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ABSTRACT

Coronary artery occlusion leading to ischemic cardiac tissue is the first step in

a cascade of events leading of cardiac fibrillation and death. Coupled cell and strip

of tissue experiments have been designed to understand the electrotonic effects of

ischemic tissue on normal tissue across the border zone.

We use coupled ordinary differential equations to model an ischemic (depo-

larized) cell coupled to a normal cell for various coupling strengths, masses of the

regions, and degrees and ischemia. For three model ionics, reduced Hodgkin-Huxley,

Modified McKean, and Luo-Rudy I, we use bifurcation theory to find the boundary

between oscillatory and nonoscillatory solutions in parameter space. For certain

regions in parameter space each set of ionics yields oscillations in the coupled cell

model. There are degrees of ischemia for which the ischemic cell is stable and

inexcitable when uncoupled, but when coupled to a normal, excitable cell with

certain strengths and cell sizes the cells oscillate. For the size of a normal cell

sufficiently smaller than an ischemic cell, we state a general principle that relates

the oscillation of a single cell under forcing to oscillations of the coupled system.

We model a strip of tissue, part of which is subjected to an ischemic solution, as

a one-dimensional partial differential equation with the Modified McKean nonlin-

earity. The coupling coefficient and degree of ischemia are possibly discontinuous

in space. We prove existence and uniqueness of the steady state solution using a

phase plane argument and super and subsolution techniques. We perform linear

stability analysis and find a Sturm-Liouville eigenvalue problem whose eigenvalues

yield conditions on stability of the steady state solution. These conditions lead to

regions in parameter space for which the model admits oscillatory solutions. Several

qualitative features of experiments are reproduced.
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CHAPTER 1

INTRODUCTION

1.1 Acute Ischemia in Cardiac Tissue

Cardiac tissue is maintained through a complex network of coronary arteries

distributed across the surface of the heart. Occlusion or blockage of a branch within

this arterial network causes blood flow down stream to cease. The deprivation

of blood flow to a region of tissue causes loss of nutrients, such as glucose, loss

of oxygen and the accumulation of waste products. This combination of effects

is termed ischemia. With the loss of homeostasis due to ischemia, a cascade of

biochemical processes occurs in the ischemic myocardium. Many of these processes

negatively affect the electrical conduction system, which the heart uses to organize

rhythmic pumping.

The size of the region of myocardium subjected to ischemic insult depends upon

how distal the occlusion is in the branching network of coronary arteries from the

origin of the coronary artery network. If the occlusion occurs proximal to the origin

of the coronary artery network, prior to significant branching, a large portion of

heart muscle is affected upon occlusion. On the other hand, if the blockage is much

farther down the arterial tree, say near the capillary level, possibly only a few cells

are affected.

The central area of an ischemic region is the most affected. Tissue in the

periphery of an ischemic region receives some level of collateral blood flow from

the surrounding normally perfused myocardium. This periphery between highly

ischemic and normal tissue where a gradient of ischemia exists was first identified

by Harris and Rojas [10] as the “Border Zone.” The portion of the border zone

on the surface of the heart is the epicardial border zone, but the border zone
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extends endocardially into ventricular tissue through the midmyocardium and even

the endocardium.

It is well established [12] [2] [3] that an important biochemical effect of ischemia

is the increase of extracellular potassium (K+
0 ). K+

0 rises in a triphasic manner

[3] (see Figure 1.1 (a)) and leads to elevated (less depolarized) transmembrane

potentials. Additionally, coupling between cells via gap junctions begins to decrease

with the rise of intercellular proteins [1] (see Figure 1.1 (b)) such as lysophos-

phatidylcholine [5] and long chain acylcarnitine [35] as well as with the increase of

both intercellular and extracellular pH [4].

While the ischemic region is coupled to the normal tissue with normal resting

membrane potential, there is a difference in transmembrane potentials across gap

junctions. This difference induces an “injury current” across the border between

ischemic and nonischemic tissue. The injury current exists throughout the border

zone where there is a gradient of injury. Since cardiac tissue, as an excitable

medium, can be forced by external currents, an injury current may be sufficient to

create ectopic foci originating at the border zone.

1.2 Experiments on Coupled Cells Involving

Ischemia

High extracellular potassium and uncoupling of gap junctions in a given mass

of tissue are important manifestations of acute cardiac ischemia. Tan and Joyner

[31] developed a technique that coupled a single cardiac cell with variable resistance

to a computer model cell. This design allowed the administration of chemicals to

the cardiac cell and/or the mathematical adjustment of the model cell. Variable

resistance between the cardiac cell and the model cell was interpreted as intercel-

lular gap junction communication strength. The following describes experiments

designed in the framework mentioned above to study the effects of individual and

combined aspects of ischemia on coupled cells.

Tan and Joyner [32] coupled a real ventricular cell (VC) to a passive model

cell with a depolarized resting membrane potential (RMP) (-20mV, -10mV, 0mV).
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(a)

Figure 1.1: Time courses from experiments describing aspects of is-
chemia. (a) A time course of the relative change in tissue resistance in
ischemic myocardium from Beardslee et al. [1]. (b) A time course of K+

0

and pH in ischemic myocardium from Casio et al. [3].



4

(b)

Figure 1.1 continued
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The depolarized RMP mimicked the effect of increased extracellular potassium on

a cardiac cell. The coupling conductance was varied (0nS, 3nS, 5nS). No sponta-

neous repetitive change in transmembrane potential (also termed automaticity) was

observed. Kumar and Joyner [16] later reconfirmed this result with a depolarized

model cell RMP of 0mV coupled to a VC, but noted that with the application of

certain drugs, isoproterenol (synthetic catecholamine which acts to stimulate β1 and

β2 adrenergic receptors), froskolin and 8-bromo-cyclic adenosine monophosphate

(which act to raise cAMP levels), and Bay K 8644 (slow Ca2+ channel agonist) to

the VC, early after depolarizations (EADs) were observed. EADs could be produced

within the VC only in the presence of these drugs while also being connected to the

depolarized model cell. The change of the VC with these drugs, which primarily

affect the calcium handling, altered the dynamics to allow for automaticity induced

by the injury current.

Wagner et al. [34], extending the work of Kumar et al. [17], coupled a model

sinoatrial node (SAN) cell, which was self-oscillatory, to a real VC bathed in either

a normal solution or an ischemic solution. Wagner et al. found that the SAN

could not drive the VC under any conductance if the effective size of the SAN was

not sufficiently large. For large enough SAN there were two critical conductances

between which enough current was produced to force the VC into oscillations.

Figure 1.2 shows the regions in the parameters conductance versus size of SAN in

which the SAN paces but does not drive the VC (PND), the SAN paces and drives

the VC (PD), and the SAN does not pace (NP). The ischemic solution applied

to the VC increased each critical conductance by about 50%. The relative size of

the ischemic region and gap junction conductance are important determinants of

automaticity.

1.3 Experiments on Strips of Cardiac Tissue

Involving Ischemia

In 1975 Katzung [13] performed a sucrose gap experiment on a strip of papillary

muscle (4.5-5mm). The strip remained electrically coupled through two rubber
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Figure 1.2: Regions of different dynamics of a coupled oscillatory model
sinoatrial node (SAN) and rabbit ventricular cell (VC) in parameter
space, conductance versus SAN size. The regions are where the SAN
paces but does not drive the VC (PND), the SAN paces and drives the
VC (PD), and the SAN does not pace (NP). This figure is from Wagner
et al. [34].

membranes in the three chambers. High levels of extracellular potassium (145mM)

were added to the first chamber and second chamber, while recordings where made

in the third chamber perfused with a normal solution. Depolarization of the RMP

was observed along with spontaneous action potentials in half of the preparations.

Automaticity was enhanced by the addition of epinephrine in the third chamber.

Kupersmith, in 1994, [18] performed a two-chamber experiment on a sheep

Purkinje fiber. Half of the fiber was treated with a Ethylenediame tetraacetic acid

(EDTA) which had the effect of prolonging the action potentials in that region. The

effect of the prolonged action potential was to allow a current to flow from the EDTA

treated region to the normal region. Transmembrane potential levels were recorded

in the EDTA treated region, 0.5mm from the membrane boundary in the normal

region, and 3-4mm into the normal region. Elevated transmembrane potential

from the plateau in the treated region caused automaticity in the normal region.

Automaticity was observed to initiate at the border between treated and untreated

regions 50% of the time, in the treated region 20% of the time, or simultaneously
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at the border and the treated region 30% of the time.

Little has been done to model the border zone phenomenon, but Muller-Borer

in 1995 [24] performed simulations of a string of coupled cells of varying and fixed

lengths with a gradient of K+
0 , 8mM/cm, across approximately 10mm. She used

Lou-Rudy I dynamics (see Appendix A or [20]) where K+
0 was an explicit parameter.

She also included resistive barriers in the form of high gap junctional resistance. She

compared stimulated action potential propagation when encountering a resistive

barrier while coming from a high K+
0 region into a region of low K+

0 or coming from

a low K+
0 region into a region of high K+

0 . Propagation was much more likely to

fail when the action potential was moving into a region of low K+
0 .

