)
=

(
a∞
b∞

)
+

1

vβ(m+ −m−)

∫ ∞

ξ

[
Z+

∣∣Z−

]T( NE(η)
0

)
dη
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where a∞, b∞ denote the values of a, b at ∞. Since we seek a bounded solution
S(ξ), we must require that a∞ = b∞ = 0. Hence the solution is

(
a(ξ)
b(ξ)

)
=

1

vβ(m+ −m−)

∫ ∞

ξ

[
Z+

∣∣Z−

]T( NE(η)
0

)
dη,

so that

S(ξ) =
1

vβ(m+ −m−)

[
S+

∣∣S−

] ∫ ∞

ξ

[
Z+

∣∣Z−

]T( NE(η)
0

)
dη. (3.97)

Further simplification occurs by introducing the functions

M±(ξ) =
1

v

(
1

m+ −m−

)∫ ∞

ξ

eµ±(ξ−η)NE(η)dη.

We can then express the solution (U(ξ), V (ξ)) as follows:

U(ξ) = (1 −m−)M+(ξ) − (1 −m+)M−(ξ),

V (ξ) = β−1(m+ − 1)(1 −m−) [M+(ξ) − M−(ξ)] . (3.98)

To ensure that such a front exists we require that U(ξ0) = κ, i.e.,

κ = (1 −m−)M+(ξ0) − (1 −m+)M−(ξ0). (3.99)

Taking w(x) = e−|x|/2 so that

W (ξ) =






1 − 1
2eξ, ξ < 0

1
2e−ξ, ξ ≥ 0

we can calculate M±(ξ0) explicitly as

M±(ξ0) =
1

(m+ −m−)

(
1

2(v +m±)
− 1

m±

F (ξ0)

)

where

F (ξ0) =





I0(2eµ±ξ0 − 1), ξ0 < 0

I0, ξ0 ≥ 0.

The case of a left–moving front, for which v < 0, follows along similar lines
by integrating equation (3.96) over (−∞, ξ0]:

U(ξ) = (m− − 1)M̃+(ξ) − (m+ − 1)M̃−(ξ) (3.100)

V (ξ) = β−1(m+ − 1)(1 −m−)
[
M̃+(ξ) − M̃−(ξ)

]
, (3.101)
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where

M̃±(ξ0) =
1

(m+ −m−)

(
1

2

m± − 2v

m±(v −m±)
− 1

m±
G(ξ0)

)

and

G(ξ0) =






−I0, ξ0 < 0

I0(1 − 2eµ±ξ0), ξ0 ≥ 0

This leads to the following threshold condition for v < 0:

κ = (m− − 1)M̃+(ξ0) − (m+ − 1)M̃−(ξ0). (3.102)

We can now numerically solve equations (3.99) and (3.102) to determine the
range of input velocities v and input amplitudes I0 for which locking occurs.
For the sake of illustration, we assume the threshold condition 2κ(1 + β) = 1
and take ǫ < β. This ensures that, in the absence of any input, there exists an
unstable stationary front and a pair of stable counter–propagating waves (see
Figure 3.2). The continuation of these stationary and traveling fronts as I0
increases from zero is shown in Figure 3.5. Since 2κ(1+β) = 1, equations (3.99)
and (3.102) are equivalent under the interchange v 7−→ −v and ξ0 7−→ −ξ0.
This implies that the locking regions are symmetric with respect to v. For
nonzero v the traveling front is shifted relative to the input such that ξ0 < 0
when v > 0 and ξ0 > 0 when v < 0. In other words, the wave is dragged by
the input. Figure 3.5 determines where locking can occur but not whether the
resulting traveling wave is stable or unstable.

3.5 Discussion

This chapter serves a four-fold purpose. First, it has demonstrated that the
Pinto-Ermentrout model supports forward and backward traveling front so-
lutions, generated by a front bifurcation similar to that for reaction-diffusion
equations. Strangely, Pinto and Ermentrout [80] did not consider traveling
fronts in their analysis, possibly due to their placement of the parameter β.
Furthermore, as in the case of reaction-diffusion, a weak input inhomogeneity
can induce a Hopf instability, giving rise to an oscillatory wave front. Second,
the analysis of section 3.2 and 3.3 is applicable for general excitatory (positive)
weight functions and, more importantly, a smooth firing rate. Although the
smooth firing rate function is more biologically realistic, it presents great
challenges for mathematical analysis, especially in the case of pulses. Third, it
sets up the general approach, as well as the fundamental ideas, of Chapters 4,
5, and 6, by using a Heaviside firing rate function to compute exact solutions
and study the effects of input inhomogeneities without the restriction to weak
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Figure 3.5. Locking of a traveling front to a moving step input with velocity

v and amplitude I0. Other parameter values are β = 1, ǫ = 0.1, κ = 0.25.

Unshaded regions show where locking can occur in the (v, I0)–plane. When

I0 = 0 there are three front solutions corresponding to a stationary front

(v = 0) and two counter–propagating fronts, which is consistent with the front

bifurcation shown in Figure 3.2. Each of these solutions forms the vertex of

a distinct locking region whose width increases monotonically with I0 so that

ultimately the locking regions merge.

inputs. In this approach exact solutions are necessary to study the stability and
bifurcation of stationary and traveling wave solutions, and, although we carry
out some calculations only for particular weight functions, we expect the results
to be more generally applicable. Fourth, comparison of the front bifurcation
for smooth firing rates and Heaviside firing rate, as well as the effect of a
weak input inhomogeneity, demonstrates that the Heaviside firing rate exhibits
qualitatively similar results to the smooth firing rate, lending support for its
use.

The stability analysis of traveling fronts is considerably more involved than
that of stationary fronts but follows analogously to that shown for stimulus-
locked traveling pulses analyzed in Chapter 6. Such pulses exist for sufficiently
large β and lock to Gaussian-like inputs. Nevertheless, in the case of stimulus-
locked fronts, we expect that for sufficiently small I0 the locking regions around
the counter–propagating fronts are stable, whereas the central region containing
the stationary front is unstable. On the other hand, since ǫ < β, we know
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that the stationary front is stable for large inputs I0 and undergoes a Hopf
bifurcation as I0 is reduced. This suggests that the Hopf bifurcation point at
v = 0 lies on a Hopf curve within the locking region so that a traveling front
locked to a moving input can also be destabilized, as the strength of the input
is reduced (or as the input velocity changes relative to the intrinsic velocity of
waves in the homogeneous network).



CHAPTER 4

BREATHERS IN ONE-DIMENSIONAL

NEURAL NETWORKS

In this chapter we extend our work on stationary fronts by analyzing the effects
of input inhomogeneities on the stability of stationary pulses, since these better
reflect the types of neural activity patterns observed in cortex. In order to
construct exact solutions, we follow previous treatments [1, 80] and consider
the high gain limit γ → ∞ of the sigmoid function f such that f(u) = H(u−κ)
where H is the Heaviside step function. To define an excitatory network we
take the weight function w to be positive and monotonically decreasing on R

+,
such that

∫
R
w(x)dx <∞. This yields the model Pinto and Ermentrout consid-

ered to describe a disinhibited cortical slice, i.e., effectively a one-dimensional
medium of excitatory neurons subject to spike-rate adaptation:

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞

w(x − x′)H(u(x′, t) − κ)dx′ − β̺(x, t) + I(x)

1

ǫ

∂̺(x, t)

∂t
= −̺(x, t) + u(x, t). (4.1)

In section 4.1 we analyze the existence and stability of stationary pulses in
the presence of a unimodal input. In particular, we show that (i) a sufficiently
large input inhomogeneity can stabilize a stationary pulse and (ii) a subsequent
reduction in the level of inhomogeneity can induce a Hopf instability of the
stationary pulse leading to the formation of a breather-like oscillatory wave.
Numerically we find that a secondary instability can occur beyond which the
breather periodically emits pairs of traveling pulses (section 4.2.1). Thus, while
the input causes a local pinning of activity, the surrounding medium supports
wave propagation, since the effect of the input there is weak. Interestingly,
depending on the spatial extent σ of the input , the periodic orbit can undergo
a sequence of period doubling bifurcations prior to the sharp transition to
pulse-emitting: the transition to the pulse-emitter may, in fact, be due to
a subcritical period-doubling bifurcation. Moreover, there is mode–locking
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between the oscillation frequency of the breather and the rate of wave emis-
sion. Analogous forms of oscillatory waves are also shown to occur in a more
biophysically realistic conductance–based model (section 4.2.2). In Chapter
5 we extend these results to two-dimensional networks in the presence of a
radially-symmetric input.

4.1 Stationary Pulses in an Inhomogeneous
Network

We begin by investigating the existence and stability of one–dimensional sta-
tionary pulses in the presence of a unimodal input I(x) which, for concreteness,
is taken to be a Gaussian of width σ centered at the origin

I(x) = Ie−x2/2σ2

. (4.2)

We take w to be a positive, even function, monotonically decreasing in |x|,
and choose the normalization

∫
R
w(x)dx = 1. For illustrative purposes, the

exponential weight distribution (3.57) will be used as a specific example.

4.1.1 Stationary Pulse Existence

From symmetry arguments there exists a stationary pulse solution
(
u(x, t), ̺(x, t)

)
=(

U(x), Q(x)
)

of equation (4.1) centered at x = 0, satisfying

U(x) > κ, x ∈ (−a, a); U(± a ) = κ,

U(x) < κ, x ∈ (−∞,−a) ∪ (a,∞); U(±∞) = 0.

In particular,

(1 + β)U(x) =

∫ a

−a

w(x − x′)dx′ + I(x), (4.3)

Q(x) = U(x), (4.4)

with U,Q ∈ C0(R,R), where Cn(R,R) denotes the set of all bounded, n-times
continuously differentiable functions f : R −→ R. The threshold κ and width
a are related according to the self-consistency condition

κ̂ = [I(a) +W (2a)] ≡ G(a), (4.5)

where κ̂ = (1 + β)κ and W (2a) =
∫ 2a

0 w(x)dx. The existence or otherwise
of a stationary pulse solution can then be established by finding solutions to
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Figure 4.1. Plot of G(a) in (4.5) as a function of pulse width a, for an

exponential weight w and various values of input amplitude I with σ = 0.25.

Horizontal lines represent different values of κ̂ = κ(1 + β). Intersections of

black and gray curves indicate the existence of stationary pulses.

equation (4.5). Consider, for example, the exponential weight distribution
w(x) = 1

2e
−|x|/d with d = 1 so that W (2a) = (1 − e−2a)/2. Furthermore,

suppose that the amplitude I of the Gaussian input (4.2) is treated as a
bifurcation parameter with the range σ kept fixed. (The effect of varying σ
will be discussed below). It is straightforward to show that there always exists
a critical amplitude Ic, below which G(a) is strictly monotonically increasing
and above which G(a) has two stationary points. Consequently, as κ̂ varies, we
have the possibility of zero, one, two, or three stationary pulse solutions. The
function G(a) is plotted in Figure 4.1 for a range of input amplitudes I, with
horizontal lines indicating different values of κ̂: intersection points determine
the existence of stationary pulse solutions. Let κc denote the value of G(a)
for which G′(a) has a double zero. Anticipating the stability results of section
4.1.2, we obtain the following. If κ̂ < κc then there is only a single pulse
solution branch which is always unstable. On the other hand, if κ̂ > κc, then
there are two distinct bifurcation scenarios (see Figure 4.2) both of which can
support a stable pulse solution.
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Figure 4.2. One-dimensional stationary pulse existence curves for an expo-

nential weight distribution and (i) κc < κ̂ < 1
2 , (ii) κ̂ > 1

2 . Other parameters

are β = 1, σ = 0.25. Black indicates stability, whereas gray indicates instability

of the stationary pulse. Saddle–node bifurcation points are indicated by S, S′

and Hopf bifurcation points by H,H ′.

Scenario (i): κc < κ̂ < 1/2. There exist three solution branches with the
lower (narrow pulse) and upper (wide pulse) branches unstable. If ǫ > β,
then the middle (intermediate pulse) branch is stable along its entire length,
annihilating in a saddle–node bifurcation at the endpoints S, S′. On the other
hand, if ǫ < β, then only a central portion of the middle branch is stable due to
the existence of two Hopf bifurcation points H,H ′. In the limit ǫ→ β we have
H → S and H ′ → S′ leading to some form of degenerate bifurcation. Note
that as κ̂→ 1/2, aS′ → ∞ thus causing the upper branch to collapse.
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Scenario (ii): κ̂ > 1/2. There exist two solution branches with the lower
branch unstable and the upper branch stable for sufficiently large I. If ǫ > β
the upper branch is stable along its entire length, annihilating in a saddle–node
bifurcation at its endpoint S. On the other hand, if ǫ < β then the upper branch
loses stability via a Hopf bifurcation at the point H with H → S as ǫ→ β.

In both of the above scenarios there also exists a stable subthreshold so-
lution U(x) = I(x)/(1 + β) when I < κ̂. This is coexistent with the lower
suprathreshold pulse and the pair annihilate at I = κ̂. To address the effect
of varying the input σ, consider the case where κ̂ < 1

2 . As σ decreases, κc

decreases, widening the κ̂-interval for which there exists three stationary pulse
solutions: in particular κc → 0 as σ → 0. Conversely, as σ increases, κc

increases towards 1
2 , thus decreasing the size of the three-pulse regime. For

κ̂ > 1
2 , qualitatively, the bifurcation scenario remains unchanged; the effect

of increasing σ is simply to widen the pulse width a. Finally, note that the
qualitative behavior of the function G(a), which determines the existence of
stationary pulse solutions, follows from the fact that both w(x) and I(x) are
monotonically decreasing functions of |x| and are symmetric about x = 0.

4.1.2 Stability Analysis

The stability of a stationary pulse of width a is determined by writing u(x, t) =
U(x) + ϕ̄(x, t) and ̺(x, t) = Q(x) + ψ̄(x, t), with Q(x) = U(x), and expanding
equation (4.1) to first-order in (ϕ̄, ψ̄). This leads to the linear equation

∂ϕ̄

∂t
(x, t) = −ϕ̄(x, t) +

∫ ∞

−∞

w(x − x′)H ′
(
U(x′) − κ

)
ϕ̄(x′, t)dx′ − βψ̄(x, t)

1

ǫ

∂ψ̄

∂t
(x, t) = −ψ̄(x, t) + ϕ̄(x, t). (4.6)

The spectrum of the associated linear operator is determined by taking ϕ̄(x, t) =
eλtϕ(x) and ψ̄(x, t) = eλtψ(x), with ϕ, ψ ∈ C0(R,C), and using the identity

dH
(
U(x) − κ

)

dU
=
δ(x− a)

|U ′(a)| +
δ(x + a)

|U ′(−a)| (4.7)

where

U ′(x) =
1

1 + β
[I ′(a) + w(x+ a) − w(x − a)] (4.8)

and U ′(−a) = −U ′(a) > 0. We then obtain the spectral problem
(
λ+ 1 +

ǫβ

λ+ ǫ

)
ϕ(x) =

w(x + a)

|U ′(−a)|ϕ(−a) +
w(x− a)

|U ′(a)| ϕ(a). (4.9)
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Note that we have formally differentiated the Heaviside function, which is
permissible since it arises inside a convolution. One could also develop the
linear stability analysis by considering perturbations of the threshold crossing
points along the lines of Amari [1]. Since we are linearizing about a stationary
rather than a traveling pulse, we can analyze the spectrum of the linear operator
without the recourse to Evans functions.

There exist three types of solutions to equation (4.9). The first consists of
functions ϕ(x) that vanish at x = ±a and λ = λ◦± with λ◦± given by

λ◦± =
−(1 + ǫ) ±

√
(1 + ǫ)2 − 4ǫ(1 + β)

2
. (4.10)

Note that λ◦± belong to the essential spectrum, since they have infinite multi-
plicity; they are always negative and, thus, do not contribute to instabilities.
The second consists of solutions of the form ϕ(x) = A

(
w(x + a) − w(x − a)

)

with λ given by the roots of the equation

λ+ 1 +
ǫβ

λ+ ǫ
=
w(0) − w(2a)

|U ′(a)| . (4.11)

It follows that λ = λ±, where

λ± =
−Λ ±

√
Λ2 − 4(1 − Γ)ǫ(1 + β)

2
, (4.12)

with

Λ = 1 + ǫ− (1 + β)Γ, Γ =
w(0) − w(2a)

w(0) − w(2a) +D
, (4.13)

and D = |I ′(a)|. Finally, the third type of solution is ϕ(x) = A
(
w(x + a) +

w(x − a)
)

with λ given by the roots of the equation

λ+ 1 +
ǫβ

λ+ ǫ
=
w(0) + w(2a)

|U ′(a)| . (4.14)

This yields λ = λ̂± where

λ̂± =
−Λ̂ ±

√
Λ̂2 − 4(1 − Γ̂)ǫ(1 + β)

2
(4.15)

with

Λ̂ = 1 + ǫ− (1 + β)Γ̂, Γ̂ =
w(0) + w(2a)

w(0) − w(2a) +D
. (4.16)

A stationary pulse solution will be stable provided that Re(λ±),Re(λ̂±) < 0.
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In the limiting case of a homogeneous input, for which D = 0, equations
(4.12) and (4.15) become

λ− = 0, λ+ = β − ǫ (4.17)

and

λ̂± =
−Λ̂0 ±

√
Λ̂2

0 + 4ǫ(1 + β)(Γ̂0 − 1)

2
(4.18)

with

Λ̂0 = ǫ+ 1 − (1 + β)Γ̂0 Γ̂0 =
w(0) + w(2a)

w(0) − w(2a)
. (4.19)

Since Γ̂0 > 1 for finite pulse width a, it follows that λ̂+ > 0 for all parameter
values and, hence, a stationary pulse (if it exists) is unstable in the case of the
homogeneous network described by equation (4.1). This result is consistent
with Amari’s previous analysis [1]. He showed that in order to stabilize a
stationary pulse within a homogeneous network, it is necessary to include
some form of lateral inhibition. If a weak input inhomogeneity is subsequently
introduced into the network, then the peak of the activity profile moves to a
local maximum of the input where it is pinned.

For a nonzero Gaussian input, the gradient of a stationary pulse is given
by D(a) where

D(a) =
aI
σ2

e−a2/2σ2

. (4.20)

Using the gradient, we wish to determine the stability of the pulse in terms of
the pulse width a, with a = a(I) given by one of the solutions of (4.5) for fixed
κ, β. Stability of the stationary pulse corresponds to the following conditions

Γ, Γ̂ < 1, Λ, Λ̂ > 0.

However, there are redundancies. By inspection of (4.13), the condition Γ < 1
is automatically satisfied. The conditions Λ, Λ̂ > 0 are equivalent to

Γ, Γ̂ <
1 + ǫ

1 + β

and, since Γ < Γ̂, it follows that the condition on Γ is redundant. Hence,
stability of the stationary pulse reduces to the conditions

Γ̂ < 1, Γ̂ <
1 + ǫ

1 + β
,
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in which the latter is redundant for ǫ > β, while the former is redundant for
ǫ < β. These conditions translate in terms of the gradient D as follows

ǫ > β : D(a) > 2w(2a) ≡ DSN(a) (4.21)

ǫ < β : D(a) > Dc(a) (4.22)

where

Dc(a) = 2w(2a) +

(
β − ǫ

1 + ǫ

)
(w(0) + w(2a)). (4.23)

We now relate stability of the stationary pulse to the gradient D on different
branches of the existence curves shown in Figure 4.2 for w(x) given by the
exponential distribution (3.57).

Stability for ǫ > β. Equation (4.5) implies that D(a) = 2w(2a) − G′(a).
Thus, stability condition (4.21) is satisfied when G′(a) < 0 and not satisfied
when G′(a) > 0. Saddle-node bifurcation points occur when G′(a) = 0, i.e.,
when D(a) passes through DSN, due to the vanishing of a single real eigenvalue

λ̂+. We can make the following conclusions about the solution branches. In
scenario (i) there are three solution branches. On the lower and upper solution
branches, G′(a) > 0, while G′(a) < 0 on the middle branch, indicating that
the former are always unstable and that the latter is stable for ǫ > β. In
scenario (ii) there are two solution branches; using the same arguments, the
lower branch is always unstable, while, for ǫ > β, the upper branch is stable.

Hopf curves for ǫ < β. If ǫ < β then a Hopf bifurcation can occur due to a
complex pair of eigenvalues λ̂± crossing into the right half complex plane. The

Hopf bifurcation point is determined by the condition Γ̂ = (1 + ε)/(1 + β) < 1,
which is equivalent to the gradient condition D(a) = Dc(a) > DSN(a). It
follows that only branches determined to be stable for ǫ > β can undergo a
Hopf bifurcation when ǫ < β. Moreover, the Hopf bifurcation points coincide
with saddle-node bifurcation points precisely at the point β = ǫ, where there
is a pair of zero eigenvalues suggestive of a codimension 2 Takens-Bogdanov
bifurcation. As ǫ decreases from β, we expect the Hopf bifurcation point(s)
to traverse these previously stable branches from the saddle-node point(s). In
order to illustrate this, we find a relationship for D(a) which does not depend
explicitly on I. Using equation (4.5), the input gradient D can be related as

D(a) = |I ′(a)|
=

a

σ2
I(a)

=
a

σ2
(κ(1 + β) −W (2a)) . (4.24)
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We restrict a here depending on which branch of the existence curve we are
considering. In each of the scenarios discussed in section 4.1.1, we examine
graphically the crossings of the curves D(a), Dc(a); stability corresponds to
D(a) > Dc(a) with Hopf points at D(a) = Dc(a). Figure 4.3 illustrates the
generic behavior in these scenarios. The left column presents the graphs of D
and ofDc for different values of ǫ spanning the interval [0, β]; intersection points
indicate Hopf bifurcation points. The right column graphs the corresponding
Hopf curves in (a, ǫ)-parameter space. Note that the upper branch in scenario
(ii) is always stable for sufficiently large input I, that is, for large pulse width a.
For equation (4.5) implies that I(a) ∼ (1+β)κ−1/2 and hence D ∼ [(1+β)κ−
1/2](a/σ2) as a→ ∞. Since D̂c(a) → (β − ǫ)/(1 + ǫ) and e−2a → 0 as a→ ∞,
it follows that both stability conditions (4.21) and (4.22) are satisfied in this
limit. Varying σ does not effect the qualitative behavior of the Hopf bifurcation
curves. Since σ only appears in equation (4.24), the effect of increasing σ is to
shrink the graph of D by a factor 1/σ2, causing the Hopf curves in the right
column of Figure 4.3 to be stretched downwards, thus increasing the size of the
stability region in the (a, ǫ)–plane.

4.2 Numerical Results

In our numerical simulations we use a Runge-Kutta (RK4) scheme with 4000-
10000 spatial grid points and time step dt = 0.02, evaluating the integral term
by quadrature. Boundary points freely evolve according to the scheme rather
than by prescription, and the size of the domain is chosen so that the activity is
unaffected by the boundaries. Finer timestep sizes were taken to ensure proper
temporal resolution of the period doubling.

4.2.1 Hopf Bifurcation to a Breather

Numerically solving the one–dimensional rate equation (4.1), we find that the
Hopf instability of the upper solution branch in bifurcation scenario (ii) induces
a breather-like oscillatory pulse solution; see Figure 4.4. Two snapshots of the
profile of the breather are shown in Figure 4.5. As the input amplitude I is
slowly reduced below IHB , the oscillations steadily grow until a new instability
point is reached. Interestingly, the breather persists over a range of inputs
beyond this secondary instability, except that it now periodically emits pairs of
traveling pulses. In fact, such a solution is capable of persisting even when the
input is below threshold, that is, for I < (1 + β)κ. One possible explanation of
this secondary instability is a subcritical bifurcation causing both the breather
and the doubled breather to be unstable. Note that although the homogeneous
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Figure 4.3. Curves describing the relationship between the stability of the

stationary pulse and the gradient of the input D. LEFT COLUMN: Gradient

curves for the two bifurcation scenarios shown in Figure 4.2: (i) κc < κ̂ < 1
2 and

(ii) κ̂ > 1
2 . The thick solid curve shows the input gradient D(a) as a function of

pulse width a. The increasingly lighter curves show the critical gradient Dc(a)

as function of a for ǫ = 0.0, 0.5, 1.0 and β = 1. For a given value of ǫ < β,

a stationary pulse of width a is stable provided that D(a) > Dc(a). A pulse

loses stability via a Hopf bifurcation at any intersection point D(a) = Dc(a).

The Hopf bifurcation point(s) for ǫ = 0.5 are indicated by H,H ′. In the

limit ǫ → β, we have H,H ′ → S, S′. RIGHT COLUMN: Corresponding Hopf

stability curves in the (a, ǫ)–plane.
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Figure 4.4. Breather-like solution arising from a Hopf instability of a

stationary pulse due to a slow reduction in the amplitude I of the Gaus-

sian input inhomogeneity (4.2) for an exponential weight distribution. Here

I = 5.5 at t = 0 and I = 1.5 at t = 250. Other parameter values are

ǫ = 0.03, β = 2.5, κ = 0.3, σ = 1.0. The amplitude of the oscillation steadily

grows until it undergoes a secondary instability at I ≈ 2, beyond which the

breather persists and periodically generates pairs of traveling pulses (only one

of which is shown). The breather itself disappears when I ≈ 1.
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Figure 4.5. Two snapshots of a breather with u in blue and ̺ in gold.

network (I = 0) also supports the propagation of traveling pulses, it does not
support the existence of a breather that can act as a source of these waves.

Our simulations suggest both supercritical and subcritical Hopf bifurcations
can occur for scenario (ii). The conclusion of supercriticality is based on the
evidence that there is continuous growth of the amplitude of the oscillations
from the stationary solution as I is reduced through the predicted bifurcation
point, and, moreover, that the frequency of the oscillatory solution near the
bifurcation point is approximately equal to the predicted Hopf frequency

ωH = Im λ̂± =
√
ǫ(β − ǫ).

For example, the Hopf bifurcation of the stationary pulse for the parameter
values given in Figure 4.4 was determined numerically to be supercritical.
Conversely, the Hopf bifurcation in scenario (i) appears to be subcritical.
Furthermore, the basin of attraction of the stable pulse on the middle branch
seems to be small, rendering it, as well as any potential breather, difficult to
approach. Hence, we did not investigate this case further.

As mentioned above, a secondary instablity occurs at some I < IHB ,
whereupon traveling pulses are emitted; this behavior appears to occur only for
values of ǫ that support traveling pulses in the homogeneous model (I = 0).
As the point of secondary instability is approached, the breather starts to
exhibit behavior suggestive of pulse emission, except that the recovery variable
q increases rapidly enough to prevent the nascent waves from propagating. On
the other hand, beyond the point of instability, recovery is not fast enough
to block pulse emission; we also find that that the activity variable u always
drops well below threshold after each emission. Interestingly, for a range of
input amplitudes we observe frequency-locking between the oscillations of the
breather and the rate at which pairs of pulses are emitted from the breather.
Two examples of n : m mode–locked solutions are shown in Figure 4.6, in
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(a) (b) (c)

Figure 4.6. Mode locking in the transition from breather to pulse-emitter.

(a) 0:1 mode–locking for I = 2.3 (b) 1:4 mode–locking for I = 2.1 (c) 1:2

mode–locking for I = 1.3

which there are n pairs of pulses emitted per m oscillation cycles of the central
breather. As I is reduced further, the only mode that is seen is 1:2, which itself
ultimately vanishes and the system is attracted to the subthreshold solution.

Although the above account applies to the case σ = 1/
√

2, most features
are valid for more general σ. One main point of difference lends insight into
the disappearance of the breather. If we consider stationary pulses for σ = 1
and explore the evolution of the breathing pulse as we futher decrease I0
beyond the bifurcation point, we find that a secondary bifurcation occurs,
giving rise to two modes of breathing rather than one. By graphing, in the
(u, ̺)-phase plane, the orbit corresponding to spatial point at the center of
the input, we find that the evolution of the orbit, as I is decreased, strongly
resembles that of a period-doubling bifurcation, as shown in Figure 4.7(a,b).
Decreasing I leads to additional period doublings, as illustrated in Figure
4.7(c). Ultimately, decreasing I leads to similar unstable behavior found
for σ = 1/

√
2. This suggests that for σ = 1/

√
2 the first period-doubling

bifurcation may be subcritical and the orbit instead weaves its way around the
unstable limit cycle giving rise to the sequence of breathing pulses and emission,
as shown in Figure 4.8. Decreasing the input strength I reduces the number
of breathings the system undergoes before the grand excursion associated with
emission, until there is solely emission.
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Figure 4.7. Sequence of period-doubling bifurcations of a breathing pulse

for σ = 1 and (a) I = 2.4, (b) I = 2.3, and (c) I = 2.2. The left-hand

column shows spacetime plots for different values of current amplitude beyond

the initial Hopf bifurcation point, with an orbit corresponding to the center

spatial point plotted in the (u, q)-phase plane in the right-hand column; other

spatial points are qualitatively similar. Other parameter values are κ = 0.3,

β = 2.5, ǫ = 0.03. (Note that at higher resolution each loop in Figure (c)

is actually a pair of closely spaced loops indicating that it corresponds to the

third doubling in the sequence).
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(a) (b)

Figure 4.8. Subcritical period-doubling bifurcation to a pulse-emitter. (a)

Spacetime plot of a pulse-emitter for σ = 1/
√

2, I = 1.35, κ = 0.3, β = 2.5 and

ǫ = 0.03. (b) Corresponding phase portrait showing the orbit (gray trajectory)

of the center spatial point plotted in the (u, ̺)-phase plane. Also shown is

the corresponding orbit (black trajectory) of the stable breather that exists

when I = 1.4. The transition from breather to pulse-emitter may result

from a subcritical period-doubling bifurcation; in this case the periodic orbit

becomes unstable, and the system is attracted to a more complicated periodic

orbit. This new orbit has a phase where it appears to weave its way through

the (theoretical) unstable periodic orbit, generating the irregularly shaped

breathings, followed by the large excursion corresponding to pulse emission.

4.2.2 Breathers in a Biophysical Model

Although the rate model is very useful as an analytically tractable model of
neural tissue, it is important to determine whether or not its predictions regard-
ing spatiotemporal dynamics hold in more biophysically realistic conductance–
based models. For concreteness, we consider a version of the Traub model,
in which there is an additional slow potassium M-current that produces the
effect of spike-rate adaptation [23]. The Traub dynamics are responsible for
the individual spikes, whereas the termination of the packet of spikes is caused
by slow activation of the potassium M-current. Comparison with the firing rate
model is made by considering how frequently each neuron spikes.
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We discretize space by setting x = j∆x for j = 1, . . . N , and label neurons
by index j. The membrane potential of the jth neuron satisfies Hodgkin-Huxley
like dynamics [23]:

C
dVj

dt
= −Iion(Vj ,m, n, h, q) − Isyn

j (t) + Ij

with synaptic current

Isyn
j (t) = gsyn

∑

k

w(|j − k|)sk(t)(V − Vsyn)

dsj

dt
= K(Vj(t))(1 − sj) −

1

τ
sj

and ionic currents

Iion(V,m, n, h) = gL(V −VL)+ gKn
4(V −VK)+ gNam

3h(V −VNa)+ gqq(V −VK)

τp(V )
dp

dt
= p∞(V ) − p p ∈ {m,n, h, q}

The various biophysical model functions and the parameters used in the nu-
merics are listed in Appendix A. Note that we have also included an external
Gaussian input current Ij in order to investigate the behavior predicted by the
rate model. Without this external input, the biophysical model has previously
been shown to support a traveling pulse, consisting of either a single action
potential or a packet of action potentials [23]. Since the firing rate model
describes the average activity, we interpret high activity as repetitive firing of
neurons and low activity as neurons that are subthreshold or quiescent. Hence,
we expect that the application of a strong unimodal input should generate a
stationary pulse, i.e., a localized region of neurons that are repetitively firing,
surrounded by a region of neurons that are quiescent. Subsequent reduction of
the input should lead to oscillations in this localized region followed by emission
of packets of action potentials.

One obvious difference between this biophysical model and the rate model
discussed in section 4.1 is that the gating variable associated with spike-rate
adaptation evolves according to more complicated nonlinear dynamics, while
that of the firing rate model evolves according to simple linear dynamics.
Nevertheless, the behavior of the rate model appears to carry over to the
biophysical model, thus lending support to the ability of rate models to describe
the averaged behavior of spiking biophysical models. For large input amplitude
I, the system approaches a solution in which a region, localized about the
input, is repetitively firing, while the outer region is quiescent; moreover, the
firing rate is maximal in the center of this region and decreases towards the
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boundaries, which is analogous to the stationary pulse of the firing rate model.
As I is subsequently decreased, there is a transition to breather-like behavior;
periodically, packets or bursts of action potentials begin to propagate from the
active region and, shortly thereafter, fail to propagate as the newly excited
region recovers. As in the rate model, further reduction of the amplitude I
leads to a transition to a state in which packets of persistent action potentials
are emitted. Two examples are shown in Figure 4.9. The first is in a regime
where the breather still dominates with the occasional emission of wave packets.

Figure 4.9. Breathers in a biophysical model with an exponential weight

distribution. (a) I = 75mA/cm2 (b) I = 50mA/cm2 where I is the amplitude

of the Gaussian input. Other parameter values are specified in Appendix A.
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The second corresponds to regular pulse emission, in which periodic bursts
of persistent action potentials are emitted, each followed by an interlude of
subthreshold behavior in the vicinity of the input; this is similar to the 1:2
pulse-emitter of the firing rate model shown in Figure 4.6. We expect similar
behavior to occur in other biophysical models endowed with some form of slow
negative feedback.

4.3 Discussion

In this chapter we have shown that a localized external input can induce oscilla-
tory behavior in an excitatory neural network in the form of breathing pulses,
and that these breathers can subsequently act as sources of wave emission.
Interestingly, following some initial excitation, breathers can be supported by
subthreshold inputs. From a mathematical perspective, there are a number of
directions for future work. First, one could try to develop some form of weakly
nonlinear analysis in order to determine analytically whether or not the Hopf
instability of the stationary pulse is supercritical or subcritical. It would also be
interesting to explore more fully the behavior around the degenerate bifurcation
point ǫ = β, where there exists a pair of zero eigenvalues of the associated linear
operator that is suggestive of a Takens–Bogdanov bifurcation. The latter would
predict that for certain parameter values around the degenerate bifurcation
point, the periodic orbit arising from the Hopf bifurcation could be annihilated
in a homoclinic bifurcation associated with another unstable stationary pulse.
It could be, however, that the homoclinic bifurcation occurs on the periodic
orbit that is rendered unstable by the period-doubling bifurcation. This would
agree with the fact that no evidence was found indicating the period elongation
which characteristic of orbits near a homoclinic bifurcation point.

We have established that the combined effect of local inhomogeneities and
recurrent synaptic interactions can result in nontrivial forms of coherent oscil-
lations and waves. Although we have focused on rather abstract neural field
equations, we have shown that our results carry over (at least qualitatively) to
a more biophysically realistic conductance–based model. One of the advantages
of studying simplified models is that it can generate predictions regarding how
dynamical properties, such as wave speed, depend on characteristic features of
neural tissue. As demonstrated by Schiff et al. in a recent study of wave propa-
gation in disinhibited cortical slices, the speed of the wave can be controlled by
external electric fields, confirming predictions determined by the same homoge-
neous neural field model [87]. Our own work predicts that coherent oscillations
can be induced by local inhomogeneities. Such inhomogeneities could arise
from external stimuli or reflect changes in the excitability of local populations
of neurons. The former suggests a network mechanism for stimulus–induced
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oscillations, which may play an important role in visual processing [41, 95],
whereas the latter suggests a network mechanism for generating epileptiform
activity.