More recently Picard and Rouet [26, 30] performed experiments on strips of

guinea pig cardiac tissue extending Rouet’s work from 1989 [29]. Their goal was

to find pharmaceutical remedies for automaticity at the ischemic border zone by

affecting the KATP channel. They used a two-chamber setup where one chamber

was perfused with an ischemic Tyrode’s solution containing high K+
0 , low pH, no

glucose, and a decreased partial pressure of oxygen, pO2. Their control experiments

found spontaneous electrical behavior a fourth of the time. After perfusion of half

of the tissue preparation with the ischemic solution for 30 minutes, that part of the

tissue was reperfused with a normal solution. In the control, 92% of the preparations

exhibited spontaneous activity upon reperfusion.

1.4 Modeling of the Ischemic Border Zone

These experiments attempt to understand the influence ischemic tissue exerts on

normal tissue. The coupled cell experiments focus on the importance of depolarized

resting transmembrane potential in ischemic tissue and the size of ischemic tissue

in generating automaticity. The strip of tissue experiments also emphasize the

importance of elevated ischemic transmembrane potential in generating oscillations

when coupled to normal tissue. However, these experiments fall short of providing a

ubiquitous mechanism for automaticity, and previous modeling does not reproduce

automaticity observed in experiments.
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The goal of this thesis is to understand how the depolarization of the ischemic

myocardium in early ischemia while still coupled to normal myocardium generates

spontaneous electrical activity independent of the normal automaticity of the heart.

This is the generation of a so called “border zone arrhythmia.” To this end, we

develop and study a coupled cell/region model with three forms of ionics and a

one-dimensional spatial model. These models are inspired by the above mentioned

experiments.

In Chapter 2 we derive the model of coupled cells (or coupled isopotential

regions). Coupling strength, relative sizes of ischemic and normal regions, and

degree of ischemia are parameters in the model. Three forms of dynamics are

considered. Bifurcation diagrams are used to identify regions of distinct dynamic

behavior in parameter space. We state and prove a theorem that relates forcing

of a single cell or region to behavior of the coupled system, and then relate the

bifurcation results to experiments.

In Chapter 3 we develop a one-dimensional spatial model of an ischemic border

zone. We consider a piecewise linear model of the cardiac ionics. We prove exis-

tence and uniqueness of the steady state for all parameter values and analytically

determine regions in parameter space where a steady state of the spatial model is

unstable yielding spontaneous oscillations. We use this model to make a qualitative

comparison with the Picard and Rouet experiments.



CHAPTER 2

COUPLED CELL MODEL

2.1 Introduction

In this chapter we derive a model of coupled cells where “cell” may be interpreted

as a single cell or a group or region of isopotential cells. The degree of ischemia

is described by the parameter vector, P. One cell, taken to be a normal cell, has

no ischemia, P = p0, whereas the other cell, taken to be the ischemic cell, has

a variable degree of ischemia, P = p. The coupling parameter is associated with

proteins, which span both cell membranes linking them together electrically, called

gap junctions. This coupled system of ordinary differential equations is studied with

three different models of transmembrane ionic current, a reduced Hodgkin-Huxley

model, a modified McKean model, and a Luo-Rudy I model.

The reduced Hodgkin-Huxley (RHH) ionic model is a basic ionic model that

incorporates sodium and potassium ion currents. This model is found as a re-

duction of the four variable Hodgkin-Huxley model by assuming the sodium gate

activation is fast and the potassium gate activation and sodium gate inactivation

are linearly related. The two variable RHH model allows for phase plane analysis

while maintaining an ionic description and interpretation. We alter this reduced

model to account for changes from ischemia by allowing for changes in K+
0 . In

the phase plane, the nullcline of the transmembrane potential, V , undergoes a

characteristic shift in response to the change in K+
0 . A modification, in line with

this characteristic shift, to McKean’s two variable piecewise linear model yields a

model for which analytical calculations are done. Finally, an eight variable, more

physiological ionic model, Luo-Rudy I, with explicit dependence on K+
0 is examined.

From the analysis of spontaneous oscillations in these models, a general concept

emerges. A theorem, relating this general concept, describes how internal changes
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and external forcing of a single cell relates to oscillatory behavior of coupled cells

in certain parameter ranges.

We conclude that two cells, which when uncoupled are each stable, one excitable

and the other inexcitable with elevated resting potential, can exhibit oscillations

when coupled together . Finally, we compare the results to the coupled cell ex-

periments [31, 32, 16, 34, 17] and give an explanation of why oscillations are not

observed in some experiments [32, 16].

2.2 Derivation of the ODE Model

The models of the cardiac cell ionics described here are based on the Hodgkin-

Huxley formalism. The membrane of a cardiac cell is a bilipid layer that acts as a

capacitor. Through this layer, penetrating proteins act as ion specific conductors.

The Nernst potential for a specific ion comes from balancing the difference in

concentrations across a membrane with its potential difference. The combination of

the specific Nernst potentials may be loosely interpreted as a single battery. Figure

2.1 provides a schematic representation of two excitable cells coupled through an

intercellular resistance.

The total transmembrane current consisting of the ionic currents and the in-

duced capacitive current must balance the current through the intercellular resistor,

Icoup. The membrane current density is

Im = Cm

dV1

dt
+ Iion

where V1 = V1i
− V1e, Cm is capacitance per unit area, and Iion is the ionic current

density. Using Ohm’s law the intercellular current density is written in terms of

the difference in intercellular potentials and the conductance per area, d, between

them,

Icoup = d(V1i
− V2i

)

where d is also the inverse intercellular resistivity, Rd. The conductance, d, is

associated with the gap junctional conductance. For the currents induced from the

flow of ions to balance, the surface areas across which the various currents flow
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Figure 2.1: A schematic of two cells coupled intracellularly by the cou-
pling current, Icoup. The ionic current, Iion, and capacitative current,
Icap are balanced by the coupling current. Rd is the coupling resistivity.
Cm is the membrane capacitance. V1e and V1i

are the intracellular and
extracellular potentials for region 1, respectively, as are V2e and V2i

for region 2. The extracellular potentials are taken to be isopotential,
(V1e = V2e).

must be taken into account. If M1 represents the membrane surface area of cell 1

and Ai represents the gap junctional surface area between cell 1 and cell 2, then

the balance of currents for cell 1 is

M1(Cm

dV1

dt
+ Iion) = AiIcoup = Aid(V1i

− V2i
),

and for cell 2 is

M2(Cm

dV2

dt
+ Iion) = −AiIcoup = Aid(V2i

− V1i
).

We assume that the extracellular potential is isopotential (i.e., V1e = V2e) so that

the two coupled transmembrane potential equations become

M1(Cm

dV1

dt
+ Iion) = Aid(V2 − V1), (2.1)

M2(Cm

dV2

dt
+ Iion) = Aid(V1 − V2).
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2.3 Scaling Parameters

It is useful to introduce scaled parameters in (2.1). Let M0 be the total mem-

brane surface area of the system (i.e., M1 + M2 = M0), and let m be the relative

surface area of cell 1, m = M1

M0
, which is a nondimensional quantity. Notice then

that 1 −m = M2

M0
. If the ratio of gap junctional surface area, Ai, to total surface

membrane area, M0, is χ, then (2.1) takes the form.

m(Cm

dV1

dt
+ Iion) = χd(V2 − V1), (2.2)

(1−m)(Cm

dV2

dt
+ Iion) = χd(V1 − V2).

The ionic current, Iion, has many possible representations depending on which ions

are found to flow across the membrane and on what physiological model is being

considered. A discussion of several ionic models can be found in Keener and Sneyd

[15]. In general, it is assumed that the ionic current has a functional nonlinear

dependence on the transmembrane potential, on gating variables and other state

variables, and on state dependent parameters. For example,

Iion = −F (V,w,P)/Rm

where Rm is the passive membrane resistivity, F has units of voltage, w represents

the vector of gating variables and other state variables, and P represents a vector

of parameters (i.e., K+
0 , pH, ATP, etc.) which undergo biochemical changes under

ischemic conditions. Incorporating this into (2.2) yields

m

(
CmRm

dV1

dt
− F (V,w1,P)

)
= χRmd(V2 − V1),

(1−m)

(
CmRm

dV2

dt
− F (V,w2,P)

)
= χRmd(V1 − V2).

Notice that CmRm has units of time and Rmd is a nondimensional product of

intercellular conductance per area and passive membrane resistivity, so that scaling

time by CmRm and letting δ = Rmd yields the model

m

(
dV1

dt
− F (V,w1,p)

)
= χδ(V2 − V1),
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(1−m)

(
dV2

dt
− F (V,w2,p)

)
= χδ(V1 − V2).

The dynamics of gating variables for each of the cells are described by equations of

the form

dw1

dt
= g(V1,w1)

dw2

dt
= g(V2,w2)

To model the effect of ischemia on the electrical interaction between cells, the

degree of ischemia parameters, P, are modified in one of the cells. The ischemic

cell, cell 2, parameters are denoted P = p, while the normal cell, cell 1, has system

parameters P = p0. For example, if P = P , a scalar, represents K+
0 , we let p0 be

K+
0 for a normal cell, while p is K+

0 for an ischemic cell, p > p0. The following

system of coupled equations, including the equations for recovery dynamics, is the

basis for the coupled cell study in the following sections.

m

(
dV1

dt
− F (V1,w1, p0)

)
= χδ(V2 − V1)

dw1

dt
= g(V1,w1) (2.3)

(1−m)

(
dV2

dt
− F (V2,w2, p)

)
= χδ(V1 − V2)

dw2

dt
= g(V2,w2)

Our goal is to understand the behavior of the above system as it depends on the

parameters m, p, and χδ.