It would be interesting to test our predictions—wave propagation failure
and the existence of breathers and/or pulse-emitters—in disinhibited cortical
slice experiments inducing localized inputs with electrodes. One of the potential
difficulties in experimentally testing our predictions regarding input–induced
coherent oscillations in cortical slices is that persistent currents tend to burn out
(destroy) neurons. Although it might be possible to circumvent this problem
using other forms of stimulation such as external electric fields [87], an alterna-
tive strategy is to consider the effects of moving stimuli, which are analyzed in
Chapter 6. This is also more realistic from the perspective of the intact cortex,
which is constantly being bombarded by nonstationary sensory inputs.





CHAPTER 5

BREATHERS IN TWO-DIMENSIONAL

NEURAL NETWORKS

5.1 Two-dimensional pulses

We now extend our analysis to derive conditions for the existence and stability
of radially symmetric stationary pulse solutions of a two–dimensional version
of equation (4.1):

∂u

∂t
(r, t) = −u(r, t) +

∫

R2

w(|r − r′|)H(u(r′, t) − κ)dr′ − β̺(r, t) + I(r)

1

ǫ

∂̺

∂t
(r, t) = −̺(r, t) + u(r, t). (5.1)

where r = (r, θ) and r′ = (r′, θ′). The radially symmetric input I(r) is taken
to be a positive, monotonically decreasing function which decays to zero at
infinity. The weight distribution is taken to be either a positive, monotoni-
cally decreasing weight function or a Mexican hat weight function, such that∫

R2 w(r)dr <∞. As in the one–dimensional case, stationary pulse solutions are
unstable in a homogeneous excitatory network but can be stabilized by the local
input. Our analysis should be contrasted with a number of recent studies of
two–dimensional stationary pulses [101, 107, 62]. These latter studies consider
homogeneous networks with spatially homogeneous external inputs and do not
include adaptation. In contrast to the excitatory weight function, the Mexican
hat weight function has the ability to generate breathers which are not radially
symmetric.

5.1.1 Stationary Pulse Existence

We begin by developing a formal representation of the two-dimensional station-
ary pulse solution for a general, monotonically decreasing weight function w.
We then generate stationary-pulse existence curves for the specific case of an
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exponential weight function, and analyze their dependence on the parameters
of the system. Since we cannot obtain a closed-form for the solution in the case
of the exponential weight distribution, we also derive an explicit solution for the
case of a modified Bessel weight function that approximates the exponential.
For concreteness, we consider a Gaussian input I(r) = Ie−r2/2σ2

. We fur-
thermore consider pulses generated by a Mexican hat weight function derived
from a difference of modified Bessel weight functions; the corresponding model
arises from a two-population Wilson-Cowan type model where the excitatory
population is modulated by slow adaptation and the inhibitory population
evolves on a fast timescale (GABAA), rendering it in quasi–steadystate.

5.1.2 General, Positive Synaptic Weight Distribution

A radially symmetric stationary pulse solution of equation (5.1) is u = ̺ = U(r)
with U depending only upon the spatial variable r such that

U(r) > κ, r ∈ (0, a); U(∞) = 0,

U(a) = κ; U(0) <∞,

U(r) < κ, r ∈ (a,∞).

Substituting into equation (5.1) gives

(1 + β)U(r) = M(a, r) + I(r) (5.2)

where

M(a, r) =

∫

R2

w
(
|r − r′|

)
H
(
U(r′) − κ

)
dr′

=

∫ 2π

0

∫ a

0

w
(
|r − r′|

)
r′dr′dθ. (5.3)

In order to calculate the double integral in (5.3) we use the Fourier trans-
form, which for radially symmetric functions reduces to a Hankel transform.
To see this, consider the two-dimensional Fourier transform of the radially
symmetric weight function w, expressed in polar coordinates,

w(r) =
1

2π

∫

R2

ei(r·k)w̆(k)dk

=
1

2π

∫ ∞

0

(∫ 2π

0

eirρ cos(θ−φ)w̆(ρ)dφ

)
ρdρ,
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where w̆ denotes the Fourier transform of w and k = (ρ, φ). Using the integral
representation

1

2π

∫ 2π

0

eirρ cos(θ−ϕ)dθ = J0(rρ),

where Jν(z) is the Bessel function of the first kind, we express w in terms of
its Hankel transform of order zero,

w(r) =

∫ ∞

0

w̆(ρ)J0(rρ)ρdρ (5.4)

which, when substituted into equation (5.3), gives

M(a, r) =

∫ 2π

0

∫ a

0

(∫ ∞

0

w̆(ρ)J0(ρ|r − r′|)ρdρ
)
r′dr′dθ′.

Switching the order of integration gives

M(a, r) =

∫ ∞

0

w̆(ρ)

(∫ 2π

0

∫ a

0

J0(ρ|r − r′|)r′dr′dθ′
)
ρdρ. (5.5)

In polar coordinates |r− r′| =
√
r2 + r′2 − 2rr′ cos(θ − θ′), then

∫ 2π

0

∫ a

0

J0(ρ|r − r′|)r′dr′dθ′ =

∫ 2π

0

∫ a

0

J0

(
ρ

√
r2 + r′2 − 2rr′ cos(θ − θ′)

)
r′dr′dθ′

=
1

ρ2

∫ 2π

0

∫ aρ

0

J0

(√
R2 + R′2 − 2RR′ cos(θ′)

)
R′dR′dθ′

where R = rρ and R′ = r′ρ. To separate variables, we use the addition theorem

J0

(√
R2 +R′2 − 2RR′ cos θ′

)
=

∞∑

m=0

ǫmJm(R)Jm(R′) cosmθ′

where ǫ0 = 1 and ǫn = 2 for n ≥ 1. Since
∫ 2π

0
cos mθ′dθ′ = 0 for m ≥ 1, it

follows that

∫ 2π

0

∫ a

0

J0(ρ|r − r′|)r′dr′dθ′ =
1

ρ2

∞∑

m=0

ǫmJm(R)

∫ aρ

0

Jm(R′)R′dR′

∫ 2π

0

cosmθ′dθ′

=
2π

ρ2
J0(R)

∫ aρ

0

J0(R
′)R′dR′

=
2πa

ρ
J0(rρ)J1(aρ).
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Hence for general weight w, M(a, r) has the formal representation

M(a, r) = 2πa

∫ ∞

0

w̆(ρ)J0(rρ)J1(aρ)dρ. (5.6)

We now show that for a general, positive, monotonically decreasing weight
function w(r), the function M(a, r) is necessarily a monotonically decreasing
function of r. This ensures that the radially symmetric stationary pulse solution
(5.2) is also a monotonically decreasing function of r in the case of a Gaussian
input. Differentiating M with respect to r using equation (5.3) yields

∂M

∂r
(a, r) =

∫ 2π

0

∫ a

0

w′
(
|r − r′|

)
(

r − r′ cos(θ′)√
r2 + r′2 − 2rr′ cos(θ′)

)
r′dr′dθ′. (5.7)

By inspection of (5.7), ∂M
∂r (a, r) < 0 for r > a, since w′(z) < 0. To see

that it is also negative for r < a, we instead consider the equivalent Hankel
representation of equation (5.6). Differentiation of M in this case yields

∂2M(a, r) ≡ ∂M

∂r
(a, r) = −2πa

∫ ∞

0

ρw̆(ρ)J1(rρ)J1(aρ)dρ (5.8)

implying that

sgn
(
∂2M(a, r)

)
= sgn

(
∂2M(r, a)

)
.

Consequently ∂M
∂r (a, r) < 0 also for r < a. Hence U is monotonically decreasing

in r for any monotonic synaptic weight function w.

5.1.3 Exponential Weight Distribution

Consider the radially-symmetric exponential weight and Hankel representation

w(r) =
1

2π
e−r, w̆(r) =

1

2π

1

(1 + ρ2)
3
2

. (5.9)

The condition for the existence of a stationary pulse is then given by

(1 + β)κ = M(a) + I(a) ≡ G(a), (5.10)

where

M(a) ≡M(a, a) (5.11)

= a

∫ ∞

0

1

(ρ2 + 1)
3
2

J0(aρ)J1(aρ)dρ

=

(
1

2
− 1

2
I0 (2a) + aI1 (2a)

)
−
(

2a

π
− 1

2
L0(2a) + aL1(2a)

)
(5.12)

Iν is a modified Bessel function and Lν is a modified Struve function [106].
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Figure 5.1. Plot of G(a) defined in equation (5.10) as a function of pulse

width a for various values of input amplitude I and for fixed input width σ = 1.

Proceeding in the same fashion as the one-dimensional case, stationary
pulse existence curves for the exponential weight function are determined by
intersections of the graphs of G(a) and κ̂, which are shown in Figure 5.1.
Qualitatively the catalogue of bifurcation scenarios is similar, although there is
now an additional case. In one dimension we have G′(0) > 0 so that there are
always at least two solution branches when κ̂ > 1/2. On the other hand, in two
dimensions we have G′(0) < 0 for sufficiently large input amplitude I, so that
it is possible to find only one solution branch for large κ̂, that is, when κ̂ > κ0

for some critical value κ0 > 1/2. Hence, there are three distinct cases as shown
in Figure 5.2. The effect of varying σ follows identically to the one-dimensional
case.
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Figure 5.2. Two–dimensional stationary pulse existence curves for an

exponential weight distribution: (i) κc < κ̂ < 1
2 , (ii) 1

2 < κ̂ < κ0 and

(iii) κ0 < κ̂. Other parameter values are β = 1, σ = 1.0. Black indicates

stability whereas gray indicates instability of the stationary pulse. Saddle–node

bifurcation points are indicated by S, S′ and Hopf bifurcation points by H,H ′.
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Figure 5.3. Radially symmetric weight functions and corresponding station-

ary pulse. (a) Synaptic weight functions, exponential weight in black and mod-

ified Bessel weight in gray. (b) Stationary pulse solution with half-width, a = 1,

generated by the modified Bessel weight function with κ = 0.4, β = 1, I = 1.

5.1.4 Positive Modified Bessel Weight Distribution

In the case of the exponential weight function w we do not have a closed-form
for the integral in (5.6). Here we consider a nearby problem where we are able
to construct the stationary pulse solution explicitly. Consider the radially-
symmetric weight function, normalized to unity,

wK(r) = K0

(r
s

)
−K0

(
2r

s

)
.

where Kν is the modified Bessel function of the second kind, whose Hankel
transform is

w̆K(r) =
2

3π

(
1

ρ2 + 1
− 1

ρ2 + 22

)
. (5.13)

The coefficient 2/3π is chosen so that there is a good fit with the exponential
distribution as shown in Figure 5.3(a). Note that

w(0) =
1

2π

4 ln(2)

3
≈ 1

2π
(0.924), w(r) ∼ 1

3

(√
2e−r − e−2r

√
r

)
for large r.

The modified Bessel weight has the additional advantage of providing simpler
expressions for many of the functions associated with the linear stability anal-
ysis of the stationary pulse solution.
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Substituting equation (5.13) into equation (5.3), we can explicitly compute
the resulting integral in terms of modified Bessel functions:

a

∫ ∞

0

1

ρ2 + s2
J0(rρ)J1(aρ)dρ =






a
s I1 (sa)K0 (sr) , for r ≥ a

1
s2 − a

s I0 (sr)K1 (sa) , for r < a

where Iν is the modified Bessel function of the first kind. Substituting into
equation (5.3) shows that

M(a, r) = 2πa

∫ ∞

0

w̆(ρ)J0(rρ)J1(aρ)dρ

=
4

3
a

∫ ∞

0

(
1

ρ2 + 1
− 1

ρ2 + 22

)
J0(rρ)J1(aρ)dρ

=





2
3 (2aI1 (a)K0 (r) − I1 (2a)K0 (2r)) for r ≥ a

1 − 2
3 (2aI0 (r)K1 (a) − I0 (2r)K1 (2a)) for r < a.

The condition for the existence of a stationary pulse of radius a is thus given
by equation (5.10) with

M(a) =
2

3

(
2aI1 (a)K0 (a) − I1 (2a)K0 (2a)

)
. (5.14)

An example of an exact pulse solution is shown in Figure 5.3(b).

5.1.5 Mexican Hat Weight Function

Consider the positive modified Bessel weight function from the previous section

wK (r, s) = K0

(r
s

)
−K0

(
2r

s

)
.

For appropriately chosen parameters the weight function

w(r) =
2

3π

[
ae

σe
2
wK (r, σe) −

ai

σi
2
wK (r, σi)

]
(5.15)

defines a Mexican hat comparable to that generated by the exponential func-
tion. Although M(a, r) is no longer monotonically decreasing in r, the profile
may be checked graphically to ensure the threshold behavior is satisfied.
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Figure 5.4. (a) Plot of the Mexican hat weight function w for ae = 1,
σe = 1, ai = 1.4, σi = 1.8. (b) Corresponding pulse existence curves
with black (gray) indicating stability (instability) of the stationary pulse
solution. S and H indicate saddle-node and Hopf bifurcation points,
respectively. Other parameters are κ = 0.15, β = 2.25, ǫ = 0.03, σ = 2.4.

The profile of the pulse is given by (5.2), where the synaptic term is

M(a, r) = aeM
◦

(
a, r,

1

σe

)
− aiM

◦

(
a, r,

1

σi

)
(5.16)

and

M◦(a, r; s) =

{
2
3sa
[
2I1 (sa)K0 (sr) − I1 (2sa)K0 (2sr)

]
, r ≥ a,

1 − 2
3sa
[
2I0 (sr)K1 (sa) − I0 (2sr)K1 (2sa)

]
, r < a.

(5.17)
The threshold condition for existence again is given by

κ(1 + β) = M(a, a) + I(a),

with

M◦(a, r; s) =
2

3
sa
[
2I1 (sa)K0 (sa) − I1 (2sa)K0 (2sa)

]
.
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5.2 Stability Analysis

We now analyze the evolution of small time-dependent perturbations of the
stationary pulse solution through linear stability analysis. We investigate
saddle-node and Hopf bifurcations of the stationary pulse by relating the eigen-
values to the gradient of the Gaussian input I. The behavior of the system
near and beyond the Hopf bifurcation is then studied numerically as in one
dimension.

5.2.1 Spectral Analysis of the Linearized Operator

Equation (5.1) is linearized about the stationary solution (U,Q), by introducing
the time-dependent perturbations

u(r, t) = U(r) + ϕ̄(r, t)

¯̺(r, t) = Q(r) + ψ̄(r, t)

with Q = U , and expanding to first order in ϕ̄, ψ̄. This leads to the linear
system of equations

∂ϕ̄

∂t
(r, t) = −ϕ̄(r, t) +

∫

R2

w(|r − r′|)H ′(U(r′) − κ)ϕ̄(r′, t)dr′ − βψ̄(r, t),

1

ǫ

∂ψ̄

∂t
(r, t) = −ψ̄(r, t) + ϕ̄(r, t).

We separate variables

ϕ̄(r, t) = ϕ(r)eλt, ψ̄(r, t) = ψ(r)eλt,

where ϕ, ψ ∈ C0(R2,C2), to obtain the system

λϕ(r) = −ϕ(r) +

∫

R2

w(|r − r′|)H ′(U(r′) − κ)ϕ(r′)dr′ − βψ(r)

λ

ǫ
ψ(r) = −ψ(r) + ϕ(r). (5.18)

Solving equation (5.18) we find
(
λ+ 1 +

βǫ

λ+ ǫ

)
ϕ(r) =

∫

R2

w(|r − r′|)H ′(U(r′) − κ)ϕ(r′)dr′. (5.19)

Introducing polar coordinates r = (r, θ) and using the result

H ′(U(r) − κ) = δ(U(r) − κ) =
δ(r − a)

|U ′(a)| ,
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we obtain
(
λ+ 1 +

ǫβ

λ+ ǫ

)
ϕ(r) =

∫ 2π

0

∫ ∞

0

w(|r − r′|)δ(r
′ − a)

|U ′(a)| ϕ(r′)r′dr′dθ′

=
a

|U ′(a)|

∫ 2π

0

w(|r − a′|)ϕ(a, θ′)dθ′, (5.20)

where a′ = (a, θ′)
We consider the following two cases. (i) The function ϕ satisfies the

condition

∫ 2π

0

w(|r − a′|)ϕ(a, θ′)dθ′ = 0

for all r. The integral equation reduces to

λ+ 1 +
βǫ

λ+ ǫ
= 0,

yielding

λ◦± =
−(1 + ǫ) ±

√
(1 + ǫ)2 − 4ǫ(1 + β)

2
.

This is part of the essential spectrum and is identical to the one-dimensional
case; it is negative and does not cause instability. (ii) ϕ does not satisfy the
above condition, and we must study the solutions of the integral equation

µϕ(r, θ) = a

∫ 2π

0

W(a, r; θ − θ′)ϕ(a, θ′)dθ′, (5.21)

where

λ+ 1 +
ǫβ

λ+ ǫ
=

µ

|U ′(a)| (5.22)

and W(a, r;φ)) = w
(√

r2 + a2 − 2ra cosφ
)
. This equation demonstrates that

ϕ(r, θ) is determined completely by its values ϕ(a, θ) on the restricted domain
r = a. Hence we need only consider r = a, yielding the integral equation

µϕ(a, θ) = a

∫ 2π

0

W(a, a;φ)ϕ(a, θ − φ)dφ (5.23)

The solutions of this equation are exponential functions eγθ where γ satisfies

a

∫ 2π

0

W(a, a;φ)e−γφdφ = µ.
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By the requirement that ϕ is 2π-periodic in θ, it follows that γ = in where
n ∈ Z. Thus the integral operator with kernel W has a discrete spectrum given
by

µn = a

∫ 2π

0

W(a, a;φ)e−inφdφ

= a

∫ 2π

0

w
(√

a2 + a2 − 2a2 cosφ
)

e−inφdφ

= 2a

∫ π

0

w
(
2a sinφ

)
e−2inφdφ (5.24)

(after rescaling φ). Note that µn is real since

Im(µn(a)) = −2a

∫ π

0

w
(
2a sinφ

)
sin(2nφ)dφ = 0,

i.e., the integrand is odd-symmetric about π/2. Hence,

µn(a) = Re(µn(a)) = 2a

∫ π

0

w
(
2a sinφ

)
cos(2nφ)dφ

with the integrand even-symmetric about π
2 .

The µn can be thought of as spatial eigenvalues, i.e., belonging to the point
spectrum of the linear operator arising from spatial component of the spectral
problem (5.21). Each eigenvalue pair λn of the linearized operator has an
associated spatial Fourier mode ϕn with corresponding spatial eigenvalue µn.
The dependence of λn on µn is given by

λ±n =
1

2

(
−Λn ±

√
Λ2

n − 4ǫ(1 + β)(1 − Γn)
)
, (5.25)

where

Λn = 1 + ǫ− Γn(1 + β), Γn =
µn(a)

(1 + β) |U ′(a)| . (5.26)

Stability of the two–dimensional pulse requires that

Λn > 0, Γn < 1 for all n ≥ 0.

This reduces to the stability conditions

ǫ > β : Γn < 1 for all n ≥ 0

ǫ < β : Γn <
1 + ǫ

1 + β
for all n ≥ 0. (5.27)
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5.2.2 General, Positive Synaptic Weight Distribution

Herein we collect results that apply to all positive, monotonically decreasing
weight functions. First, we rewrite the stability conditions in terms of the
gradient of the input D(a) = |I ′(a)|. From equations (5.2), (5.8) and (5.9) we
have

U ′(a) =
1

1 + β

(
−Mr(a) + I ′(a)

)
,

where

Mr(a) ≡ − ∂

∂r
M(a, r)

∣∣∣∣
r=a

= 2πa

∫ ∞

0

ρw̆(ρ)J1(aρ)J1(aρ)dρ. (5.28)

We have already established in section 5.1.2 that Mr(a) > 0 for a positive,
monotonically decreasing weight function. Hence,

U ′(a)
 =

(
1

1 + β

)−Mr(a) + I ′(a)


=

(
1

1 + β

)(
Mr(a) +D(a)

)
. (5.29)

The stability conditions (5.27) thus become

ǫ > β : D(a) > µn(a) −Mr(a) for all n ≥ 0,

ǫ < β : D(a) >

(
1 + β

1 + ǫ

)
µn(a) −Mr(a) for all n ≥ 0.

Then, since w(r) is a positive function of r, it follows that

µn(a) ≤ 2a

∫ π

0

w
(
2a sin φ

)∣∣ cos(2nφ)
∣∣dφ ≤ 2a

∫ π

0

w
(
2a sin φ

)
dφ = µ0(a),

implying that stability is only determined by n = 0. Finally, we obtain the
reduced stability conditions

ǫ > β : D(a) > µ0(a) −Mr(a) ≡ DSN(a) (5.30)

ǫ < β : D(a) >

(
1 + β

1 + ǫ

)
µ0(a) −Mr(a) ≡ Dc(a). (5.31)

We now relate stability of the stationary pulse to the gradientD on different
branches of the existence curves shown in Figure 5.2 for w(r) given by the expo-
nential distribution (5.9). In this case the integral expressions for µ0(a),Mr(a)
and M(a) can be evaluated explicitly in terms of finite sums of modified Bessel
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and Struve functions. However, the following results essentially are valid on
all corresponding existence curves associated with any positive, monotonically
decreasing weight function.

Stability for ǫ > β. Equation (5.10) implies that G′(a) = M′(a) + I ′(a).
Since M(a) = M(a, a), it follows from equations (5.3), (5.24) and (5.28) that

M′(a) = ∂1M(a, a) + ∂2M(a, a)

= µ0(a) −Mr(a) (5.32)

and hence

G′(a) = µ0(a) −Mr(a) −D(a). (5.33)

Thus stability condition (5.30) is satisfied when G′(a) < 0 and not satisfied
when G′(a) > 0. Saddle–node bifurcations occur when G′(a) = 0, that is,
when D(a) passes through DSN(a) = µ0(a) − Mr(a). This establishes the
stability of the middle branch in case (i) and the upper branch of cases (ii) and
(iii) shown in the left–hand column of Figure 5.2.

Hopf curves for ǫ < β. A Hopf bifurcation occurs when Λ0 = 0 and Γ0 < 1,
or equivalently, when D(a) = Dc(a). Since µ0(a) > 0 it follows from equations
(5.30) and (5.31) that Dc(a) > DSN(a), and hence Hopf bifurcations only occur
on the branches that are stable when ǫ > β. As in the one–dimensional case,
the Hopf and saddle–node points coincide when ǫ = β and so we expect, as
ǫ decreases from β, the Hopf bifurcation point(s) to traverse these previously
stable branches from the saddle-node point(s). Again, in order to show this
more explicitly, we find a relationship for D(a) that is independent of the input
amplitude I. Using equation (5.10), the input gradient D can be related as

D(a) = |I ′(a)|
=

a

σ2
I(a)

=
a

σ2
(κ(1 + β) − M(a)) . (5.34)

For each of the cases discussed in section 4.1.1, we examine graphically the
crossings of the curves D(a), Dc(a): stability corresponds to D(a) > Dc(a)
with Hopf bifurcation points at D(a) = Dc(a). The results are displayed in
Figure 5.5, with the explicit expressions for D(a), Dc(a), µ0(a),Mr(a) collected
in section 5.2.3.
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Figure 5.5. LEFT COLUMN: Gradient curves for the bifurcation scenarios

shown in Figure 5.2: (i) κc < κ̂ < 1
2 , (ii) 1

2 < κ̂ < κ0 and (iii) κ0 < κ̂. The

thick solid curve shows the input gradient D(a) as a function of pulse width

a. The increasingly lighter curves show the critical gradient Dc(a) as function

of a for ǫ = 0.0, 0.5, 1.0 and β = 1. For a given value of ǫ < β, a stationary

pulse of width a is stable provided that D(a) > Dc(a). A pulse loses stability

via a Hopf bifurcation at the intersection points D(a) = Dc(a). The Hopf

bifurcation point for ǫ = 0.5 are indicated by H ; in the first scenario there are

no Hopf points at this particular value of ǫ. In the limit ǫ→ β, we haveH → S.

RIGHT COLUMN: Corresponding Hopf stability curves in the (a, ǫ)–plane.
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5.2.3 Exponential Weight Distribution

In the case of the exponential weight distribution the above theory applies. To
construct the stability curves we explicitly calculate the functions µ0, Mr,Dc,
and D. In addition we provide a general expression for µn(a).

µ0(a) =
a

π

∫ π

0

exp(−2a sinφ)dφ

=
2a

π

∫ π
2

0

exp(−2a cosφ)dφ

= a

(
2

π

∫ π
2

0

cosh(−2a cosφ)dφ

)
− a

(
2

π

∫ π
2

0

sinh(−2a cosφ)dφ

)

= a (I0 (2a) − L0(2a)) , (5.35)

µn(a) =
a

π

∫ π

0

exp(−2a sinφ)e−i2nφdφ

=
a

π

∫ π

0

exp
(
− i(2nφ− 2ai sinφ)

)
dφ

= a
(
J2n(2ai) − iE2n(2ai)

)

= a
(
(−1)nI2n (2a) − iE2n(2ai)

)
, (5.36)

where Jν , Eν are the Anger and Weber functions of order ν, respectively.

Mr(a) = a

∫ ∞

0

ρ

(ρ2 + 1)
3
2

J1(aρ)J1(aρ)

= a
(
L0(2a) − I0 (2a)

)
−
(
L1(2a) − I1 (2a)

)
, (5.37)

where

I1(2a) =
4a

π

∫ π/2

0

cosh(2a cos θ) sin2 θdθ

L1(2a) =
4a

π

∫ π/2

0

sinh(2a cos θ) sin2 θdθ.

Note, there is no simple reduction for Eν in the case of integral order other
than 0, however, iE2n(iz) is real for z ∈ R.
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Equation (5.31) then implies that

Dc(a) =
β + ǫ+ 2

1 + ǫ
a
(
I0 (2a) − L0(2a)

)
−
(
I1 (2a)) − L1(2a)

)
. (5.38)

As in one dimension, sufficiently wide pulse solutions are always stable, which
is established by studying the asymptotic behavior of D(a) and Dc(a), for large
pulse width a→ ∞. Using the asymptotic expansions for large a,

I0 (2a) − L0(2a) ∼
1

π

(
1

a
+

1

4a2

)

I1 (2a) − L1(2a) ∼
2

π

(
1 − 1

4a2

)
, (5.39)

we deduce that

Dc(a) ∼
1

π

(
β − ǫ

1 + ǫ

)
+

(
1

4

(
β − ǫ

1 + ǫ

)
+ 1

)
1

πa2
. (5.40)

Similarly, from equation (5.12) we have

M(a) = a

∫ ∞

0

1

(ρ2 + 1)
3
2

J0(aρ)J1(aρ)dρ

=

(
1

2
+ aI1 (2a) − 1

2
I0 (2a)

)
−
(

2a

π
+ aL1(2a) −

1

2
L0(2a)

)
. (5.41)

Equation (5.34) and the asymptotic expansions (5.39) then imply that

D(a) ∼ a

σ2

(
(1 + β)κ− 1

2

)
+

1

πσ2
− 1

8πa2
. (5.42)

Finally, combining equations (5.40) and (5.42),

D(a) −Dc(a) ∼
a

σ2

(
(1 + β)κ− 1

2

)
+

1

πσ2
−
(
β − ǫ

1 + ǫ

)
+ O(a−2). (5.43)

From this we conclude that for all σ > 0, a stationary pulse solution (if it
exists) is stable in the limit a→ ∞, provided that κ̂ > 1/2.
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5.2.4 Mexican Hat Weight Distribution

Interestingly, in the case of the Mexican hat function (5.15), the spatial eigen-
values µn are no longer necessarily stratified. As a consequence, a Fourier mode
other than the radially symmetric mode n = 0 incurs instability through a Hopf
bifurcation. The resulting dynamical instability breaks the underlying radial
symmetry of the stationary pulse, leading to the formation of a nonradially
symmetric breather, demonstrating that one must consider stability with re-
spect to general perturbations rather than only radial perturbations, as in [101].
The number of breathing lobes is consistent with the order of the dominant
unstable Fourier mode associated with perturbations of the stationary pulse
boundary. Furthermore, we establish that breathers persist under the inclusion
of inhibitory connectivity, reflecting the connectivity of the intact cortex.

The choice of the modified Bessel weight wK allows Mr(a) and µn(a), for
all n, to be expressed as finite sums of modified Bessel functions. We calculate

a

π

∫ π

0

K0 (2α sinφ) cos(2mφ)dφ = aIm (α)Km (α) .

to determine

µn(a) =
4

3

(
ae

σ2
e

℘(a, σe) −
ai

σ2
i

℘(a, σi)

)

where

℘(a, s) = a

[
Im

(a
s

)
Km

(a
s

)
− Im

(
2a

s

)
Km

(
2a

s

)]
.

Then differentiating (5.17) with respect to r and evaluating at a yields

Mr(a) = aeM
◦
r

(
a,

1

σe

)
− aiM

◦
r

(
a,

1

σi

)
(5.44)

where

M◦
r (a, s) =

4

3
s2a

[
I1 (sa)K1 (sa) − I1 (2sa)K1 (2sa)

]
(5.45)

Furthermore, for most parameter values (5.29) continues to hold, however, it
is possible that Mr(a) < 0, in which case we must handle the absolute value
|U ′(a)| more carefully. In the case that it is positive we have the stability
conditions

ǫ > β : D(a) > µn(a) −Mr(a) for all n ≥ 0, (5.46)

ǫ < β : D(a) >

(
1 + β

1 + ǫ

)
µn(a) −Mr(a) ≡ Dn

c for all n ≥ 0. (5.47)
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Figure 5.6. Plot of the the functions D(a) (black curve) and Dn
c (a) (blue

curves) for different values of n with σ = 5.2; see Figure 5.4 for other

parameters. The stationary pulse is stable if D(a) > Dn
c (a) for all n, with

a Hopf bifurcation occurring at the first value of a for which this is no longer

true. Given input strength I and corresponding width a, the largest Dn
c (a)

determines the mode that dominates the instability. For example a value of

I = 0.53 corresponds to a = 2, indicating that mode n = 1 should dominate.

The pulse width a, determined by I, is a bifurcation parameter of the
system, with a Hopf bifurcation occurring at a transverse intersection point of
the graphs of D(a) and Dn

c (a) where D(a) > Dn
c (a) fails to hold for all n; see

Figure 5.6. The spatial extent of the current input σ controls the steepness
of D(a) (see (5.47)), thereby determining which mode destabilizes in the Hopf
bifurcation. Importantly, the relative values of Dn

c (a) preserve the ordering of
linear dominance of each mode n, indicating which mode should dominate the
growth. Thus, by varying the input parameters σ, I, one can control the desta-
bilizing mode and the dominant mode, respectively, and consequently control
the lobed structure of the emergent periodic solution. This analysis establishes
that a Mexican hat network can undergo a Hopf bifurcation corresponding to
excitation of a nonzero Fourier mode (n > 0). As we confirm numerically
below, this leads to the formation of nonradially symmetric breathers.
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Figure 5.7. Small perturbations decomposed in terms of Fourier modes (light

curves) associated with general perturbations of the threshold boundary of a

stationary pulse (dark curves).

The basic structure of the emergent breathers can be predicted by noting
that a small perturbation ϕ of the stationary pulse U results in a small pertur-
bation δ =

(
δr(θ), θ

)
of the threshold boundary a = (a, θ). The corresponding

threshold condition is

κ = u(a + δ) = U
(
a+ δr(θ)

)
+ ϕ(a + δ),

= U(a) + U ′(a)δr(θ) + ϕ(a, θ) + O(|δ|2).

Using that U(a) = κ, we find

δr(θ) =
ϕ(a, θ)

|U ′(a)| + O
(
|δ|2
)
.

Since ϕ may be decomposed into Fourier modes in the linear regime, we
illustrate in Figure 5.7 the perturbative effect each mode imparts upon the
threshold boundary. Furthermore, if one mode should dominate the linear
growth of an instability, we expect the boundary of the breather to develop
similar structure. We note that nonradially symmetric instabilities have also
been found in a study of homogenous networks, where concentric ring solutions
can destabilize into multiple bump solutions, the number of which corresponds
to the Fourier mode dominating the instability [62]. However, in this case
the emergent time–periodic solutions manifest such structure in several forms
of spatially localized, periodic solutions, which are described in the following
section.
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5.3 Numerical Simulations

In this section we summarize the results of numerical simulations. When I
corresponds to a stable stationary pulse, a perturbation of the exact solution
leads to a short transient before equilibrium. In the excitatory network, this
transient generates a circular wave, when such a wave exists. We now discuss
the behavior of each network beyond the Hopf bifurcation point.

5.3.1 Exponential Weight Distribution

Analogous to the one–dimensional case, we find numerically that the upper
branch in scenarios (ii) and (iii) can undergo a supercritical Hopf bifurcation
leading to the formation of a two–dimensional breather. An example is shown
in Figure 5.8(a), obtained using a Runge-Kutta scheme on a 300x300 grid with
a time step of 0.02. Moreover, the breather can undergo a secondary instability,
resulting in the periodic emission of circular target waves; see Figure 5.8(b).

Figure 5.8. Two-dimensional breathers for the excitatory (exponential)

weight distribution. (a) Two-dimensional breather sequence with β = 4,

κ = 0.25, ǫ = 0.1. (b) Two-dimensional pulse-emitter with β = 4, κ = 0.2,

ǫ = 0.1, I = 0.2.
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5.3.2 Mexican Hat Weight Distribution

Numerical simulations were performed using a Runge-Kutta (RK4) scheme,
with a fast-Fourier transform to handle the integral on a rectangular grid
(400x400–2000x2000) and quadrature on an irregular polar grid. The polar
grid consists of concentric rings, with each ring increasing the grid point count
by one more than the neighboring inner ring. The ring spacing is chosen so that
each area element contributes equal weight to the integral. Selecting I so that
the system is positioned beyond the bifurcation point with mode n dominating
the instability, the system is evolved from a small random perturbation of the
corresponding exact (unstable) stationary pulse solution.

Our simulations reveal many types of spatially localized, periodic solutions
that are generated by the Mexican hat network. In all cases the periodic
solution exhibits a lobed structure, the number of which corresponds to the
dominant Fourier mode. Breathers take the general form of emerging and
retracting lobes, which often rotate about the input in mirror symmetry, as
shown in Figure 5.9. On the rectangular grid it is possible to generate breathers
for n = 1, 2, 4, 8 which exhibit strictly radially expanding/contracting lobes,
that do not rotate about the input, as shown in Figure 5.11-a. It is likely that
such breathers are observed because they are commensurate with the grid.
However, the irregular polar grid does in fact produce expanding/contracting
type breathers for n = 1, 2. It may be possible with exceedingly large grid
point counts, or with a regular polar grid, to generate such breathers. Though,
it is more reasonable to expect a population of real neurons to exhibit behavior
more along the lines of Figure 5.9.

Interestingly, when the initial transient is sufficiently irregular, or if a
sufficiently large initial perturbation with n-fold symmetry is applied, spatially
localized rotating solutions (or rotors) emerge, see Figure 5.11-b. It seems that
there is some sort of separatrix dividing the flow either to an attracting breather
or rotor. In the case of the rectangular grid, it is clear that certain modes which
are commensurate with the grid are favored in terms of growth of the instability
associated with small random perturbations of the unstable stationary pulse.
This can lead initially to an irregularly shaped lobed structure of activity,
possibly due to a competition between the dominant mode and a grid–favored

mode, that ultimately transitions to a breather or rotor whose lobed structure
is consistent with the dominant mode. Various rotors are shown in Figure 5.10.