2.4 Reduced Hodgkin-Huxley Model Ionics

To understand how the ischemia parameter affects a cell, we consider a reduc-

tion from Hodgkin and Huxley’s model for squid giant axon [11]. Extracellular

potassium is an explicit component of the potassium Nernst potential in this ionic

model and K+
0 is a prominent factor in ischemia. In the reduced Hodgkin-Huxley

(RHH) model, the recovery variable is ~w = n, where n represents the fraction of

potassium channel activation gates which are open. If we let P = P represent

extracellular potassium, then
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F (V, n, P ) = −[ḡNam
3
∞(0.85− n)(V − VNa) + ḡKn

4(V − VK(P )) + gL(V − VL)],

g(V, n) =
n∞(V )− n

τn(V )
,

where the parameters are defined in Table 2.1 and come from Keener and Sneyd

[15]. The potassium Nernst potential, VK = 25.8 ln( P
Ki

), depends explicitly on the

parameter P .

2.4.1 Single Cell RHH Model

Consider the single cell with RHH dynamics,

dV

dt
= F (V, n, P ) (2.4)

dn

dt
= g(V, n)

Since the RHH model is a two-state variable model, it is useful to examine the

dynamics in the phase plane. In Figure 2.2 the V -nullcline, a cubic-like shape, and

n-nullcline are plotted for a normal level of extracellular potassium, P = p0 = 20.

One stable steady state exists. At this parameter value the system is excitable,

meaning that when the state of a cell is shifted quickly and sufficiently from

its resting position, the state variables travel away from the steady state before

returning to rest. The direction of flow is designated by the arrows in Figure 2.2.

The V -nullcline depends on P through the potassium Nernst potential in this

model. The effect of increasing P = p on the V -nullcline is shown in Figure 2.3 (a).

As p increases, the lower knee of the V -nullcline raises, and with it, the steady state

values of both V and n increase. The steady state transmembrane potential as a

function of p, V ∗(p), is shown in Figure 2.3 (b). This steady state solution remains

stable as p increases until it undergoes a change in stability, a bifurcation. At

this bifurcation point, near p ≈ 27.5, a pair of eigenvalues have zero real part and

nonzero imaginary part. This bifurcation is a subcritical Hopf bifurcation. Beyond

this point, the only stable solution to the system (2.4) is a large amplitude stable

periodic orbit. As p continues to increase, following the smallest steady solution
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Table 2.1: Table of values for the RHH model

Symbol Function Value (Units)
ḡNa Max Sodium Channel Conductance 120 (mho)
ḡK Max Potassium Channel Conductance 86 (mho)
gL Leak Channel Conductance 0.3 (mho)
VNa Sodium Nernst Potential 56 (mV)
VL Leak (Composite) Nernst Potential -54.4 (mV)
VK Potassium Nernst Potential 25.8 ln( p

Ki
) (mV)

Ki Intercellular Potassium Concentration 397 (mM)

m∞(V ) Steady State Open Probability for the
Sodium Channel Activation Gate

αm(V )
αm(V )+βm(V )

αm(V ) Rate of Sodium Channel Activation
Gate Opening

0.1(V+40)/(1 - exp(-(V+40)/10))

βm(V ) Rate of Sodium Channel Activation
Gate Closing

4exp(-(V+65)/18)

n∞(V ) Steady State Open Probability for the
Potassium Channel Activation Gate

αn(V )
αn(V )+βn(V )

τn(V ) Time Constant for the Potassium
Channel Activation Gate Dynamics

1
αm(V )+βm(V )

αn(V ) Rate of Potassium Channel Activation
Gate Opening

0.01(V+55)/(1-exp(-(V+55)/10))

βn(V ) Rate of Potassium Channel Activation
Gate Closing

0.125exp(-(V+65)/80)



16

−80 −60 −40 −20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

V

n

V−Nullcline

n−Nullcline

Figure 2.2: Phase plane diagram for the RHH model. The steady state
is stable with extracellular potassium at a normal level, P = p0 = 20.
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Figure 2.3: Effects of increasing the degree of ischemia parameter on
a single RHH model cell. (a) Shift in V-nullcline. This picture shows
three different V nullclines corresponding to increases in extracellular
potassium (p = 20 (normal), 45, and 90) for the RHH model. These
show the depolarization of the transmembrane potential steady state as
it depends upon p. (b) Steady state diagram. Increase of steady state
transmembrane potential as it depends upon p in an S-shape manner
for the RHH model. The squares indicate Hopf bifurcations (HB) (p ≈
27.5 and p ≈ 63.5), where the steady state becomes unstable and then
restabilizes, respectively. The two curves emanating from the lower HB
and upper HB and ending at the Homoclinic points (HC) marked by X’s
are the amplitude of the unstable and stable period orbits, respectively.
There is a small region of overlap between the stable periodic orbit and
the stable steady state on the lower branch yielding bistability.
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V ∗(p), we reach a knee of the steady state curve, which is the first of two limit

point bifurcations (p ≈ 31 and p ≈ 24). Eventually for a sufficiently high p-value,

the steady state regains its stability through a second, supercritical Hopf bifurcation

at p ≈ 63.5. The lower stable branch of the S-shaped steady state curve represents

a stable, excitable state, and the upper stable branch beyond the second Hopf

point represents a stable, inexcitable state. The periodic solution that exists for

intermediate p-values is a self-oscillatory solution. The region between the p-value

where the stable periodic solution ends in a homoclinic orbit (HC) (p ≈ 26.5) and

the p-value of the lower Hopf point is a region of bistability where the stable periodic

and stable steady state coexist.

2.4.2 Coupled RHH Model Cells

Now that we understand how the RHH dynamics of the single cell change with

variation in p, we would like to understand how the coupling strength and mass

of the individual cells affect the coupled cell dynamics. We couple two cells, one

normal and one ischemic, each with RHH model dynamics. It is clear that if p

is elevated only slightly in the ischemic cell, regardless of the coupling strength

or mass differential, both cells remain at resting states only slightly different from

what would be their uncoupled resting states. This steady state is stable for the

four state variable system.

Beyond this, however, the dynamics of the coupled system (2.3) are not im-

mediately obvious. Evidence for interesting nontrivial behavior is shown in a time

course plot for the coupled system with RHH ionics in Figure 2.4. Here, an ischemic

cell of relative mass 1−m = 0.9 with p = 80 is uncoupled, Figure 2.4 (a), and then

coupled, Figure 2.4 (b), by χδ = 0.15 to a normal cell of relative mass m = 0.1 with

p0 = 20. When the two cells are uncoupled, both approach their respective stable

steady states, but when coupled, the normal cell is forced by the current induced

from the high resting potential of the ischemic cell, which is in its stable inexcitable

state.
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Reduced Hodgkin−Huxley Model

Figure 2.4: Reduced Hodgkin-Huxley model. The upper graph shows
the steady states for the system if uncoupled (i.e., χδ = 0) with p = 80
in the ischemic cell. The lower graph shows the system coupled with
χδ = 0.15, p = 80 and m = 0.1. The ischemic cell remains at its resting
transmembrane potential, and it acts as a source of current to force
the normal cell into oscillation. The dashed lines are the ischemic cell
transmembrane potentials, while the solid line is the transmembrane
potential for the normal cell.
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The steady state behavior in Figure 2.4 is different in the top and the bottom

subfigures, and the only change has been to the composite parameter, χδ

m
. We

determine that the coupled system has gone through a Hopf bifurcation. We define

a curve in parameter space along which at least two of the eigenvalues of the

coupled system (2.3) have zero real part and nonzero imaginary part as a Hopf

curve. Figure 2.5 shows Hopf curves in χδ

m
vs. p parameter space for two size

parameters, m = 0.1, 0.5.

The shaded region is the set of parameter values at which oscillations are

guaranteed. The solid curves, HB1 and HB2, are Hopf curves. The dotted curves,

LP1 and LP2, are limit point curves along which a real eigenvalue remains zero.

The dashed curve is a secondary Hopf curve. The Hopf curves and limit point

curves are calculated using Auto97 bifurcation software [6]. The star points, one of

which is labeled HC, are the p-values for a given χδ

m
at which the periodic solution

emanating from HB2 becomes homoclinic. Since HC is below HB1 for a given χδ

m
,

between HC and HB1 in p is a region of bistability. Depending upon the initial

conditions, the system either approaches the steady state solution or the periodic

orbit. As m increases the upper Hopf curve, HB2, shifts outward (outside of picture

frame) increasing the upper bound on the oscillatory region. The lower Hopf curve,

HB1, and homoclinic points, HC, also shift upward with increasing m except for

being pinned at the p-axis. This increases the lower bound on oscillations for each

χδ

m
> 0.