For very small threshold values κ ≈ 0.01 it is also possible to generate
wave–emitting solutions which similarly break radial symmetry; see Figure
5.12. The small threshold restriction is due to the long-range inhibition of
the Mexican hat network is dependent upon its amplitude and strength.
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Figure 5.9. Breathers for the Mexican hat weight function and polar
grid. Light colors denote suprathreshold values, with the number of
lobes corresponding to the dominating unstable Fourier mode.
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Figure 5.10. Rotors for the Mexican hat weight function and rectangu-
lar grid. In each case the number of lobes corresponds to the dominant
unstable Fourier mode.
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Figure 5.11. (a) Strictly expanding/contracting four-fold breather on a
rectangular grid. (b) Far beyond the Hopf bifurcation point, a three-fold
rotor emits a transient pulse of activity.

Figure 5.12. Wave emission exhibiting four-fold symmetry.
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5.4 Discussion

In this chapter we have extended the analysis of stationary pulses and breathers
to two-dimensional networks with radially symmetric inputs. In the case of
an excitatory weight function, the results are similar to the one-dimensional
case, (i) radially symmetric stationary pulses are stabilized by sufficiently large
inputs, (ii) for ǫ < β the stationary pulse undergoes a Hopf bifurcation prior
to the saddle-node bifurcation, giving rise to radially-symmetric breathing
pulses, and (iii) a further reduction leads to a secondary instability in which
the breather periodically emits circular waves into the surrounding medium.
The radial symmetry is due to the fact that the lowest order spatial mode
of the linearization always dominates the instability. Interestingly, we find
that this is not necessarily the case for the Mexican hat weight function. By
varying the spatial extent of the input, the Hopf bifurcation may correspond
to a higher mode. Beyond the bifurcation point, different modes dominate the
instability and determine the shape of the breather. Furthermore, the network
also supports coexistent, spatially-localized rotating waves.

Interestingly, it is found that the attracting dynamics depend, in part, upon
the grid used as an approximate representation of the continuous domain. The
relevant question arises, what are the appropriate types of solution generated
by the network, when the network is an infinite–dimensional neural continuum
or a finite–dimensional rectangular or polar grid? While infinite–dimensional in
nature, dissipative systems often possess a stable, finite–dimensional attractor,
lending the support for the confidence in finite–dimensional numerical schemes
to represent the behavior of the continuous system. It would be interesting
to understand how the dynamics of the n-lobed breather are generated by the
rectangular and polar grids, i.e., to determine what are the conditions which
produce strictly expanding/contracting breathers and breathers which exhibit
emerging/retracting lobes that rotate about the input. Moreover, does there
always a coexisting rotor of the same order which contains its own basin of
attraction, establishing two forms of attracting, spatially localized periodic
solutions, both of which may be generated in the Hopf bifurcation.

One of the predictions of our analysis is that breathers may be observed
in tangential slices (an effective two-dimensional medium) when a persistent
localized input is applied. In the case of disinhibited cortical slices, a radially
symmetric input should produce roughly radially symmetric breathers of activ-
ity, whereas, if inhibitory connections are maintained, nonradially symmetric
breathers should be observed. There are a number of experimental challenges
to overcome, however, including the destruction of neurons due to persistent
current input and the control of the structure of the input. The use of electric
fields by Richardson et al. [?] may be one feasible approach. Experimental
verification of breathers may reveal that some form of slow, negative feedback
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is playing a strong role in the dynamics of neural populations, lending support
for the use of rate-based neural network models.

Since breathers continue to exist in the presence of inhibition, our work
also establishes that persistent inputs may be a source of oscillations in the
intact cortex, which could have important implications for the processing of
sensory stimuli. From a more general dynamical systems perspective, we
have identified a mechanism for the generation of complex spatially local-
ized oscillations in two–dimensional excitable media with nonlocal Mexican
hat interactions and input inhomogeneities. This then raises the interesting
question as to whether or not analogous dynamical instabilities can occur in
diffusively coupled excitable media. Indeed, it has recently been shown that
Mexican hat networks exhibit a range of dynamical phenomena also found in
three–component reaction-diffusion systems [19].





CHAPTER 6

STIMULUS-LOCKED TRAVELING

WAVES AND BREATHERS IN AN

EXCITATORY NETWORK

In this chapter we extend the Evans function approach of Zhang [116] and
the results on stationary inhomogeneous inputs (Chapter 4), by analyzing the
existence and stability of traveling waves locked to a moving input of constant
speed v. Consider the Pinto-Ermentrout model subject to a moving input

τ
∂u(x, t)

∂t
= −u(x, t) − β̺(x, t) +

∫

R2

w(x − x′)H(u(x′, t) − κ)dx′ + I(x− vt)

1

ǫ

∂̺(x, t)

∂t
= −̺(x, t) + u(x, t). (6.1)

We assume throughout that w(x) is a positive, even function, monotonically
decreasing on [0,∞), that satisfies the normalization condition

∫
R2 w(x)dx <

∞. The input is written as I(x−vt) = I0 χ(x−vt) with χ a fixed spatial profile
that is either a bounded, monotonically decreasing function in the case of fronts,
or a unimodal Gaussian–like function in the case of pulses. The input amplitude
I0 and velocity v are treated as bifurcation parameters. Working in the moving
frame of the input, we derive threshold–crossing conditions for the existence of a
stimulus–locked wave and use these conditions to construct existence tongues
in (v, I0)–parameter space whose tips at I0 = 0 correspond to the intrinsic
waves of the homogeneous network, assuming that the latter exist. In the
particular case of an exponential weight distribution, we show that there are
two tongues in the positive v domain, corresponding to an unstable/stable pair
of right–moving intrinsic waves. We determine the stability of the waves within
these existence tongues by first constructing the Evans function for a general
weight distribution w satisfying the properties listed below equation (6.1) and
then numerically calculating the zeros of the Evans function for the exponential
weight distribution. We show that as the input is reduced, a stimulus-locked
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wave within the tongue of the unstable intrinsic wave can undergo a Hopf
bifurcation leading to the emergence of a traveling oscillatory wave. The latter
takes the form of a breather or a pulse-emitter in the moving frame of the
stimulus. In the limit v → 0 our results reduce to those previously obtained
for stationary inputs; see Chapter 4.

The structure of the chapter is as follows. In order to illustrate the general
approach, we begin by considering the simpler case of zero negative feedback
(β = 0), for which equation (6.1) reduces to a scalar equation in u (section
6.1). The corresponding existence tongues for stimulus–locked fronts and their
stability can be completely determined analytically. We next consider the
existence of stimulus–locked pulses in the full vector system (6.1), numeri-
cally solving a set of nonlinear functional equations in order to construct the
associated tongues (section 6.2). We then develop the linear stability analysis
of stimulus–locked pulses in order to determine the stability of solutions within
the tongues (section 6.3). Finally, we present numerical simulations illustrating
the formation of traveling breathers and pulse-emitters. Although we focus on
traveling pulses rather than fronts in the case of the full system (6.1), it is
straightforward to carry over our results to the case of stimulus–locked fronts,
as mentioned in section 3.4.4. Throughout we work with dimensionless units.
The fundamental time scale is taken to be the membrane time constant τ ,
which is assumed to be of the order 10 msec. The fundamental length scale
is taken to be the range d of synaptic coupling, which can vary between a few
hundred micrometers to a few millimeters.

6.1 Stimulus-Locked Traveling Fronts
in a Scalar Equation

We carry out a complete analysis of the existence and stability of stimulus-
locked fronts in a scalar version of (6.1). As an illustrative example, we
construct tongue diagrams for an exponential weight, showing how the existence
regions of fronts in the (v, I0)-plane deform as the threshold κ is varied. We
also establish that the fronts within the existence tongues are always stable.

6.1.1 Existence of Stimulus-Locked Fronts

Consider the scalar network

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞

w(x − y)H(u(y, t) − κ)dy + I(x− vt) (6.2)

where the input is taken to be a positive, bounded, monotonic function. This
equations is not translationally invariant due to the presence of the input.
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However, we may seek traveling front solutions of the form u(x, t) = U(ξ)
where ξ = x− vt and

U(ξ) > κ, ξ < ξ0; U(ξ0) = κ; U(ξ) < κ, ξ > ξ0,

for some ξ0 ∈ R. The wave of excitation is assumed to travel at the same
velocity as the input, though the relative positions of the active region (above
threshold), and the input may vary with respect to the velocity and the input
strength. Thus, the active region is locked to the input but may precede or
succeed the input in position. We take U ∈ C1(R,R), where Cn(R,R) denotes
the set of all n-times continously differentiable functions f : R −→ R which
are bounded with respect to the sup norm. If I0 = 0 then the system is
translationally invariant and ξ0 becomes a free parameter. In this case we refer
to traveling waves as intrinsic or natural waves. The profile of the front is
determined according to

−v dU(ξ)

dξ
= −U(ξ) +

∫ ξ0

−∞

w(ξ − η)dη + I(ξ). (6.3)

Setting

W (ξ) =

∫ ξ

−∞

w(η)dη,

we can integrate equation (6.2) for v > 0 over [ξ,∞) to obtain

U(ξ) =
1

v

∫ ∞

ξ

e(ξ−η)/vNe(η; ξ0)dη,

where

Ne(ξ; ξ0) = 1 −W (ξ − ξ0) + I(ξ).

We are assuming that w is normalized such that
∫

R
w(η)dη = 1. Similarly, for

v < 0 we integrate over (−∞, ξ] to find

U(ξ) = −1

v

∫ ξ

−∞

e(ξ−η)/vNe(η; ξ0)dη.

The threshold condition for the existence of a stimulus-locked front is κ =
U(ξ0). As a specific example, we consider a Heaviside input I(ζ) = I0H(−ζ)
and an exponential weight function

w(x) =
1

2d
e−|x|/d, (6.4)
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with length scale fixed by setting d = 1. The resulting threshold condition is

κ =





1

2(1 + v)
+





0, ξ0 ≥ 0,

I0(1 − eξ0/v), ξ0 < 0,



 , v > 0;

1 + 2|v|
2(1 + |v|) +






I0e
ξ0/v, ξ0 > 0,

I0, ξ0 ≤ 0,




 , v < 0.

(6.5)
In the absence of an input (I0 = 0), the threshold condition reduces to

κ =





1

2(1 + v◦)
, v ≥ 0,

1 + 2|v◦|
2(1 + |v◦|)

, v < 0,

,

where v◦ is the natural speed of the wave. Solving for v◦ in terms of κ, we find
that v◦ is a sigmoidal function of κ.

v◦(κ) =






1
2 − κ

κ
, 0 < κ ≤ 1

2 ,

1
2 − κ

(κ− 1)
, 1

2 < κ < 1.

The homogeneous network supports a stationary natural front (v◦ = 0) when
κ = 1

2 , a front moving to the right for 0 < κ < 1
2 , and front moving to the

left for 1
2 < κ < 1. Moreover, v◦ → ∞ as κ → 0 and v◦ → −∞ as κ → 1. It

does not support a natural front when κ > 1, as any heteroclinic orbit joining
the equilibria {0, 1} at infinity does not satisfy the threshold behavior used to
define a traveling front solution. This recovers a result from [26].

We now analyze equation (6.5) for I0 > 0 in order to determine the regions
of the (v, I0)-parameter subspace for which stimulus-locked waves exist. We
first consider the case v > 0. For ξ0 ≥ 0 we have the threshold condition

κ =
1

2(1 + v)

and, hence, there are infinitely many waves parameterized by ξ0 ∈ [0,∞), all of
which travel with the natural speed v = 1−2κ

2κ for 0 < κ < 1
2 . This degeneracy is

a consequence of using the Heaviside input and would not occur, if a continuous,
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strictly monotonic input were used; however, the analysis is considerably more
involved. For ξ0 < 0 we have instead

κ =
1

2(1 + v)
+ I0(1 − eξ0/v).

As the right-hand-side is monotonic in ξ0, we can solve for ξ0 as a function of
v to obtain

ξ0(v) = v ln

[
1 − 1

I0

(
κ− 1

2(1 + v)

)]
.

Since ξ0 < 0 and v > 0, we see that solutions exist only if

0 < 1 − 1

I0

(
κ− 1

2(1 + v)

)
≤ 1

or, equivalently,

2(κ− I0) <
1

1 + v
≤ 2κ. (6.6)

The right inequality of (6.6) implies that, if κ < 1
2 , then v > v◦(κ), where v◦ is

the corresponding natural velocity. Similarly, the left inequality implies that, if
I0 < κ, then 0 < v < v1(κ− I0), with v1(s) = 1

2s − 1. Hence, for 0 < κ ≤ 1
2 we

obtain the existence regions in the (v, I0)-plane shown in Figure 6.1(a-b). The
left boundary is given by v = v◦(κ) and the right boundary by v = v1(κ− I0).
The two boundaries form a tongue that emerges from the natural speed v◦(κ)
at I0 = 0.

Now consider v < 0. For ξ0 < 0 we have the threshold condition

κ =
1 + 2|v|

2(1 + |v|) + I0

which implies

|v| =
1 − 2(κ− I0)

2(κ− I0 − 1)
≡ v2(κ− I0).

Again we have an infinite family of waves corresponding to a single speed. Since
|v| ≥ 0, such solutions only exist for

κ− 1 < I0 < κ− 1

2
.

On the other hand, for ξ0 ≥ 0 we have the threshold condition

κ =
1 + 2|v|

2(1 + |v|) + I0e
ξ0/v.
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Figure 6.1. Deformation of existence regions (gray) for stimulus-locked

traveling fronts as κ varies in the scalar equation.

Monotonicity of the right-hand-side again allows us to solve for ξ0(v) to find

ξ0(v) = v ln

[
1

I0

(
κ− 1 + 2|v|

2(1 + |v|)

)]
.

and, since v < 0 and ξ0 ≥ 0, it follows that waves only exist for v satisfying

κ− I0 ≤ 1 + 2|v|
2(1 + |v|) < κ. (6.7)

The right inequality of (6.7) implies that, if 1
2 < κ < 1, then v◦(κ) < v < 0.

Thus, for 1
2 < κ < 1 we obtain the existence region shown in Figure 6.1(c); the

left boundary is given by v = v0(κ) and the right boundary by v = v2(κ− I0)
for v < 0 and v = v1(κ − I0) for v > 0. Again there is a tongue with tip at
the natural speed. For κ > 1 the left boundary disappears, and one only finds
stimulus-locked waves when I0 > κ−1, i.e., natural waves no longer exist. The
left inequality of (6.7) implies that if 1

2 < κ− I0 < 1 then v < v2(κ − I0) < 0,
whereas, if κ − I0 > 1 then no solution exists. For all κ > 1 the region of
existence is identical to that for κ = 1, though it is shifted vertically by κ− 1,
as shown in Figure 6.1(d-e).
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6.1.2 Stability of Stimulus-Locked Fronts

Consider the evolution of small smooth perturbations ϕ̄ of the stimulus-locked
front solution U . Linearizing equation (6.2) about the wave, the perturbations
evolve according to

∂ϕ̄

∂t
− v

∂ϕ̄

∂ξ
+ ϕ̄ =

∫

R

w(ξ − η)H ′(U(η) − κ)ϕ̄(η)dη. (6.8)

Separating variables, ϕ̄(ξ, t) = ϕ(ξ)eλt, we find that ϕ ∈ C1(R,C) satisfies the
eigenvalue problem

(L + Ns)ϕ = λϕ (6.9)

where

Lϕ = v
∂ϕ

∂ξ
− ϕ, Nsϕ (ξ) =

w(ξ − ξ0)

|U ′(ξ0)|
ϕ(ξ0). (6.10)

We need to characterize the spectrum of the linear operator L+Ns : C1(R,C) −→
C0(R,C) in order to determine the linear stability of the traveling pulse. The
following definitions concern linear operators T : D(T) −→ B where B is a
Banach space and the domain D(T) of T is dense in B [114]. In our case
D(L + Ns) = C1(R,C) which is dense in C0(R,C). λ is in the resolvent set ρ,
if λ ∈ C is such that T − λ has a range dense in B and a continuous inverse
(T − λ)−1, otherwise λ is in the spectrum σ. We decompose the spectrum into
the following disjoint sets. λ is an element of the point spectrum σp, if T − λ
is not invertible; λ is an element of the continuous spectrum σc, if T − λ has
an unbounded inverse with domain dense in B; λ is an element of the residual
spectrum σr , if T − λ has an inverse (bounded or not) whose domain is not
dense in B. We refer to elements of the point spectrum as eigenvalues and the
union of the continuous and residual spectra as the essential spectrum.

Regarding the essential spectrum, we mention that Ns is a compact linear
operator. The consequence is that, since Ns is compact, the operators L + Ns

and L have the same essential spectra [54, 53]. To see that the operator is
compact, we define Ns by the composition T ◦ S where

Sϕ = ϕ(ξ0),
(
T z
)
(ξ) =

w(ξ − ξ0)

|U ′(ξ0)|
z.

Since S : C1(R,C) −→ C has a finite dimensional range, it is a compact linear
operator. Moreover, since T : C −→ C0(R,C) is a bounded linear operator, it
follows that the composition T ◦ S is a compact linear operator.
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Resolvent and the point spectrum. We seek to construct a bounded inverse
by solving the inhomogeneous equation

(L + Ns − λ)ϕ = −f, (6.11)

where f ∈ C0(R,C), using a variation of parameters approach along the lines
of Zhang [116]. We write equation (6.11) as

∂

∂ξ

(
e−( 1+λ

v )ξ ϕ(ξ)
)

= −1

v
e−( 1+λ

v )ξ
(
Nsϕ(ξ) + f(ξ)

)
. (6.12)

For Re(λ)+1
v > 0 , integrating equation (6.12) over [ξ,∞) yields

ϕ(ξ) − Λ+(λ; ξ)ϕ(ξ0) = Hf (ξ). (6.13)

where

Λ+(λ; ξ) =
1

v|U ′(ξ0)|

∫ ∞

ξ

w(η − ξ0)e
( 1+λ

v )(ξ−η)dη,

Hf (ξ) =
1

v

∫ ∞

ξ

e(
1+λ

v )(ξ−η)f(η)dη.