Looking more closely in a neighborhood of the p-axis in Figure 2.6 we identify

the interval in p which correlates with the uncoupled ischemic cell oscillation, p ∈
[27.5, 63.5]. For small m we expect that the normal cell to have little effect on the

ischemic cell so that as the coupling increases we expect p ∈ [27.5, 63.5] to remain

an oscillatory region, which it indeed does in Figure 2.6 (a). However, for p > 63.5

and coupling sufficiently large, we find another instability region which extends to

the HB2 curve (see Figure 2.5 (a)). This region represents oscillatory dynamics

from two coupled cells that if uncoupled would each approach its stable rest state.

Figure 2.4 shows an example of cells in such a parameter region.
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Figure 2.5: Unfolding diagrams for χδ

m
vs. p at fixed m=0.1 and m=0.5.

The shaded region is the set of parameter values at which oscillations
are guaranteed. The solid curves, HB1 and HB2, are Hopf curves. The
dotted curves, LP1 and LP2, are limit point curves. The dashed curve is
a secondary Hopf curve. The star points, one of which is labeled HC, are
the p-values for a given χδ

m
at which the periodic solution emanating from

HB2 becomes homoclinic. Since HC is below HB1, between HC and HB1

in p is a region of bistability. The lower Hopf curve, HB1, and homoclinic
points, HC, also shift upward for increasing m except for being pinned
at the p-axis.
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Figure 2.6: Unfolding diagrams for χδ

m
vs. p at fixed m=0.1, m=0.5,

m=0.9 zoomed into small χδ

m
. (a) and (b) focus on the region closer to

the p-axis of Figure 2.5 (a) and (b), respectively. (c) For m = 0.9, the
slope of the HB1 curve has dramatically increased compared to the (a)
and (b) and the curve ends in a Bogdonov-Takens, BT1, bifurcation.
With the loss of the HB1 curve, the boundary for purely oscillatory
solutions becomes the limit point curve, LP1. Between the HC points
and the LP1 curve there exists a region of bistability.
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Figure 2.6 continued
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As m increases the HB1 curve rises away from χδ

m
= 0 indicating that the reduced

ischemic cell needs higher p-values to begin oscillating. For m large enough the HB1

curve coalesces with the LP2 curve and disappears above χδ

m
values denoted by the

Bogdonov-Takens bifurcation point, BT1. The boundary for the instability region

is then the LP2 curve for χδ

m
above BT1. (See Appendix B for further details.)

2.5 Modified McKean Model Ionics

We wish to determine if single cell oscillations are required in order for the

coupled system to exhibit oscillations. To address this question we use a piecewise

linear model for the ionics. From this we find analytical expressions for the bifur-

cation boundaries in terms of various system parameters including a parameter k

which determines whether or not a single cell is oscillatory under increase in P .

The McKean model was first described in [21] and has FitzHugh-Nagumo like,

triphasic dynamics but is piecewise linear with three branches. 1 We modify the

McKean model by adding a constant shift in the left branch where the shift is

linearly dependent on the degree of ischemia parameter, P , and by varying the

threshold value of V by P
k

with other parameters chosen for continuity.

For the modified McKean (MM) model, we take

F (V, w, P ) =


−V + P V ≤ a

2
+ P

k

σV + η a
2

+ P
k
≤ V ≤ 1+a

2

−V + 1 1+a
2
≤ V

− w

where

σ =
2Pk − 2P − k

2P − k

and

η =
2P + ak − aPk − Pk

2P − k
.

The recovery dynamics are described by g(V, w) = ε(V − γw) for w a scalar.

Throughout, we take a = 0.02 and γ = 0.2.

1The results that follow cannot be obtained with McKean’s two branch piecewise linear model
as also described in [21] The results here require that the slope of the middle branch be positive
and bounded.
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The parameter P is the degree of ischemia parameter with k modifying the

trajectory of the lower knee under changes in P as in Figure 2.8. The MM model

mimics several qualitative features of the transmembrane potential behavior in an

ischemic cell. The resting membrane potential is raised with elevated P , and the

action potential duration is shortened. For large enough values of P the V -nullcline

becomes monotonic rendering the dynamics inexcitable.

2.5.1 Single Cell MM Model

We first examine the single cell with MM dynamics,

dV

dt
= F (V, w, P ), (2.5)

dw

dt
= g(V, w).

Since the MM model is a two-state variable model, we again look at the dynamics in

the phase plane. In Figure 2.7 the V -nullcline, a piecewise linear triphasic curve, and

w-nullcline are plotted for a normal level of extracellular potassium, P = p0 = 0.

There is one steady state which is stable. At this parameter value the system is

excitable. The direction of flow is designated by the arrows in Figure 2.7.

Figure 2.8 shows the changes to the V -nullcline with increases in p for two

k-values. For k-values larger than kc where kc = (1−a)(1+γ)
γ−a(1+γ)

≈ 6.7, the lower knee

is above the w-nullcline leaving the steady state on the positive sloped middle

branch of the V -nullcline and unstable. For k < kc, the lower knee always remains

below the w-nullcline and the steady state remains stable on the left branch of the

V -nullcline. Figure 2.9 shows the steady state transmembrane potential and its

stability for two choices of k as it depends upon p. For each k-value, the steady

state transmembrane potential becomes less depolarized as p increases. The upper

curve in Figure 2.9 is unstable for a range of p-values since k > kc.

The curve of steady state V -values as a function of p, V ∗(p), is found analytically

in the MM model to be
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Figure 2.7: Phase plane diagram for the MM model. The steady state
is stable with extracellular potassium at a normal level, p0 = 0.
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Figure 2.8: Shift in V-nullcline. (a)Three different V nullclines corre-
sponding to increases in extracellular potassium (p = 0 (normal), 0.3, 0.5,
and 0.7) for the MM model with k = 6. (b) Three different V nullclines
corresponding to increases in extracellular potassium (p = 0 (normal),
0.3, 0.5, and 0.7) for the MM model with k = 20.
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V ∗ =


p

1+ 1

γ

0 < p <
a
2
k(1+ 1

γ
)

k−1− 1

γ

η

−σ+ 1

γ

a
2
k(1+ 1

γ
)

k−1− 1

γ

< p < 1.

There is a loss of stability of the steady state solution if k > kc for
a
2
k(1+ 1

γ
)

k−1− 1

γ

< p <

k
2(k−1)

. The steady state solution shifts to the middle branch from the left branch of

the V -nullcline when p reaches the lower p bound (lower square in Figure 2.9). As

p increases the V -nullcline loses its triphasic appearance and becomes monotonic

for p-values above the upper p bound (upper square in Figure 2.9).

Figure 2.10 (a) shows the upper and lower p-bounds for different k values. The

associated V ∗(p) values are shown in Figure 2.10 (b).

2.5.2 Coupled MM Model Cells

As with RHH, there is interesting nontrivial behavior for the coupled system

with MM ionics. Figure 2.11 (a) shows the dynamics of the MM model for a normal

cell and an ischemic cell with p = 0.7 and k = 6, while (b) shows the behavior of the

two cells from (a) coupled with χδ = 0.09 and m = 0.1. In this example, neither of

the cells are oscillatory when uncoupled, so that the oscillations must result from

the coupling between the two cells.

The boundary of the oscillatory regions can be calculated analytically and are

shown for several values of m in Figure 2.12. Since the steady state transmembrane

potential of the ischemic cell, V ∗
2 (p), and its degree of ischemia parameter, p, are

functionally related, we can view V ∗
2 (p) as a parameter. We use V ∗

2 (p) as the

parameter in Figure 2.12, but the plots are similar for χδ

m
versus p. In Figure

2.12, as m increases for the k = 20 column beyond m = 0.5, the nonoscillatory

(NO) swath is where the self-oscillatory ischemic cell is quieted when coupled to a

sufficiently large normal cell. Only for very weak coupling does the ischemic cell

oscillate. For k = 6, uncoupled cells do not oscillate, but for appropriate coupling,

coupled cells oscillate as shown in the k = 6 column of Figure 2.12.
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Figure 2.9: Steady state transmembrane potential dependence on p. The
upper curve is for k = 20, while the lower curve has k = 6. The dashed
line marks where the steady state is unstable. The beginning and end
of the dashed line is marked with squares, which denote the change in
stability of the steady state solution. The k = 20 curve is qualitatively
the same as the RHH model bifurcation curve in Figure 2.3 (b).
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Figure 2.10: Transition curves. (a) Two curves bounding the instability
region in k vs. p. (b) Two curves bounding instability region in k vs. V ∗.
The k-value at which these curves coalesce and disappear is kc. These
two pairs of curves at k = 20 are the p and V ∗-values in Figure 2.9 at the
filled squares.
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Figure 2.11: Modified McKean model. The upper graph shows the
steady states for the system if uncoupled (i.e., χδ = 0) with p = 0.7 and
k = 6 in the ischemic cell. The lower graph shows the system coupled
with χδ = 0.09, p = 0.7, k = 6 and m = 0.1. The ischemic cell remains at
its RMP, while it acts as a source of current to force the normal cell into
oscillation.
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2.6 Luo-Rudy I Model Ionics

The state variables in the Luo-Rudy I (LRI) model are the transmembrane

potential, gating variables, and intracellular calcium. The ~w = [m, h, j, d, f, x, Cai]

dynamics are governed by seven differential equations where m, h and j are sodium

activating, fast inactivating, and slow inactivating gating variables, respectively; d

and f are calcium activating and inactivating gating variables, respectively; x is

a potassium inactivating gating variable, and Cai is intracellular concentration of

calcium.

2.6.1 Single Cell LRI Model

We examine the single cell with LRI dynamics,

dV

dt
= F (V, w, P ), (2.6)

dw

dt
= g(V, w).

The equations for the LRI model are found in Appendix A or [20]. We chose this

particular physiological model for study because of its explicit dependence on K+
0

through the potassium Nernst potential and the potassium channel conductance.

The single cell steady state diagram for the LRI model is shown in Figure 2.13. The

resting transmembrane potential depends monotonically on p =K+
0 , and though it

becomes more depolarized as p increases, it never loses its stability.

2.6.2 Coupled LRI Model Cells

There is interesting behavior when two LRI model cells are coupled. Figure 2.14

(a) shows the uncoupled dynamics of the LRI model for p = 60, while (b) shows

the two cells from (a) coupled with χδ = 0.005 and m = 0.1. In this example, as

with the MM model, there is no oscillatory behavior in the ischemic cell so that the

oscillation must result from the coupling between the two cells.
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0 for the LRI model.
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Figure 2.14: Luo-Rudy I Model. The upper graph shows the steady
states for the system if uncoupled (i.e., χδ = 0) with K+

o = 60 in the
iscehmic region. The lower graph shows the system coupled with χδ =
0.005, K+

o = 60mM and m = 0.1. The ischemic region remains at its
RMP, while it acts as a source of current to force the normal region into
oscillation.
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The bifurcation diagrams for the LRI model dynamics are found numerically

using Auto97 bifurcation software [6]. As shown in Figure 2.15, the oscillatory

region remains largely unchanged when m in increased and even slightly increases

before collapsing as m→ 1 (not shown).

2.7 Comparison with Experiments

To compare the oscillatory regions found from the LRI model quantitatively

with experiments we translate experimental conductance parameters into model

parameters. If an average cardiac cell has the dimensions 100 µm × 20 µm × 5

µm, then the average surface area for a cell is 5200µm2. If it is assumed that the

only contact between neighboring cells occurs on the ends, then the intercellular

surface area of contact, overestimating the entire intercellular surface to be gap

junctional surface area, for typical cell dimensions is approximately 200µ m2. This

gives a χ value, ratio of gap junctional surface area to total membrane surface area,

of about 0.04. Peters et al. [25] quantified the surface area covered by gap junctions

per cell volume for normal human myocytes as 0.0051 µm2/µm3. Using the typical

cardiac cell dimensions yields the experimentally determined χ ≈ 0.01, which is the

same order as our previous overestimate.

Tan and Joyner [32] were unable to find oscillatory behavior when coupling a

real ventricular cell to a passive model cell with an elevated (depolarized) resting

membrane potential. They used a variety of coupling conductances (0nS, 3nS, 5nS)

which correspond to χδ ≈ (0,0.2,0.35) based on a resting membrane resistivity of

7× 103Ωcm2 and a total membrane area of 104µm2.

χδ =
gap junction area

total surface area
× gap junctional conductance/area

× resting membrane resistivity

=
gap junction conductance× resting membrane resistivity

total membrane area
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Figure 2.15: Luo-Rudy I Model. Unfolding diagrams for d vs. V ∗
2 at

fixed m=0.1, m=0.5, m=0.9.
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The coupled cells were of similar size which corresponds to m ≈ 0.5. So the

coupling conductances from [32] correspond to χδ

m
≈ (0, 0.4, 0.7). The passive model

cell RMPs used in [32] were (-20mV,-10,mV,0mV). In Figure 2.15 (b), the range of

χδ

m
with oscillatory behavior at V ∗

2 = −20mV is about 0.05 < χδ

m
< 0.06 (coupling

conductance between 0.36nS and 0.43nS) and nonexistent for V ∗
2 = 0mV or−10mV.

Since the range for V ∗
2 = −20mV is small and at small conductances, it is reasonable

to conclude that this region was not found in experiments.

The oscillations that are seen from the LRI model in Figure 2.14 are calcium

induced action potentials, that is, the calcium current produces the upstroke of the

action potential rather than the sodium current. We give an explanation for this in

the Discussion. It seems reasonable then that enhancing the calcium handling with

drugs as Kumar and Joyner [17] did would elicit calcium induced action potentials.

The action of these drugs on the LRI model is not clear, but presumably they

would act to expand the region of oscillation in χδ

m
versus V ∗

2 space, due to enhanced

excitability of the calcium mechanism. Further discussion of this in relation to the

mechanism of the calcium upstroke is in the Discussion.

In the SAN experiment [34], the ability of the self-oscillatory SAN cell to drive

a ventricular cell is dependent on both the coupling conductance as well as the

size of the self-oscillatory cell. The ischemic cell in the MM model with k = 20 is

self-oscillatory over a range of levels of ischemia. The parameter 1−m is a measure

of the relative size of the ischemic cell, and χδ is a measure of the conductance

between the ischemic cell and the normal cell. The control experiment with the

SAN is correlated to this case.

If we let p = 0.3, then for small 1−m and χδ the oscillations from the ischemic

cell persist but do not drive the normal cell beyond small subthreshold perturbations

from its steady state. As χδ increases, there is a critical coupling conductance

above which the ischemic cell ceases to oscillate. However, for intermediate 1−m

(0.06 < 1−m < 0.58), as the coupling conductance increases there is again a critical

conductance, but in this instance the ischemic cell goes from pacing without driving

the normal cell to driving the normal cell into superthreshold action potentials.
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Driving of the normal cell often appears in the form of a many to one (i.e., many

ischemic action potentials to one normal action potential) response. Continuing to

increase the coupling conductance we encounter a second critical conductance at

which the ischemic cell pacing and normal cell oscillation are lost. These transitions

between different dynamic regions in parameter space are shown in Figure 2.16 (a)

and the boundaries of the regions agree qualitatively with the experiment of Wagner

et al. [34] (see Figure 1.2). However, it is reasonable to expect a further division

of dynamics for larger sizes of oscillator and stronger conductances. This is shown

in Figure 2.16 (b).

For 0.28 < 1 − m < 0.58 we encounter yet another critical conductance for

sufficiently large coupling. Above this conductance value, the resting potential of

the normal cell is superthreshold and the transmembrane potential of the normal

cell is again oscillatory. For 1 − m sufficiently large (1 − m > 0.58), the critical

conductance between pace and no drive and pace and drive region exists, but for

conductances beyond that critical value the relative size of the oscillator is sufficient

to force the normal cell to oscillate.

2.8 Interpretation of Different Limits for

High p-Values

For high enough p-values, the steady state of the uncoupled ischemic cell stabi-

lizes at a high transmembrane potential. We consider the strong coupling and weak

coupling limiting cases with one large cell and one small cell for p in this sufficiently

high range. Figure 2.17 is a visual representation of the these limits.

For m close to 1 with coupling χδ

1−m
>> 1 (i.e., the ischemic cell is relatively

small and the coupling is strong), the singular limit 1−m→ 0 applies to (2.3) so

that V2 = V1 for all time and each cell approaches the steady state of the normal

cell, (V ∗(p0), w
∗(p0)).

For m close to 1 with coupling χδ

1−m
≈ 1, then χδ

m
<< 1 so that the normal cell

in (2.3) is effectively decoupled from the ischemic cell yielding V1 = V ∗(p0). Note

that χδ

1−m
V1 then acts like a fixed forcing term, an applied current, to the ischemic
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Figure 2.16: Regions of different dynamics of a coupled MM system
with self-oscillatory ischemic cell in parameter space, conductance (χδ)
vs. relative size of ischemic cell (1−m). The ischemic cell follows MM
dynamics with p = 0.3 and k = 20. The regions are where the ischemic cell
paces but does not drive the normal cell (PND), the ischemic cell paces
and drives the normal cell (PD), and the ischemic cell does not pace
(NP). The stars are points on the boundary separating the PND and
PD regions. (a) A restricted region of χδ vs. 1 −m which qualitatively
agrees with Figure 1.2. (b) An expanded region of χδ vs. 1−m.
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cell. Regardless of the dynamics of the ischemic cell, in this limit it has no effect

on the normal cell.

For m close to 0 and χδ

m
>> 1 (i.e., the normal region is relatively small and the

coupling is strong), the singular limit m→ 0 applies to (2.3) so that V2 = V1 for all

time and each cell approaches the steady state of the ischemic cell, (V ∗(p), w∗(p)).

For m close to 0 with the coupling χδ

m
≈ 1, χδ

1−m
<< 1 so that in (2.3) the

ischemic cell is effectively uncoupled from the normal cell yielding V2 = V ∗(p). In

this case χδ

m
V2 acts like an applied current to the normal cell. Since in this limit

the cells are effectively uncoupled, it is appropriate to examine the phase plane for

the normal cell. The applied current, Iapp = χδ

m
V ∗(p), along with the leak current,

−χδ

m
V1, act on a single cell to shift the V -nullcline in the phase plane as shown

in Figure 2.18 for RHH dynamics. The shift in the V -nullcline of the normal cell

for appropriate conductance destabilizes the steady state and the solution becomes

oscillatory.