Using the Hölder inequality, it can be shown that both Λ+(λ; ξ) and Hf (ξ) are
bounded for all ξ ∈ R and f ∈ C0(R,C). It is then seen from equation (6.13)
that ϕ(ξ) is determined by its restriction ϕ(ξ0), in which case we obtain

(
1 − Λ+(λ; ξ0)

)
ϕ(ξ0) =

1

v

∫ ∞

ξ0

e(
1+λ

v )(ξ−η)f(η)dη.

This can be solved for ϕ(ξ0) and, hence for ϕ(ξ), if and only if

1 − Λ+(λ; ξ0) 6= 0.

This results in a bounded inverse which is defined on all of C0(R,C), and,
therefore, all corresponding λ are in the resolvent set. On the other hand, we
cannot invert the operator for λ such that

1 − Λ+(λ; ξ0) = 0.

In this case
(L + Ns − λ)ϕ = 0 (6.14)

has nontrivial solutions, indicating that λ is in the point spectrum. Moreover,
if we define the function

E+(λ; ξ0) = 1 − Λ+(λ; ξ0),
Re(λ) + 1

v
> 0,
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we see that eigenvalues form the zero set. Similarly for Re(λ)+1
v < 0, integrating

equation (6.12) over (−∞, ξ0] yields a similar condition for the existence of
eigenfunctions

1 = Λ−(λ, ξ0),
Re(λ) + 1

v
< 0

where

Λ−(λ; ξ) = − 1

v|U ′(ξ0)|

∫ ξ

−∞

w(η − ξ0)e
( 1+λ

v )(ξ−η)dη. (6.15)

The Evans function is then defined as

E(λ; ξ0) = 1 − Λ±(λ; ξ0),
Re(λ) + 1

v
≷ 0.

Essential spectrum. Since Ns does not contribute to the essential spectrum
of L + Ns, we need only calculate the essential spectrum of the linear operator
L. The essential spectrum is the set of λ = −1 + ivρ where ρ ∈ R. Since this
has negative real-part, the essential spectrum does not contribute to any wave
instabilities. We demonstrate that, for these values of λ, there exists bounded
functions for which the inverse operator (L − λ)−1 becomes unbounded, indi-
cating that λ is a member of the continuous spectrum.

Suppose λ = −1+ivρ and consider the sequence of bounded functions [117]

ϕm(ξ) =

(
1 − e

−
ξ2

2m2

)
eiρξ, m ∈ N

for which
‖ϕm‖∞ = 1, ∀ m ∈ N, ρ ∈ R.

However,

(L − λ)ϕm(ξ) =
v

m2
ξe

−
ξ2

2m2 eiρξ

which implies that

∥∥∥ (L − λ)ϕm

∥∥∥
∞

=
v

m2

∥∥∥∥ ξe
−

ξ2

2m2

∥∥∥∥
∞

−→ 0, as m −→ ∞.

Hence, (L−λ)−1 is unbounded, and the set of λ = −1+ ivρ where ρ ∈ R form
the essential spectrum. The residual spectrum in this case is empty, though
we shall see that the vector system does, in fact, have a nonempty residual
spectrum.
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Evans function for an exponential weight distribution. We now ex-
plicitly calculate the zeros of the Evans functions for a Heaviside input and
exponential weight distribution. The region in the complex plane D = {z :
Re(z) > −1} is the domain of the Evans function E+, and we need only consider
this region to determine the stability of the wave. For v > 0 and λ ∈ D,

E+(λ, ξ0) = 1 − 1

v|U ′(ξ0)|

∫ ∞

ξ0

w(η − ξ0)e
( 1+λ

v )(ξ0−η)dη,

= 1 − 1

2(1 + λ+ v)

1

|U ′(ξ0)| ,

and similarly for v < 0 and λ ∈ D

E−(λ, ξ0) = 1 +
1

v|U ′(ξ0)|

∫ ξ0

−∞

w(η − ξ0)e
( 1+λ

v )(ξ0−η)dη,

= 1 +
1

2(1 + λ+ v)

1

|U ′(ξ0)| .

Note that this recovers the Evans function obtained by Zhang [116] in the case
of a homogeneous input. From this we can directly solve E±(λ; ξ0) = 0 for λ

λ = − (1 + |v|) +
1

2|U ′(ξ0)|
, v ∈ R, (6.16)

with U ′(ξ0) determined from equation (6.2)

U ′(ξ0) =
1

v

(
U(ξ0) −

∫ ξ0

−∞

w(ξ0 − η)dη − I(ξ0)

)
,

=
1

v

(
κ− 1

2
− I(ξ0)

)
,

and κ satisfying the self-consistency conditions (6.5).
In the case I0 = 0 the eigenvalues are given by

λ = −(1 + |v|) +
|v|

2
∣∣κ− 1

2

∣∣ , v ∈ R, (6.17)

where v is the natural wave speed. Substituting equation (6.5) into (6.17) we
find that the only eigenvalue in D is the zero eigenvalue λ = 0. Moreover it
can be shown that the eigenvalue is simple [116] and, hence, that the natural
front is linearly stable, modulo uniform translations.

In the case of an inhomogeneous input (I0 > 0), we have to deal with
each of the separate subdomains of the threshold conditions (6.5). First, for
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v > 0, ξ0 > 0 we notice that I(ξ0) = 0 and κ is identical to the case of a natural
wave, hence, λ = 0 is the only eigenvalue in D. If v > 0, ξ0 < 0, substituting
(6.5) for κ into (6.16) yields the eigenvalue

λ = −1 − v +
v

2|κ− 1
2 − I0|

= (1 + v)

[
−1 +

v∣∣v + 2(1 + v)I0(1 − eξ0/v)
∣∣

]
.

Since I0(1 − eξ0/v) > 0 for all v > 0, ξ0 < 0, I0 > 0, it follows that λ < 0
and the corresponding front is always stable. On the other hand, if v < 0 and
ξ0 < 0, we find λ = 0, again indicating stability with respect to the degenerate
family of waves corresponding to the boundary of the tongue. For ξ0 > 0 we
similarly calculate

λ = (1 + |v|)
[
−1 +

|v|∣∣|v| + 2(1 + |v|)I0eξ0/v
∣∣

]
.

Since 2(1+ |v|)I0eξ0/v > 0 for v < 0, ξ0 > 0, I0 > 0, it again follows that λ < 0
and the corresponding front is always stable.

6.2 Stimulus-Locked Traveling Pulses
in a Vector System

In this section we construct stimulus–locked traveling pulse solutions of equa-
tion (6.1) in the case of a unimodal input moving with constant velocity v. We
first derive the formal solution for a general weight distribution w, and then
use this to construct existence tongues in the (v, I0)–plane for an exponential
weight distribution and a Gaussian input of amplitude I0.

6.2.1 Existence of Stimulus-Locked Pulses

Consider a traveling pulse that is generated by, and locked to, an inhomoge-
neous input I traveling with constant speed v. Such a wave has permanent
or stationary form, i.e., it translates as a rigid structure. Define the traveling
wave coordinates (ξ, t), where ξ = x− vt and v is the velocity associated with
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the input. A stimulus-locked traveling pulse is a pair of functions (U,Q), with
U,Q ∈ C1(R,R), which in traveling wave coordinates satisfies the conditions

U(ξi) = κ, i = 1, 2; U(ξ) −→ 0 as ξ −→ ±∞;

U(ξ) > κ, ξ1 < ξ < ξ2; U(ξ) < κ, otherwise.

with ξ1, ξ2 defining the points at which the activity U crosses threshold and
s = ξ2 − ξ1 defining the width of the input. Taking u(x, t) = U(x − vt) and
̺(x, t) = Q(x− vt), the profile of the pulse is governed by

−v Uξ = −U − βQ+

∫ ξ2

ξ1

w(ξ − η)dη + I(ξ),

−v
ǫ
Qξ = −Q + U.

In general, we take the excitatory weight function w(x) to be nonnegative,
continuous, symmetric in x, and monotonically decreasing in |x|. Let s =
(U,Q)T and W denote an antiderivative of w; we can rewrite the system more
compactly as

Ls ≡
(
vUξ − U − βQ
vQξ + ǫU − ǫQ

)
= −

(
Ne

0

)
, (6.18)

where
Ne(ξ) = W (ξ − ξ1) −W (ξ − ξ2) + I(ξ). (6.19)

We use variation of parameters to solve this linear equation. The homoge-
neous problem Ls = 0 has the two linearly independent solutions,

S+(ξ) =

(
β

m+−1

)
exp(µ+ξ), S−(ξ) =

(
β

m−−1

)
exp(µ−ξ),

where

µ± =
m±

v
, m± =

1

2

(
1 + ǫ±

√
(1 − ǫ)2 − 4ǫβ

)
.

We set

s(ξ) =
[
S+

∣∣S−

]( a(ξ)
b(ξ)

)
,

where a, b ∈ C1(R,R) and [A|B] denotes the matrix whose first column is
defined by the vector A and whose second column is defined by the vector B.
Since LS± = 0, equation (6.18) becomes

[
S+

∣∣S−

] ∂
∂ξ

(
a(ξ)
b(ξ)

)
= −1

v

(
Ne(ξ)

0

)
. (6.20)
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Since [S+|S−] is invertible, we find

∂

∂ξ

(
a(ξ)
b(ξ)

)
= − 1

vβ(m+ −m−)

[
Z+

∣∣Z−

]T(Ne(ξ)
0

)
.

where

Z+(ξ) =

(
1−m−

β

)
exp(−µ+ξ), Z−(ξ) = −

(
1−m+

β

)
exp(−µ−ξ).

For v > 0, we integrate over [ξ,∞) to obtain
(
a(ξ)
b(ξ)

)
=

(
a∞
b∞

)
+

1

vβ(m+ −m−)

∫ ∞

ξ

[
Z+

∣∣Z−

]T(Ne(η)
0

)
dη,

where a∞, b∞ denote the values of a(ξ), b(ξ) as ξ −→ ∞. Thus

s(ξ) =
[
S+

∣∣S−

]( a∞
b∞

)
+

1

vβ(m+ −m−)

[
S+

∣∣S−

] ∫ ∞

ξ

[
Z+

∣∣Z−

]T(Ne(η)
0

)
dη.

(6.21)
Using the Hölder inequality and that Ne ∈ C0(R,R), it is straightforward to
show that the integral term in (6.21) is bounded for all ξ ∈ R; hence, a bounded
solution s exists only if a∞ = b∞ = 0. The general stimulus-locked pulse is
given by

s(ξ) =
1

vβ(m+ −m−)

[
S+

∣∣S−

] ∫ ∞

ξ

[
Z+

∣∣Z−

]T(Ne(η)
0

)
dη.

Furthermore, if we define the functions

M±(ξ) =
1

v(m+ −m−)

∫ ∞

ξ

eµ±(ξ−η)Ne(η)dη,

we can express the solution (U,Q) as follows

U(ξ) = (1 −m−)M+(ξ) − (1 −m+)M−(ξ) (6.22)

Q(ξ) = β−1(m+ − 1)(1 −m−)
(
M+(ξ) − M−(ξ)

)
. (6.23)

Since Ne(ξ) is dependent upon ξ1, ξ2, the threshold conditions U(ξi) = κ, where
i = 1, 2 and ξ1 < ξ2, determine the relationship between the input strength
I0 and the position of the pulse relative to the input I. This provides the
following consistency conditions for the existence of a stimulus-locked traveling
pulse, which, we note, reduce to the case of natural pulses for I0 = 0:

κ = (1 −m−)M+(ξi) − (1 −m+)M−(ξi) i = 1, 2 (6.24)
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6.2.2 Pulses for an Exponential Weight Distribution

Consider, in particular, an exponential weight distribution given by equation
(6.4) with d = 1 and a Gaussian input

I(x) = I0 e−( x
σ )2

. (6.25)

Existence conditions, determined from equations (6.24), yield the following
system of nonlinear equations that determines the relationship between the
input parameters (v, I0) and the threshold points (ξ1, ξ2).

κ = K(ξ1 − ξ2) + T+(ξ1) − T−(ξ1), (6.26)

κ = J(ξ1 − ξ2) + T+(ξ2) − T−(ξ2), (6.27)

where

J(ζ) =
v + ǫ

2(v+m+)(v+m−)

(
1 − eζ

)
, K(ζ) = K0+K1e

ζ−K+eµ+ζ +K−eµ−ζ ,

K1 =
1

2

v − ǫ

(v −m+)(v −m−)
, K± =

v2(1 −m∓)

m±(v2 −m±
2)(m+ −m−)

,

K0 =

(
(1 −m−)(2v +m+)

2m+(v +m+)(m+ −m−)

)
−
(

(1 −m+)(2v +m−)

2m−(v +m−)(m+ −m−)

)
,

T±(ζ) =

√
π σI0
2 v

(
1 −m∓

m+ −m−

)
exp

(
(µ±σ)2/4 + µ±ζ

)
erfc

(
ζ

σ
+
µ±σ

2

)
,

and erfc(z) denotes the complementary Error function.

Natural traveling pulses (I0 = 0). Numerically solving equations (6.26)
and (6.27) for I0 = 0, we find that for sufficiently small ǫ there exists a pair of
traveling pulses arising from a saddle-node bifurcation. Previous numerical [80]
simulations suggest that the larger and faster pulse is stable while the smaller
slower pulse is unstable and acts as a separatrix between the fast pulse and the
rest state. Zhang’s [116] analysis has shown the fast pulse to be stable in the
singular limit ǫ −→ 0. In Figure 6.2 we present bifurcation diagrams using ǫ as
a bifurcation parameter to demonstrate the existence and stability of natural
pulses; stability is determined by numerically solving for the zero set of the
Evans function, constructed in section 6.3.2. It is found that, away from the
singular limit, the larger, faster pulse is stable (black) while the smaller, slower
pulse is unstable (gray).
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Figure 6.2. Bifurcation curves for the existence of natural traveling pulses

(I0 = 0) for the vector system (6.1) in (a) the (ǫ, a)-plane and (b) the

(ǫ, v)-plane, illustrating that natural pulses exist only for small ǫ. The stable

branch (black), characterized by wide (large a), fast pulses, and the unstable

branch (gray), characterized by narrow, slow pulses, annihilate in a saddle-node

bifurcation at a critical value ǫc. In this case κ = 0.3, β = 2.5, and ǫc ≈ 0.341.

Stimulus-locked traveling pulses. Numerically solving equations (6.26) and
(6.27) for I0 > 0, we determine the regions in the (v, I0)-plane where one or
more stimulus-locked pulses exist. Performing a continuation from the pair
of natural pulses, we generate a corresponding pair of existence tongues with
tips at I0 = 0. These are illustrated in Figure 6.3 with the left-hand (right-
hand) tongue emerging from the unstable (stable) natural pulse. We then note
that the left-hand tongue includes stationary pulses at v = 0. In Chapters 4
and 5 we have shown how a stationary unimodal input can generate a stable
stationary pulse that bifurcates to a stable breather via a Hopf bifurcation as
the input amplitude is reduced. In section 6.3.2 we construct the associated
Evans function for traveling pulses within the tongue regions and use this to
determine the stability of stimulus-locked pulses. We find that there is a Hopf
curve within the left-hand tongue that is a continuation of the Hopf bifurcation
point for stationary pulses (v = 0); this is shown in Figure 6.3 by the gray curve.
Above the Hopf curve the pulse is stable, while it is unstable below. Conversely,
the pulse within the right-hand tongue is always stable. Note that there also
exists additional stimulus-locked pulse solutions in certain subregions inside
and outside of the tongues; however, these are found to be always unstable.
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Figure 6.3. Regions of existence (white) of the stimulus-locked traveling

pulses in the (v, I0)-plane for σ = 1.0, κ = 0.3, ǫ = 0.03, and β = 2.5. The

left and right regions form tongues that issue from the unstable vu and stable

vs natural traveling pulses, respectively. The Hopf curve within the left-hand

tongue is shown in gray, above which the pulse is stable (s) and below which it

is unstable (u); see section 6.3. Stationary pulses correspond to the intersection

of the tongue and the line v = 0.
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6.3 Stability of the Stimulus-Locked
Traveling Pulse

We begin by analyzing the resolvent and the spectrum of the operator as-
sociated with the linearization of the vector system (6.1) about the general
stimulus-locked traveling pulse constructed in section 6.2.1. This analysis
indicates that potential instabilities arise only due to the behavior of eigen-
values, which can be determined by calculation of the zero set of the Evans
function. We then present the explicit construction of the Evans function for
the stimulus-locked traveling pulse, in the particular case of the exponential
weight distribution, and calculate the zero sets of this Evans function for the
pulse existence tongues shown in Figure 6.3, thereby determining their stability.

6.3.1 Spectral Analysis of the Linearized Operator

Consider the evolution of small smooth perturbations of the stimulus-locked
traveling pulse with stationary form (U,Q),

u = U + ϕ̄, ̺ = Q+ ψ̄.

Substituting into the system expressed in traveling wave coordinates and lin-
earizing, we find the perturbations, to first order, satisfy

∂ϕ̄

∂t
− v

∂ϕ̄

∂ξ
+ ϕ̄+ βψ̄ =

∫

R

w(ξ − η)H ′(U(η) − κ)ϕ̄(η)dη, (6.28)

∂ψ̄

∂t
− v

∂ψ̄

∂ξ
− ǫϕ̄+ ǫψ̄ = 0. (6.29)

Separating variables,
(
ϕ̄(ξ, t)
ψ̄(ξ, t)

)
=

(
ϕ(ξ)
ψ(ξ)

)
eλt (6.30)

the spatial components ϕ, ψ ∈ C1(R,C) satisfy the spectral problem

(L + Ns)

(
ϕ
ψ

)
= λ

(
ϕ
ψ

)
(6.31)

where

L = v
∂

∂ξ
− A, A =

[
1 β
−ǫ ǫ

]
, (6.32)

Ns

(
ϕ
ψ

)
=

( w(ξ−ξ1)
|U ′(ξi)|

ϕ(ξ1) + w(ξ−ξ2)
|U ′(ξ2)| ϕ(ξ2)

0

)
. (6.33)
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Resolvent and the point spectrum. Letting z = (ϕ, ψ)T , we seek to
construct a bounded inverse by solving

(L + Ns − λ)z = −f ,

where f = (f1, f2)
T and f1, f2 ∈ C0(R,C). Following the variation of parameters

approach of Zhang [116], we find the linearly independent solutions of the
homogeneous problem (L − λ)φ = 0 are

Φ+(ξ, λ) =

(
β

m+−1

)
e

(
λ+m+

v

)
ξ Φ−(ξ, λ) =

(
β

m−−1

)
e

(
λ+m−

v

)
ξ,

in which case we set

z(ξ) =
[
Φ+

∣∣Φ−

](
ā(ξ)
b̄(ξ)

)
.

Subsequently, the coefficient functions are determined according to

[
Φ+

∣∣Φ−

] ∂
∂ξ

(
ā
b̄

)
= −1

v

(
Nsz + f

)
. (6.34)

Inversion of
[
Φ+

∣∣Φ−

]
leads to

∂

∂ξ

(
ā
b̄

)
= − 1

vβ(m+ −m−)

[
Ψ+

∣∣Ψ−

]T(
Nsz + f

)
(6.35)

where

Ψ+(ξ, λ) =

(
1−m−

β

)
e−
(

λ+m+
v

)
ξ, Ψ−(ξ, λ) = −

(
1−m+

β

)
e−
(

λ+m−
v

)
ξ.

For Re(λ) > −m−, we integrate over [ξ,∞) to obtain

(
ā(ξ)
b̄(ξ)

)
=

(
ā∞
b̄∞

)
+

1

vβ(m+ −m−)

∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T (
Nsz + f

)
dη,

where ā∞, b̄∞ denotes the values of a(ξ), b(ξ) as ξ −→ ∞. Thus

z(ξ) =
[
Φ+

∣∣Φ−

]( ā∞
b̄∞

)
+

1

vβ(m+−m−)

[
Φ+

∣∣Φ−

] ∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T(
Nsz+f

)
dη.

As we shall discuss, the integral term is bounded for all ξ, and, consequently,
for a bounded solution to exist, we must require that ā∞ = b̄∞ = 0. Thus

z(ξ) =
1

vβ(m+ −m−)

[
Φ+

∣∣Φ−

] ∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T (
Nsz + f

)
dη.
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which can be rewritten as
(
ϕ(ξ)
ψ(ξ)

)
− Λ1(λ, ξ)

(
ϕ(ξ1)

0

)
− Λ2(λ, ξ)

(
ϕ(ξ2)

0

)
= H(ξ) (6.36)

where

Λi(λ, ξ) =
1

vβ(m+ −m−)

[
Φ+

∣∣Φ−

] ∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T w(η − ξi)

|U ′(ξ1)|
dη

H(ξ) =
1

vβ(m+ −m−)

[
Φ+

∣∣Φ−

] ∫ ∞

ξ

[
Ψ+

∣∣Ψ−

]T
f(η) dη.

Elements of Λi and H are finite sums of terms of the forms
∫ ∞

ξ

e

“

λ+m±
v

”

(ξ−η)
w(η − ξi)dη,

∫ ∞

ξ

e

“

λ+m±
v

”

(ξ−η)
fi(η)dη.

Using the Hölder inequality, it is straightforward to show that these terms,
and hence Λi and H, are bounded for all ξ ∈ R and for all fi ∈ C0(R,C).
Now we must determine the conditions under which equation (6.36) has a
unique solution. Since the solution z(ξ) is determined completely by the
restrictions z(ξ1) and z(ξ2), we obtain the following finite dimensional system
by substituting ξ = ξ1, ξ2 into (6.36).

(
I − ∆(λ)

)(
ϕ(ξ1)
ϕ(ξ2)

)
=

(
H1(ξ1)
H1(ξ2)

)
,

where H = (H1,H2)
T , Λ̄i(λ, ξ) = ( 1 0 ) Λi(λ, ξ) ( 1 0 )T , and

∆(λ, ξ1, ξ2) =

(
Λ̄1(λ, ξ1) Λ̄2(λ, ξ1)

Λ̄1(λ, ξ2) Λ̄2(λ, ξ2)

)
.

This system has a unique solution if and only if det(I−∆(λ)) 6= 0, resulting in
a bounded inverse defined on all of C0(R,C)×C0(R,C). All such λ are elements
of the resolvent set. Conversely, we cannot invert the operator for λ such that

det
(
I − ∆(λ, ξ1, ξ2)

)
= 0,

in which case there exists nontrivial solutions to

(L + Ns − λ)z = 0

and λ is an element of the point spectrum. Consequently, the function

E(λ, ξ1, ξ2) = det
(
I − ∆(λ, ξ1, ξ2)

)
, Re(λ) > −m− (6.37)

identifies eigenvalues with its zero set, indicating that E is an Evans function
on the set for which Re(λ) > −m−. Analogously, an Evans function can be
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defined for Re(λ) < −m+; however, we do not pursue the explicit construction
as it does not reflect an instability of the stimulus-locked wave.

Continuous Spectrum. Using arguments similar to the case of the scalar
equation, it can be shown that the operator Ns : C1(R,C) × C1(R,C) −→
C0(R,C)×C0(R,C) is compact. Again this implies that the essential spectrum
of L + Ns is identical to that of L. In the case of the vector operator L,
the continuous spectrum is the union of the disjoint sets of λ = −m± + ivρ
where ρ ∈ R. To see this, assume such λ and consider the sequence of functions
φ±

n ∈ C1(R,C)×C1(R,C), where n is a positive integer, Y± are the eigenvectors
of the matrix A, defined in (6.32), corresponding to the eigenvalues m±, and

φ±
n(ξ) = eiρξ

(
1 − e−

ξ2

2n2

)
Y±.

Y± are normalized so that
∥∥φ±

n

∥∥
∞

= 1 for all n; however,

∥∥∥Lφ±

n

∥∥∥ =
v

n2

∥∥∥ξe−
ξ2

2n2

∥∥∥−→ 0, as n −→ ∞.

Hence, (L−λ)−1 is unbounded, and λ lies in the continuous spectrum of L+Ns.

Residual Spectrum. To complete the characterization of the spectrum, we
demonstrate that the set {λ ∈ C : Re(λ) ∈ (−m+,−m−)} defines the residual
spectrum of L + Ns. We must show that for such λ there exists a bounded
inverse whose domain is not dense in C0(R,C)×C0(R,C). Consider our previous
construction of the inverse (L + Ns − λ)−1. Since we need only calculate the
residual spectrum of L, we integrate (6.35) over [c, d], neglecting Ns, to obtain

(
ā(d)
b̄(d)

)
−
(
ā(c)
b̄(c)

)
= − 1

vβ(m+ −m−)

∫ d

c

[
Ψ+

∣∣Ψ−

]T
f(η)dη.

There are only two cases to consider. First, taking c = ξ and d = ∞, we
examine the integral term of z(ξ), components of which have the form

∫ ∞

ξ

e

“

λ+m±
v

”

(ξ−η)
[
(1 −m∓)f1(η) + βf2(η)

]
dη.

Since λ+m− < 0 and v > 0, all components are bounded, and hence L+Ns−λ
is bounded only if f either decays sufficiently fast such that

∫ ∞

ξ

e

“

λ+m+
v

”

(ξ−η)
[
(1 −m−)f1(η) + βf2(η)

]
dη <∞, ξ ∈ R
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or satisfies (1 −m−)f1(η) + βf2(η) = 0 for all η. Similarly, for c = −∞ and
d = ξ, we must require that

∫ ξ

−∞

e

“

λ+m−
v

”

(ξ−η)
[
(1 −m+)f1(η) + βf2(η)

]
dη <∞, ξ ∈ R.

or (1 −m+)f1(η) + βf2(η) = 0 for all η. Since the union of all such f is not
dense in C0(R,C)× C0(R,C), we conclude that λ lies in the residual spectrum.

6.3.2 Evans Function for Stimulus-Locked
Traveling Pulses

The following gives the explicit construction of the Evans function for stimulus-
locked pulses in the case of a Gaussian input, Heavside firing rate function, and
exponential weight distribution and includes natural pulses (I0 = 0). After a
lengthy calculation,

E(λ, ξ1, ξ2) = det
(
I − ∆(λ, ξ1, ξ2)

)
, Re(λ) > −m−

=

(
1 − Θ+(λ)∣∣U ′(ξ1)

∣∣

)(
1 − Θ+(λ)∣∣U ′(ξ2)

∣∣

)
− Θ+(λ)Γ(λ)∣∣U ′(ξ1)U

′(ξ2)
∣∣e

(ξ1−ξ2), (6.38)

where

Γ±(λ) =
(1 −m∓)v

(m+ −m−)(v2 − (λ+m±)2)

Θ±(λ) =
1

2(m+ −m−)

(
1 −m−

λ+m+ ± v
− 1 −m+

λ+m− ± v

)
(6.39)

Γ(λ) = Θ−(λ)e(ξ1−ξ2) + Γ+(λ)e

“

λ+m+
v

”

(ξ1−ξ2) − Γ−(λ)e

“

λ+m−
v

”

(ξ1−ξ2)

Since the zero set of the Evans function (6.38) comprises solutions of a tran-
cendental equation, we solve for the eigenvalues numerically by finding the
intersection points of the zero sets of the real and complex parts of the Evans
function. This leads to the stability results shown in Figure 6.3, namely,
that pulses within the right-hand tongue are stable whereas pulses within the
left-hand tongue are only stable if they lie inside the region enclosed by the
Hopf bifurcation curve. An example of a zero set construction is shown in
Figure 6.4 for fixed I0 and various values of v. From these graphs we see that,
as the speed of the input varies, a pair of complex eigenvalues traverses the
imaginary axis twice, ultimately becoming a pair of real eigenvalues.
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(a) v = 0.0 (b) v = 0.05 (c) v = 0.1 (d) v = 0.1175

Figure 6.4. Graphs of the zero sets of the real (dark curves) and imaginary

(light curves) parts of the Evans functions for I0 = 2.0 and a sequence of

stimulus speeds v; intersection points indicate eigenvalues. The vertical shaded

region Re(λ) ≤ −m− indicates the essential spectrum, and the vertical gray line

indicates the imaginary axis. This sequence of plots indicates that two Hopf

bifurcation points occur, defining the boundary of the stable region within the

left tongue depicted in Figure 6.3. (a) is associated with the existence of a

stable stationary breather, (b) with a stable traveling pulse, and (c,d) with a

traveling emitter. See section 6.3.3 for more details.

Linear stability of the traveling pulse solution is characterized by all eigen-
values of the linearized operator having negative real part, with the possible
exception that λ = 0 is a simple eigenvalue. Moreover, Hopf bifurcations may
be identified by a pair of complex eigenvalues crossing the imaginary axis from
the left-half plane. The sequence of plots in Figure 6.4 indicates how we arrive
at the Hopf bifurcation curve in Figure 6.3. It has been found in many infinite-
dimensional dynamical systems, for example, semilinear parabolic equations,
that the criteria for a Hopf bifurcation carry over from ordinary differential
equations. Although smoothness properties of the flow are required for its proof
using invariant manifold theory, the result essentially relies on the behavior
of eigenvalues of the linearized operator [71]. We shall assume this and use
numerical simulations to explore the behavior of the model near and beyond
these bifurcation points.
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(a) (b)

Figure 6.5. Instability of the stimulus-locked traveling pulse in the presence

of two complex conjugate eigenvalues with positive real part for I0 = 1.0,

v = 0.07, σ = 1, κ = 0.3, ǫ = 0.03, and β = 2.5. In this case the bifurcation

appears subcritical with the absence of a sharp jump to a stable breathing pulse.

Instead, instability manifests itself as a periodic cycling of an initial phase of

periodically-modulated growth of the active region, followed ultimately by the

shedding of a natural traveling pulse. (a) Space–time plot showing one cycle

of the instability, where the vertical axis represents time and the horizontal

axis represents space. (b) Graph of the corresponding zero set of the Evans

function. The periodic process of shedding or emitting natural traveling pulses

becomes more rapid as the real part of the eigenvalue increases.
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6.3.3 Numerical Simulations

In this section we explore the behavior of the vector system (6.1) in all regions
of the (v, I0)-plane shown in Figure 6.3. In particular we describe the various
types of solutions that emerge beyond the Hopf bifurcation curve, as well as
beyond the existence tongues.

For parameter values supporting natural traveling pulses, and in the ab-
sence of an input (I0 = 0), an initial, sufficiently large, local displacement
of the activity u from rest induces a locally excited region of activity, which
rapidly develops into a pair of diverging natural traveling pulses, as in the
reaction-diffusion analogue. Similarly, for parameter values supporting stable
stimulus-locked pulses in the presence of an input (I0 > 0), an initial displace-
ment of u near the input (or no initial displacement in the case of sufficiently
large input strength I0) rapidly approaches the stable traveling pulse. For
certain speeds v the initial transient can generate an additional single or pair of
traveling waves that propagate away from the input. As expected the speed and
width of the stimulus-locked traveling pulse closely match that of the theory.

Interestingly, for the parameter values in Figure 6.3, numerical simulations
suggest that the left branch of the Hopf curve (gray) corresponds to a supercrit-
ical bifurcation, while the right branch is subcritical without a sharp transition
to a breathing pulse. We first characterize the nature of solutions obtained
by crossing the subcritical branch of the Hopf curve. We find a region of
activity moving with the input whose right boundary oscillates with increasing
amplitude. After a critical point, the system emits a natural traveling pulse,
whose speed is faster than that of the input, as shown in Figure 6.5. The region
between the one excited by the input and the new natural pulse recovers, and
the process repeats periodically. We refer to such solutions as pulse-emitters.
The smaller the real-part of the eigenvalue, the slower the instability grows
and the more time is required for the wave to be emitted. As v is increased,
the real part of the eigenvalue grows and the number of oscillations occurring
before the shedding of natural waves decreases, until the eigenvalues become
real, as illustrated in the Figure sequence 6.4(b-d), and the pulse rapidly emits
natural pulses. This unstable behavior continues until v is increased to the
boundary of the right-hand tongue where there is a smooth transition to a
stable stimulus-locked pulse.

When the left–hand supercritical branch of the Hopf curve is crossed by
reducing I0 or v, we find a smooth transition to a stimulus–locked traveling
breather. In the special case of a stationary stimulus (v = 0), reducing I0 gener-
ates a stationary breather as we have shown previously [12, 33]. The breathing
solutions continue to persist in a subregion of the (v, I0)-plane bounded to
the right by the left (supercritical) branch of the Hopf curve in 6.3. As one
moves in this subregion away from the left Hopf branch, the amplitude of
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(a) v = 0.01 (b) v = 0.014 (c) v = 0.03

Figure 6.6. Sequence of spacetime plots for fixed input I0 = 1.5, illustrating

the transition from pulse-emitter, to breather, to stimulus–locked pulse as v

increases through the supercritical branch of the Hopf curve shown in 6.3.

Other parameters are ǫ = 0.03, κ = 0.3, β = 2.5, σ = 1.

the oscillations grows. After some point, the breathing solution disappears
and a new type of temporally periodic solution appears, each cycle of which
is characterized by one or more breathing pulse oscillations followed by the
emission of a pair of natural waves, possibly intermixed with interludes of
subthreshold behavior. The transition from breathing pulse to emitting pulse
may be due to a subcritical period-doubling bifurcation, a possible candidate
for the transition to pulse-emitter in the case of a stationary input; see section
4.2. An example of such a transition is illustrated in Figure 6.6. This type
of pulse-emitting solution appears to be part of a family of related responses
of the system to a localized input, occuring whenever the associated traveling
pulse (or breather) is either unstable or nonexistent. This includes the emitters
found within the region between the subcritical Hopf curve and the stable right
tongue shown in Figure 6.3, and, consequently, there is a smooth transition of
behaviors joining the two regions, as shown in Figure 6.7. Analogous to the
case of a stationary input, more complicated mode–locking phenomena is also
observed.
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(a) v = 0.04 (b) v = 0.05 (c) v = 0.07

Figure 6.7. Transitions between various pulse-emitting solutions for fixed

I0 = 0.9 as v is increased. These solutions exist within and adjacent to the

unstable part of the left–hand tongue of Figure 6.3, sufficiently below the Hopf

curve that stable breathers no longer exist. Other parameters are ǫ = 0.03,

κ = 0.3, β = 2.5, σ = 1.