This observation leads us to consider a single cell forced by a leak current and

a fixed applied current

dV

dt
= F (V, w, p)− dV + Iapp (2.7)

dw

dt
= g(V, w)

and compare the behavior of this forced single cell to that of the coupled cell system

with small m ≈ O(χδ).

2.9 Small m Limit Theorem

In this section we state a theorem relating the forced oscillation of a single cell

to oscillations of a coupled system.

Theorem 1 Let L1(T n) be the space of periodic functions on Rn of period T with

bounded L1 norm on [0, T ]. Let x, y ∈ L1(T n) and H,G : L1(T n) → L1(T n) be C1

maps. Let ′ ≡ d
dt

.
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Assumption (A1): Suppose

y′ −H(y) = I −D1y

has a periodic solution, Y (t), for some constant matrix D1 ∈ Rn×n and constant

vector I ∈ Rn.

Assumption (A2): Suppose

x′ −G(x) = 0

has the steady state solution, x∗, such that I = D1x
∗.

Then the coupled system

my(y
′ −H(y)) = δ1(x− y) (2.8)

mx(x
′ −G(x)) = δ2(y − x)

has a periodic solution for my

mx
sufficiently small with my andmx scalars and matrices

δi = myDi for i = 1, 2.

Proof: To prove the theorem we appeal to the Lyapunov-Schmidt method. We

look for periodic solutions (y, x)T ∈ L1(T n)× L1(T n) to the equation

F̂

((
y
x

)
, ε

)
=

(
y
x

)′
−
(
H(y)
G(x)

)
−
[

D1 −D1

−εD2 εD2

](
y
x

)
=

(
0
0

)

with ε = my

mx
. By assumption F̂

((
Y
x∗

)
, 0

)
= 0. We change variables

(
y
x

)
=

(
Y
x∗

)
+

(
y1

x1

)
and let ωt = τ where ω = 1 + εω1 to define the new function

F

((
y1

x1

)
, ε

)
= (1 + εω1)

(
Y + y1

x∗ + x1

)′
−
(
H(Y + y1)
G(x∗ + x1)

)
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−
[

D1 −D1

−εD2 εD2

](
Y + y1

x∗ + x1

)
(2.9)

so that

F

((
0
0

)
, 0

)
= 0.

Since H,G are C1 maps, we can write a Taylor series for (H(Y + y1), G(x∗+x1))
T .(

H(Y + y1)
G(x∗ + x1)

)
=

(
H(Y )
G(x∗)

)
+

[
H ′(Y ) 0

0 G′(x∗)

](
y1

x1

)
+R

((
y1

x1

))

where G′ and H ′ are the Jacobians of G and H , respectively, and R

((
y1

x1

))
=

o(||(y1, x1)
T ||). Substituting this expansion into (2.9) yields

F

((
y1

x1

)
, ε

)
=

(
Y
x∗

)′
−
(
H(Y )
G(x∗)

)
−
[
D1 −D1

0 0

](
Y
x∗

)
+

(
y1

x1

)′
−
[
H ′(Y ) +D1 −D1

0 G′(x∗)

](
y1

x1

)
(2.10)

+ ε

(
ω1

(
Y + y1

x∗ + x1

)′
+

[
0 0

−D2 D2

](
Y + y1

x∗ + x1

))
+ R

((
y1

x1

))
.

The first three terms combine to be 0, and defining the linear operator

L

(
y1

x1

)
=

(
y1

x1

)′
−
[
H ′(Y ) +D1 −D1

0 G′(x∗)

](
y1

x1

)
allows us to rewrite (2.10) as

F

((
y1

x1

)
, ε

)
= L

(
y1

x1

)
+ ε

(
ω1

(
Y + y1

x∗ + x1

)′
+

[
0 0

−D2 D2

](
Y + y1

x∗ + x1

))
(2.11)

+ R

((
y1

x1

))
.

The linear operator L has a one-dimensional nullspace spanned by (Y ′, 0). This can

be seen by taking the time derivative of F̂

((
Y
x∗

)
, 0

)
. We get this nullspace from
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the shift invariance of the stable periodic solution. In general, let (ξ1, ξ2)
T ∈ N(L)

and (ξ1c, ξ2c)
T ∈ Nc(L), the complement to N(L), so that (y1, x1)

T = (ξ1, ξ2)
T +

(ξ1c, ξ2c)
T . Substituting into (2.11) we define a new function

Φ

((
ξ1
ξ2

)
,

(
ξ1c

ξ2c

)
, ε

)
= L

(
ξ1c

ξ2c

)
+ εω1

(
Y + ξ1 + ξ1c

x∗ + ξ2 + ξ2c

)′
(2.12)

+ ε

[
0 0

−D2 D2

](
Y + ξ1 + ξ1c

x∗ + ξ2 + ξ2c

)
+ R

((
ξ1 + ξ1c

ξ2 + ξ2c

))
.

Now using the inner product

< (u1, u2)
T , (v1, v2)

T >=

∫ T

0

u1v1 + u2v2 dt

we project Φ onto the nullspace of the adjoint of L, N(L∗), to get < Φ, (v1, v2)
T >

(v1, v2)
T where (v1, v2)

T ∈ N(L∗). We then subtract it from Φ to get

Φ

((
ξ1
ξ2

)
,

(
ξ1c

ξ2c

)
, ε

)
−
〈

Φ

((
ξ1
ξ2

)
,

(
ξ1c

ξ2c

)
, ε

)
,

(
v1

v2

)〉(
v1

v2

)
which lies in the range of L, R(L). However, to leave Φ unchanged by this

subtraction we require that < Φ, (v1, v2)
T >= 0. Using the definition of Φ in

(2.12) we can solve this orthogonality condition for ω1 to get

ω1 =

ε

〈[
0 0

−D2 D2

](
Y + ξ1 + ξ1c

x∗ + ξ2 + ξ2c

)
,

(
v1

v2

)〉
+

〈
R

((
ξ1 + ξ1c

ξ2 + ξ2c

))
,

(
v1

v2

)〉
〈(

Y + ξ1 + ξ1c

x∗ + ξ2 + ξ2c

)′
,

(
v1

v2

)〉 .

as long the denominator is nonzero. The eigenfunctions of L and the eigenfunctions

of L∗ form a biorthogonal set [23]. Since (Y ′, 0)T is an eigenfunction of L with

respect to the zero eigenvalue and (v1, v2)
T is an eigenfunction of L∗ with respect

to the zero eigenvalue, < (Y ′, 0)T , (v1, v2)
T > 6= 0.

To look for solutions that have no additional terms in the nullspace of L (i.e.,

(ξ1, ξ2)
T = (0, 0)T ) we define the function
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Φ̂

 (
ξ1c

ξ2c

)
ω1

, ε

 =


Φ

((
0
0

)
,

(
ξ1c

ξ2c

)
, ε

)
−
〈

Φ

((
0
0

)
,

(
ξ1c

ξ2c

)
, ε

)
,

(
v1

v2

)〉(
v1

v2

)

ω1 −
ε

〈2
4 0 0
−D2 D2

3
5

0
@ Y + ξ1c

x∗ + ξ2c

1
A,

0
@ v1

v2

1
A
〉

+

〈
R

0
@

0
@ ξ1c

ξ2c

1
A

1
A,

0
@ v1

v2

1
A
〉

〈0
@ Y + ξ1c

x∗ + ξ2c

1
A
′

,

0
@ v1

v2

1
A
〉


Since,

Φ̂

 (
0
0

)
0

, 0

 = 0

and the derivative

∂

∂(ξ1c, ξ2c, ω1)T
Φ̂

 (
0
0

)
0

, 0

 (
ξ1c

ξ2c

)
ω1

 =

[
L 0
0 1

] (
ξ1c

ξ2c

)
ω1


is invertible, we apply the Implicit Function Theorem to Φ̂ and conclude that there

exists a unique function h = (h1, h2, h3)
T such that ξ1c

ξ2c

ω1

 = h(ε)

for all ε sufficiently small. 2

Now we relate the Theorem 1 to the coupled system (2.3). Let y = (V1,w1)
T

and x = (V2,w2)
T with H(y) = (F (y,p0), g(y))

T and G(x) = (F (x,p), g(x))T .

Also let D1, D2, and M each be such that D1,1
1 = d = χδ

m
, Di,j

1 = 0 otherwise,

D1,1
2 = χδ

1−m
, Di,j

2 = 0 otherwise, and M1,1 = 1,Mi,j = 0 otherwise. This implies

there is only coupling in the transmembrane potential equation.

Assumption (A1): The system

dV1

dt
− F (V1,w1,p0) = −dV1 + Iapp (2.13)

dw1

dt
= g(V1,w1)

exhibits oscillations in transmembrane potential for some d and some Iapp.
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Assumption (A2): The system

dV2

dt
− F (V2,w2,p) = 0 (2.14)

dw2

dt
= g(V2,w2)

has a steady state (V ∗
2 (p),w∗

2(p)) such that dV ∗
2 (p) = Iapp.