6.4 Discussion

In this chapter we have shown how to extend the analysis of the existence
and stability of pulses arising from a stationary stimulus input to that of a
input moving with constant speed. We described the continuation from the
unstable/stable pair of natural pulses by constructing a corresponding pair
of existence tongues emerging from the natural pulses at I0 = 0, with the
left-hand tongue including stationary pulses at v = 0, for a particular choice
of parameter values supporting natural pulses. We have extended Zhang’s
analysis of stability of natural pulses to that of stimulus-locked pulses and
numerically evaluated the Evans function to determine eigenvalues away from
the singular limit ǫ→ 0. This allowed us to analyze the stability of the existence
tongues in the (v, I0)-plane and show the continuation of the Hopf bifurcation
found for stationary pulses. Numerically this Hopf curve was found to have
a supercritical branch, from which breathing pulses emerge and a subcritical
branch from which no breathing pulse emerges. In general for parameter values
that do not support either stimulus-locked pulses or breathers, the system
generates more complicated unstable behavior including the emission of natural
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traveling pulses, when such waves exist.
It would be interesting to contrast the type of local inhibition analyzed

herein, primarily due to intrinsic neuronal properties, with that of nonlocal
inhibition, arising from the ubiquitous inhibitory populations of neurons found
in cortex. From previous work [1, 81], we know that the two-population,
excitatory-inhibitory system supports stable stationary pulses which, moreover,
can undergo a subcritical Hopf bifurcation. In this case no breathing pulse
emerges. However, it is likely that the presence of a localized input is capable
of stabilizing such a breathing pulse solution. In addition it would be interesting
to provide a more thorough analysis of the scalar model considered by Xie &
Giese [111].

As mentioned at the end of Chapter 4, persistent currents tend to destroy
neurons. It may be possible test our predictions regarding moving stimuli in
cortical slice preparations, since a moving stimulus would only expose a neuron
to a sustained current for a short interval of time. Of course, constructing such a
stimulus does, in fact, presents a serious experimental challenge. Nevertheless,
more comparisons between models and experiments need to occur in order to
gain confidence in the relevance of these equations to neural tissue. The use
of electric fields to control wave propagation speed by Schiff et al. [87] and its
agreement with the firing rate model make a hopeful beginning.





CHAPTER 7

FUTURE DIRECTIONS

There are many biological and mathematical directions that may be pursued
from this point. One can apply the techniques in this dissertation to many
different neural network firing rate models. The effect of inhomogeneous inputs
in these equations is important, considering that inputs are the primary mode
of neural communication. Since the thalamus receives a multitude of inputs, a
primary example is a firing rate model of thalamic tissue, which was recently
developed by Coombes [18]. The excitatory-inhibitory network is, perhaps,
the most natural subsequent model to study. One approach is to use the
simplifications on the neuronal firing rates that were proposed by Pinto and
Ermentrout [81] (described in Chapter 1), or instead one could assume different
firing rates, not necessarily neglecting the inhibition-inhibition interactions. It
would be interesting to examine the differences in existence and stability that
local and nonlocal inhibition generate and how these differences are reflected
by the firing rate functions.

Since nonlocal inhibition can support stable stationary pulses, one would
assume that stationary pulses will also be stable for weak inputs. How then
does the system behave for stronger inputs? Moreover, in the case of slow
nonlocal inhibition, Pinto and Ermentrout [81] show that the stationary pulse
loses stability via a subcritical Hopf bifurcation. We expect this case to be
similar to the case of local inhibition, that strong inputs will generate stable
pulses whereas weak inputs should give rise to breathers. In this case do
breathers persist over a larger interval than in the excitatory case or does a
similar secondary bifurcation occur? One primary difference between local and
nonlocal inhibition is that nonlocal inhibition tends to preclude the existence
of traveling waves. Thus if there is a secondary bifurcation similar to that for
local inhibition, emitted traveling waves will either fail to propagate, in the
case of weak inhibition or emission will not occur. Since the input still forces
the system, breathers will still persist. However their breathings will be more
irregular, as in Figure 4.8, without the emission of waves. This is the case
in the excitatory model for parameter values for which the network does not
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support natural waves. Furthermore, how does the tongue diagram in Figure
3.5 change when nonlocal inhibition is included? Another avenue to pursue is
the existence of breathers in the case of smooth firing rates using numerical
simulations. The results for the Heaviside function will serve as a guide for
where breathers should exist. This will provide another aspect to compare
and contrast the effects of different firing rates. Ultimately, it could prove
interesting to study the Hopf bifurcation for smooth firing rates using singular
perturbation theory.

As mentioned earlier, breathers may have an important application in the
binding problem. Binding is the ability of neuronal populations to reconnect
correlated sensory information, which has been fragmented into rudimentary
components during the first stages of sensory processing. For example a solid
object stimulates a group of neurons in the primary visual cortex, with each
neuron responding to a small portion of the object. Interestingly, it has
been found that neurons that are responding to the same stimulus exhibit
the same modulation in their firing rates [41, 95]. Since visual inputs into
the cortex are relatively weak, the network could operate in the regime where
breathers exist. Consequently, breathers may interact with each other and
synchronize their oscillations. Of course, a connected visual stimulus would
create a connected region of input in the visual cortex. However, to approach
this problem, we begin with two breathers, which are separated by some
distance, and determine whether they synchronize. The relevant networks
consist of excitatory and inhibitory neurons, so this would rely and build upon
the analysis of the excitatory-inhibitory model. In experiments it is found
that the largest fluctuation occurs near the maximal input. However, in the
excitatory case, as well as the excitatory-inhibitory simulations of Wilson and
Cowan [109], the largest fluctuation is near the steepest gradient of the input.
This may be due to the fact that the activity u is not necessarily the same
as the firing rate f(u). Although the Heaviside function cannot make the
distinction, it may be clarified by the numerical simulations with smooth firing
rates. The breather may operate in different regimes of the firing rate function;
in particular the point of maximal modulation may depend on whether the
breather is operating in the linear part or saturating part of the sigmoidal
function.

One challenging problem is to decide how to represent the breather. Even
with the Heaviside firing rate function, the breather is very difficult to compute
exactly, and, if it were possible, it would be difficult to analyze the interactions
between two such breathers. One can try to develop a phase-type model,
treating the breathers, in some sense, as coupled oscillators. In any case, this
is where the crux of the problem lies, and numerical simulations can always be
performed with the possibility of gaining insight into how best to approach the
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problem analytically.
Another problem would be to develop a more thorough analysis of the

direction-selective model considered by Xie and Giese [111]. The model is a
scalar equation with a Mexican hat weight function that is skewed off center
to induce direction selectivity. Rather than supporting stationary pulses in the
case of Amari [1], this system has the ability, if inhibition is not too strong,
to produce natural traveling waves. In any case the system supports stable
stimulus-locked pulses in some region in (v, I) parameter space. When the
velocity of the input is sufficiently varied from the center of this region, the
pulse becomes unstable via a Hopf bifurcation, though Xie and Giese do not
properly describe the behavior of the eigenvalues. In preliminary numerical
simulations, we find that the bifurcation is subcritical, with a sharp transition
to lurching waves. The wave has a pulse shape that periodically sweeps forth
and pauses in a lurching fashion. Interestingly, when the strength of inhibition
decreases, the lurching wave smoothly develops into a pulse-emitting solution,
where intermediate solutions emit waves that fail to propagate after some
distance. This indicates the effect of nonlocal inhibition and the relationship
between lurching waves and pulse-emitters in this model. Moreover, there may
be a connection to the lurching waves of thalamic tissue, which are associated
with integrate-and-fire models [37, 38]. This connection may be studied by
comparing the integrate-and-fire model with a corresponding firing rate model
of thalamic tissue [18].

Directly related to this dissertation is the extension of the numerical sim-
ulations to polar grids for the Mexican hat network in Chapter 5. It is clear
that the rectangular grid is playing some role in selecting modes with which
it is commensurate. Moreover, while it seems reasonable that the odd modes
may form the swimmer-like patterns, it also seems possible that the swimming
motion is a result of favored propagation due to a combination of the grid and
the odd number of lobes. The polar grid is more computationally expensive.
However the results should clear up these fundamental questions.





APPENDIX A

PARAMETERS FOR THE BIOPHYSICAL

MODEL

Vsyn = −45 mV, gsyn = 20 mS/cm2,

VK = −100 mV, gK = 80 mS/cm
2
,

VNa = 50 mV, gNa = 100 mS/cm
2
,

VL = −67 mV, gL = 0.2 mS/cm2,

F = 1µF/cm
2
, gq = 3 mS/cm

2

αm(v) = 0.32(54 + v)/(1 − exp(−(v + 54)/4)),

βm(v) = 0.28(v + 27)/(exp((v + 27)/5)− 1),

αh(v) = 0.128 exp(−(50 + v)/18),

βh(v) = 4/(1 + exp(−(v + 27)/5)),

αn(v) = 0.032(v + 52)/(1 − exp(−(v + 52)/5)),

βn(v) = 0.5 exp(−(57 + v)/40).

where

p∞(v) =
αp(v)

αp(v) + βp(v)
, τp(v) =

1

αp(v) + βp(v)
, p ∈ {m,n, h},

q∞(v) =
1

1 + e(−(v+35)/20)
, τq(v) =

1000

3.3e(v+35)/20 + e−(v+35)/20

τ = 1, K(V ) =
1

1 + e−(V +50)
,



APPENDIX B

AMARI’S ANALYSIS

B.1 Stationary Pulses with Nonlocal
Inhibition

We describe the conditions of existence and stability of a stationary pulse
in a simplified model considered by Amari [1] and comment on an additional
stability result from Pinto and Ermentrout [81].

Recall the one-dimensional excitatory–inhibitory firing rate model

τe
∂ue

∂t
= −ue + wee ∗ Fee(ue) − wei ∗ Fei(ui), (B.1)

τi
∂ui

∂t
= −ui + wie ∗ Fie(ue) − wii ∗ Fii(ui). (B.2)

Pinto and Ermentrout arrive at Amari’s case of lateral inhibition by the fol-
lowing assumptions. For simplicity, neglect the self-inhibition of the inhibitory
population, or recurrent inhibition, i.e., wii = 0. As the firing rate function
has a sigmoidal shape, we take Fee(u) = Fie(u) = H(u − θ) where H is the
Heaviside function and θ is a threshold for firing. This means a cell either fires
at a constant rate or is quiescent, depending on the amount of synaptic current
entering the cell. For the inhibitory population, however, there is experimental
evidence suggesting that Fie(u) = u is a good approximation [81, 73]. Moreover,
we assume that the synaptic strength is purely a function of distance, i.e.
wmn(x, y) = wmn(x − y), where the functions wmn are bounded, nonnegative,

even, continuous functions normalized such that
∫ +∞

−∞ wmn(z)dz = 1.

Under these assumptions, we consider the system in steady-state

Ue(x) =

∫ ∞

−∞

wee(x − y)H(Ue(y) − θ)dy −
∫ ∞

−∞

wei(x − y)Ui(y)dy, (B.3)

Ui(x) =

∫ ∞

−∞

wie(x − y)H(Ue(y) − θ)dy. (B.4)
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Substituting (B.4) into (B.3), we obtain

Ue(x) =

∫ ∞

−∞

(
wee(x− y) −

∫ ∞

−∞

wei(x − z)wie(z − y)dz

)
H(Ue(y) − θ)dy.

(B.5)
Let us define the object in parentheses as

w = wee − wei ∗ wie. (B.6)

In most cases w is a Mexican hat function the archetype of which is a difference
of two Gaussian functions. This brings us to the scalar equation with a Mexican
hat that Amari’s [1] studied

τ
∂ue

∂t
(x, t) = −ue(x, t) +

∫

R

w(x− y)K(ue(y, t) − θ)dy,

which can be obtained from (B.2) by assuming that inhibition acts instanta-
neously. Amari considers the existence and stability (not shown) of a standing
pulse, i.e., a function ue, such that Ue(x) > θ on (a, b) and Ue(x) < θ otherwise,
satisfying

Ue(x) =

∫ ∞

−∞

w(x − y)H(Ue(y) − θ)dy, (B.7)

where w is a smooth, integrable function with the following properties [1, 107]:

1. w(0) > 0, w′(0) = 0,

2. there exist zm such that

w(zm) < 0, w′(zm) = 0,

w′(z) < 0 for z ∈ (0, zm), (Mexican hat function)

w′(z) > 0 for z ∈ (zm,∞),

3. lim
x−→∞

w(z) = 0.

Under the above assumptions, Amari found four different classes of solutions
characterized by their threshold properties: 0-solutions in which u < θ for all
x, ∞-solutions in which u > θ for all x, a-solutions in which the medium is
above threshold only over an interval (−a, a), and (a, p)-solutions which are
p-periodic solutions with an excited region of length a. It should be noted
that, due to the translational invariance of the synaptic weight function, any
a-solution can be shifted to be centered at the origin.



152

The following quantities determine the asymptotic behavior of the system:

W (x) =

∫ x

0

w(y)dy, wp =

∞∑

n=−∞

w(x+ np), (B.8)

Wm = max
x∈[0,∞)

W (x), (B.9)

W∞ = lim
x→∞

W (x), Wp(x) =

∫ x

0

wp(y)dy. (B.10)

The a-solutions satisfy W (2a) − θ = 0 and are stable if and only if w(2a) < 0;
the infinite family of periodic solutions (a, p) must satisfy Wp(2a) − θ = 0 and
are stable if and only if wp(2a) < 0. Let {0, a1, a2,∞} denote the existence
of the 0-solution, two different a-solutions, and the ∞-solutions, respectively.
The existence of solution types is listed for the following parameter regimes:

(i) Wm < 2W∞

θ ∈ (2W∞,∞)  {0}
θ ∈ (Wm, 2W∞)  {0,∞}
θ ∈ (W∞,Wm)  {0, a1, a2,∞}
θ ∈ (0,W∞)  {0, a,∞}
θ ∈ (−∞, 0)  {∞}

(ii) 0 < 2W∞ < Wm

θ ∈ (Wm,∞)  {0}
θ ∈ (2W∞,Wm)  {0, a1, a2}
θ ∈ (W∞, 2W∞)  {0, a1, a2,∞}
θ ∈ (0,W∞)  {0, a,∞}
θ ∈ (−∞, 0)  {∞}

(iii) W∞ < 0

θ ∈ (Wm,∞)  {0}
θ ∈ (0,Wm)  {0, a1, a2}
θ ∈ (2W∞, 0)  {(a, p)}
θ ∈ (−∞, 2W∞)  {∞}

Spatially uniform solutions, whenever they exist, are stable. When a pair of
a-solutions exist, the wider is stable and the narrower is unstable, whereas,a
solitary a-solution is always unstable. In this latter case, the a-solution acts
as a separatrix dividing the flow towards the 0-solution and the ∞-solution:
therefore, initial data lying above this unstable pulse will converge to a trav-
eling pulse whose front and back propagate in opposite directions, leaving the
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medium excited. In the case of a pair of a-solutions, inital data lying above the
narrower, unstable pulse will converge to the wider, stable pulse [1, 23]. The
stability was determined by analyzing the movement of the endpoints of the
pulse and its dependence on the function W .

Pinto and Ermentrout [81] performed a linear stability analysis on the
original system (B.1)-(B.2), linearizing about the stationary pulse solutions and
examining the dependence of the resulting eigenvalues on the time constant of
inhibition, τ = τi

τe
. The conditions for stability of the stationary pulse are

w(0) + w(2a)

|w(0) − w(2a)| < 1, (Amari′s condition) (B.11)

wee(0) + wee(2a)

w(0) − w(2a)
<

(
1 +

1

τ

)
. (B.12)

If the latter is not satisfied, stability is lost by a pair of complex eigenvalues
crossing the imaginary axis. It was found numerically that the Hopf bifurcation
appears to be subcritical without a sharp transition to periodic solutions.

B.2 Traveling Pulses with Local Inhibition
Amari also considered the following Wilson-Cowan type model, neglecting

recurrent inhibition

τ
∂ue

∂t
= −ue + wee ∗ Fee(ue) − wei ∗ Fei(ui), (B.13)

τ
∂ui

∂t
= −ui + w̄ieFie(ue), (B.14)

where wee, wei are bounded, positive, even, continuous functions decreasing on
(0,∞), and w̄ie is a constant, representing local inhibition [1]. Notice that here
excitatory neurons at x excite inhibitory neurons solely at the point x. Taking
the firing rates to be Heaviside functions with thresholds, we obtain

τ
∂ue

∂t
= −ue + wee ∗He(ue) − wei ∗Hi(ui), (B.15)

τ
∂ui

∂t
= −ui + w̄ieHe(ue), (B.16)

where

He(u) = H(u− θe) Hi(u) = H(u− θi).
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Assuming the excited region is (0, a) in the excitatory population and
(b1, b2) in the inhibitory population, we seek traveling wave solutions ue(x, t) =
Ue(x − ct) and ui(x, t) = Ui(x− ct) satisfying

−τcdUe

dη
= −Ue + wee ∗He(Ue) − wei ∗Hi(Ui), (B.17)

−τcdUi

dη
= −Ui + w̄ieH(Ue), (B.18)

such that
lim

η→±∞
Ue(η) = 0, lim

η→±∞
Ui(η) = 0.

We can solve (B.18) independently to find the inhibitory activity pulse profile

Ui(η) =





0, a < η,

w̄ie(1 − e(η−a)/cτ ), 0 ≤ η ≤ a,

w̄ie(1 − e−a/cτ )eη/cτ , η ≤ 0,

(B.19)

thereby determining the values b1, b2 to be

b1 = cτ ln

(
θi

(1 − e−a/τ )w̄ie

)
, (B.20)

b2 = a+ cτ ln

(
1 − θi

w̄ie

)
. (B.21)

Applying the boundary conditions, the excitatory activity pulse profile is

Ue(η) =
1

cτ

∫ ∞

η

e
η−η̂
cτ W̆ (η)dη, (B.22)

where

W̆ (η) =

∫ a

0

wee(η − η̂)dη̂ −
∫ b2

b1

wei(η − η̂)dη̂.

Since ue(0) = θe and ue(a) = θe, the conditions for existance of a and c are
∫ ∞

0

e
η

cτ W̆ (η)dη = cτθe, (B.23)

∫ ∞

0

e−
η

cτ W̆ (η + a)dη = cτθe. (B.24)

On an interesting note, in this model with Heaviside firing rates, as well
as the piecewise-constant Fitzhugh-Nagumo model [88], traveling waves exist
without the need for a large difference in time constants of the two variables.
However, the continuous versions of the same models require a substantial dif-
ference in time constants for the existance of traveling wave solutions, indicating
that the piecewise constant models is a special case [88, 24].
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