Then the coupled system

m

(
dV1

dt
− F (V1,w1,p0)

)
= χδ(V2 − V1)

dw1

dt
= g(V1,w1) (2.15)

(1−m)

(
dV2

dt
− F (V2,w2, p̂)

)
= χδ(V1 − V2)

dw2

dt
= g(V2,w2)

for χδ

m
= d exhibits oscillations in transmembrane potential provided m

1−m
is suffi-

ciently small. If V ∗
2 (p) increases as p increases without bound and dV ∗

2 (p0) ≤ Iapp,

then there must exist such a p at which dV ∗
2 (p) = Iapp.

In words, if applying a constant current and leak current with fixed leak con-

ductance forces a normal cell into large scale oscillations, and if a second cell

has a depolarized steady state transmembrane potential in the appropriate range,

then the depolarized cell induces large scale oscillations in the normal cell. This

occurs for an appropriate range of coupling conductances provided the normal cell

is sufficiently small relative to the ischemic cell.

We now wish to verify that the theorem applies to the three models described

earlier. To verify the two assumptions, A1 and A2, of Theorem 1, we consider

the unfolding diagrams in the parameters Iapp and d and unfolding diagrams in

the parameters V ∗
2 = Iapp/d and d for the three sets of ionics. Figure 2.19 (a)

shows that a single cell with RHH dynamics has oscillations for an open region

in d versus Iapp satisfying A1. Figure 2.19 (b) shows where d versus V ∗
2 = Iapp/d

yields oscillations so that if the RHH steady state of (2.14) is located in the shaded

region, A2 is satisfied. From Figure 2.3 we see there is a range of p-values with V ∗
2
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in the shaded region for which Theorem 1 applies in which oscillations exist in the

coupled system (2.15).

Similarly, for LRI dynamics, Figure (2.20) (a) shows an open region in d versus

Iapp where oscillations satisfying A1 occur. Figure (2.20) (b) shows where d versus

V ∗
2 = Iapp/d yields oscillations so that if the LRI steady state of (2.14) is located in

the shaded region, A2 is satisfied. Figure 2.13 shows a range of p-values for which

V ∗
2 is in the shaded region of Figure 2.20 b).

The single cell MM model has oscillations when the applied current, Iapp,

forces the piecewise cubic V -nullcline adjusted by the leak term, F (V, w, p0)− dV ,

to shift vertically so that the steady state is on the middle branch. In steady state,

w = 1
γ
V ∗, and for V ∗ to be on the middle branch, it must satisfy

0 = V ∗ − a− 1

γ
V ∗ − dV ∗ + Iapp

for a
2
< V ∗ < 1+a

2
so that the range of Iapp which forces V ∗ on the middle branch

and the system to oscillate is (I−, I+) where

I− =
a

2

(
1 + d+

1

γ

)
, (2.16)

I+ =

(
1

2
+
a

2

)(
1 + d+

1

γ

)
− 1

(2.17)

As well, for an eigenvalue of the single system to have positive real part, d must

remain below 1 − εγ. For 1 − εγ < d < 1, the autocatalytic dynamics in the

transmembrane equation are balanced and stabilized by the recovery dynamics,

while for 1 < d the term F (V, 0) − dV loses its triphasic nature all together and

becomes a monotonically decreasing function of V . Figure 2.21 (a) shows the

region in d versus Iapp parameter space where a forced single MM model cell

oscillates. This picture gives an indication of approximate independence of the two

mechanisms involved in the instability of the coupled MM system.
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Figure 2.19: Unfolding diagram for the RHH single cell. (a) The Hopf
bifurcation curve for the single RHH cell with changes in applied current,
Iapp, and leak conductance, d. (b) The Hopf bifurcation diagram for
the Single RHH cell with changes in fixed potential, V ∗

2 , and the leak
conductance. Subfigure (b) is obtained by plotting d versus V ∗

2 = Iapp/d.
The shaded regions are parameter regions with oscillatory dynamics.
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Figure 2.20: Unfolding diagram for the LRI single cell. (a) d vs. Iapp
for the LRI model. Inside the closed region the system is oscillatory. (b)
d vs. V ∗

2 = Iapp/d
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One aspect is the movement of the steady state to the middle branch of the

vertically shifted V -nullcline by the applied current. The other is the loss of positive

slope of the V -nullcline for sufficiently high d-values. Stability of the system is

regained for d large enough independent of Iapp, while the upper and lower limits

of applied current for oscillation, I+ and I−, respectively depend on d only linearly

with small slope. This shows that there is an open region region in d versus Iapp

parameter space which satisfies A1 of Theorem 1.

In Figure 2.21, we let Iapp = dV ∗
2 and treat V ∗

2 as a variable parameter.

The MM model is oscillatory in the region

I− < dV ∗
2 < I+

so that the upper bound on V ∗
2 as a function of d is 1

d
I+ (which does not affect

the oscillatory region for MM model parameters) and the lower bound is 1
d
I−. We

translate these bound into the related p-values using (2.6) with the lower p bound

as

pl =
k(1− 1/γ)I−/d− ak

(2− k − ka)− I−/d(2− 2k + 2(1/γ))

and the upper p bound as

pu =
k(1− 1/γ)I+/d− ak

(2− k − ka)− I+/d(2− 2k + 2(1/γ))
.

2.10 Single to Coupled Bifurcation Diagrams

For sufficiently small m the coupled system should behave similarly to the single

cell under appropriate forcing. In Figure 2.22, we compare the single cell bifurcation

diagram of Figure 2.19 (b) with the bifurcation diagram for the coupled cells from

Figure 2.5 (a). There are two mechanisms by which the coupled cells may become

unstable. The first has already been described as a forcing on a normal cell. The

second mechanism is from the self-oscillation of the ischemic cell which may occur

upon elevation of p. The dashed lines in Figure 2.22 (a), also denoted by the

Hopf bifurcation squares in Figure 2.3 (b), are those transmembrane potentials

between which the ischemic cell oscillates when uncoupled from the normal cell. The

oscillatory regions in Figure 2.22 (a) and (b) are remarkably similar, as expected.
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Figure 2.21: Unfolding diagram for the MM single cell. (a) The region
between the upper and lower lines, the Iapp axis, and the d = 1− εγ line
is where the dynamics are oscillatory. The bounds are calculated in the
text. (b) The dynamics in the parameter region above the curve and
left of the χδ

m
= 1− εγ line are oscillatory.
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Figure 2.22: Comparison between the oscillatory region of a single cell
and that of the coupled system. (a) The single cell bifurcation diagram
as in Figure 2.19 (b) but with dashed lines added. The ischemic cell
is self-oscillatory when its rest potential lies between the dashed lines.
(See text.) (b) The coupled cell bifurcation diagram as in Figure 2.5 (a).
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The MM model with k = 20 in Figure 2.23 (a) and (c) exhibits similar behavior

to the RHH model. Because of the loss of stability of the steady state in the single

system under changes in p, there, again, are two mechanisms for oscillation in

the coupled systems. The oscillatory region found from the single system matches

well with the coupled systems, only with a slight downward slope of the top line

differentiating the two pictures for χδ

m
< 1− εγ. In Figure 2.12 we see an extended

χδ

m
-axis. For the MM model with k = 6 in Figure 2.23 (b) and (d), we see an

excellent correspondence between the theoretical curve and the coupled systems

curve for χδ

m
< 1− εγ.

It is clear when comparing the two columns of Figure 2.23 which part of the

oscillatory region for k = 6 (right column) is due to the self-oscillation and which

part is due to the coupling of regions at different resting potentials. Since Figure

2.23 (d) has a region in parameter space that yields oscillations, it is clear that

an individual cell need not oscillate under increases in p to yield coupled cell

oscillations. This implies that the mechanism for coupled cell oscillations for this

model and small m relies primarily upon how the individual cell responds to an

applied current combined with a leak current rather than its dependence on changes

in p.

As shown in Figure 2.24 for the LRI model, there is an almost exact correspon-

dence between the curve derived from the single system in Figure 2.24 (a) and the

curve obtained with the coupled systems and small m (m = 0.1) in Figure 2.24 (b).

These results reaffirm the validity of Theorem 1.

2.11 Discussion

We have shown that excitable cells oscillate for certain ranges of applied and

leak currents, but the morphology of the oscillations in the LRI model is distinct

from those induced by a periodic current stimulus. This difference in morphology

stems from the suppression of the inward sodium current in the fixed applied current

situation so that the action potentials are driven only by the inward calcium current.

The fact that the oscillations in the coupled cell LRI model are driven by calcium
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Figure 2.23: Comparison between the region of oscillation based on the
applied and leak currents and the coupled systems with m = 0.1 in the
MM model. (a) k = 20. The solid line is the lower bound on V ∗

2 from
above for oscillations. The upper and lower dashed lines are at the
V ∗

2 -values between which region 2 is self-oscillatory (for all 0 < χδ

m
<

1 − εγ). (b)k = 6. The solid line is the lower bound on p from above
for oscillations. (c) The coupled systems with k = 20. (d) The coupled
systems with k = 6.
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comes from the steady state gating dependence on the transmembrane potential.

In Figure 2.25 the infinity curves for m, h, d and f are plotted. At the normal

steady state, the m gate is closed, while the h gate is open. Following a stimulus

that suddenly raises the transmembrane potential, the m gate rapidly opens with

time constant τm while the h gate begins to slowly close with a time constant τh.

Early in the action potential the h gate closes shutting off the sodium current. As

the transmembrane potential begins to rise from the sodium current, the potassium

and calcium gates are opened on a slower time scale. The d activation gate of the

calcium channel begins to slowly open, while the f inactivation gate closes even

more slowly, allowing a calcium current. Gate responses of potassium channels are

activated and potassium flows out of the cell in an outward current. The slow

change in the balance between the inward calcium current and outward potassium

current makes up the rest of the action potential in the LRI model. Finally, the

transmembrane potential returns to rest where the gates reset.

However, under the conditions studied here with a normal cell coupled to a cell

with elevated resting transmembrane potential, the dynamics of the normal gates

are altered. The resting transmembrane potential is slowly raised in the normal

cell due to coupling. If the resting transmembrane potential of the normal cell is

raised above -55mV, then the sodium current is never triggered, because the h gate

is never reset. On the other hand, the calcium curves, d∞ and f∞, are shifted and

provide a window where both gates are open for a region of V . For the oscillation

shown in Figure 2.14, the rest potential of the normal cell is raised to about -55mV

closing the h gate while the m gate remains closed, but at the same time the d gate

is opened while the f gate is also open, which activates the calcium current. This

is the calcium current that causes the autocatalytic increase in V .

In the RHH model the m∞ and h∞ curves are as shown in Figure 2.26. Since

h∞ is approximated by 0.85 − n∞, the h∞ curve does not asymptote to 1 or 0 as

V gets large negative or large positive, respectively. However, it is clear that there is

a substantial window where both m and h are activated. This leads to a sufficient

sodium current to achieve threshold and allow for an oscillatory action potential.
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Figure 2.24: Comparison between the region of oscillation based on the
applied and leak currents and the coupled system with m = 0.1 in the
LRI model. (a) The forced single cell oscillatory region. (b) The coupled
system oscillatory region.
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Figure 2.26: The infinity curves for RHH model. h∞ is the solid curve,
while m∞ is the dashed curve.

The LRI model does not have a sodium based upstroke at high resting membrane

potentials, but does allow for calcium to play that role, while the RHH model has

sodium upstrokes at higher resting potentials. It is not clear that these represent

actual differences between cardiac cells and neural cells or are merely differing

features of the models.

The enhancement of the calcium handling in the experiments of Kumar and

Joyner [16] may change the position of the gating curves. If the drugs were to shift

the calcium window to more negative potentials, the threshold needed to excite a

LRI cell through a calcium current would be reduced. If the d∞ curve were shifted

alone to more negative potentials, then not only would the cell be more excitable,

but also the calcium current would be larger. There is also the possibility that

the sodium gating curves are slightly affected. Even a slight increase in sodium

current window size could trigger a sodium upstroke rather than one induced only by

calcium or assist calcium in the upstroke. Since the LRI model does not incorporate

physiological mechanisms in the gating equations, the effect of the drugs cannot be

modeled in this system to verify which if any of the above mechanisms are valid for

the coupled system.
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2.12 Conclusion

A simple modification to the RHH model recreates several features of ischemic

tissue such as elevated transmembrane potential and shorter action potential du-

ration. We couple an ischemic cell following this type of ischemic modification

to a normal cell in three separate systems of ionics. We show that in all three

systems of ionics there is an open region in degree of ischemia versus coupling

conductance parameter space in which the normal cell oscillates. There exist

parameter regions in which coupled ischemic and normal cells oscillate, but when

these cells are uncoupled, they are individually stable. The ischemic cell while

uncoupled maintains an elevated, stable, inexcitable resting potential. The normal

cell is stable and excitable. We compare the coupled cell results to experiment

and show that the models may assist in locating previously unobserved oscillatory

behavior. As well, dynamics previously unreported for model SAN coupled to a

normal ventricular cell were located in coupling conductance versus size of oscillator

parameter space for an ischemic oscillator coupled to a normal cell.

If an ischemic cell is large relative to a normal cell, there is little feedback from

the normal cell to the ischemic cell. The normal cell reacts as a forced single cell

with the forcing in the form of an applied constant current and a leak current.

This observation leads to the small m limit theorem. This theorem is for general

ionic forms though the three sets of ionics we study here satisfy the theorem.

Even though the most physiological model yielded oscillatory behavior in certain

parameter regions, the nature of the oscillations was interesting. We briefly explain

why the upstroke of the LRI action potential was due to calcium when forced by

an applied current with a leak current present or while coupled to a depolarized

ischemic cell.



CHAPTER 3

ONE-DIMENSIONAL SPATIAL MODEL

3.1 Introduction

Experiments with strips of tissue described in the introductory chapter show

oscillations when part of the tissue is exposed to ischemic like conditions while

coupled to normal tissue. The experiments show that spontaneous oscillations

emerge from the border between ischemic and normal tissue, the border zone. In

this chapter we study a one-dimensional spatial model of an ischemic border zone,

and model the strip of tissue experiments using piecewise linear modified McKean

(MM) dynamics described in Section 2.5. MM dynamics are utilized for analytical

calculation. Existence of a steady state solution is shown for the MM dynamics

using a phase plane argument, while a super and subsolution argument is used

to prove existence and uniqueness of the steady state solution for more general

dynamics. Linear stability analysis is performed. Regions in parameter space where

the steady state solution is unstable are described in bifurcation diagrams. We give

a qualitative comparison of these results with the Picard experiment [26].

3.2 PDE Model

From cable theory [15] we write down a partial differential equation model for

an excitable medium in one spatial dimension as

Pm

(
Cm

∂V

∂t
+ Iion(V,w)

)
=

∂

∂x

(
1

ri(x) + re(x)

∂V

∂x

)
,

with separate equations for the recovery variables, w. Pm is the perimeter of

the membrane, Cm is the capacitance of the membrane, both constant, and ri(x)

and re(x) are the intercellular and extracellular resistivities, respectively. We take

re(x)
ri(x)

<< 1 meaning the extracellular medium provides little resistance relative to
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intercellular resistance, so that 1
ri(x)+re(x)

≈ 1
ri(x)

, and the only spatial variation in

resistance is due to intercellular resistance.

We scale space by the length of the strip of tissue, L, and time by the time

constant, CmRm, where Rm is the membrane resistivity, while rescaling parameters

to get a V equation (
∂V

∂t
+ F (V,w)

)
=

∂

∂x

(
D(x)

∂V

∂x

)
,

where D(x) = Rm

PmL2ri(x)
is a nondimensional conductance coefficient, and F (V,w) =

Iion/Rm. The degree of ischemia parameter P(x) is incorporated in the reaction

kinetics as a vector of spatially dependent parameters(
∂V

∂t
+ F (V,w,P(x))

)
=

∂

∂x

(
D(x)

∂V

∂x

)
.

Since the strips of tissue in experiments are finite and current does not flow out of

the ends of the tissue, we take no flux boundary conditions.

D(0)Vx(0) = 0 = D(1)Vx(1).

To represent the effectively discontinuous jump between the ischemic chamber and

normal chamber in experiments, we take the degree of ischemia parameter P(x)

and the conductivity coefficient D(x) to be piecewise constant

D(x) =

{
D1 0 < x < m,
D2 m < x < 1,

P(x) =

{
p0 0 < x < m,
p m < x < 1,

where D1, D2,p0 and p are constant and m denotes the position of the border

between ischemic and normal regions and is the percentage of normal tissue in the

domain (i.e., m → 1 means all tissue is normal, while m → 0 means all tissue is

ischemic.)

In the interest of using phase plane analysis to show existence of steady solutions

to the one-dimensional spatial model, we use a particularly simple two state model

of FitzHugh-Nagumo type [8, 9].
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∂V

∂t
= (D(x)Vx)x + f(V, P (x))− w, (3.1)

∂w

∂t
= ε(V − γw),

where f(V, P (x)) is a general cubic-like function of V with dependence on the scalar

parameter P = P similar to that described in Section 2.4 or 2.5 (i.e., increasing

resting potential as p increases eventually leading to inexcitability). Since (3.1) is

not defined at x = m, we require that a solution of (3.1) also satisfy limx→m− V =

limx→m+ V and limx→m− D(x)Vx = limx→m−D(x)Vx so that the transmembrane

potential and flux are continuous at x−m.

We suppose that

f(0, p0) = f(a, p0) = f(1, p0) = 0 ; 0 < a <
1

2

f(V, p0) < 0 ; 0 < V < a

f(V, p0) > 0 ; a < V < 1

f ′(0, p0) 6= 0 6= f ′(1, p0)∫ 1

0

f(V, p0)dV > 0

which guarantees excitability for nonischemic conditions [19]. In addition, we

assume that the dependence of f upon P satisfies

f(V ∗, 1) = 0 for some V ∗ > a (3.2)

f ′(V, 1) < 0 for all V (3.3)

df(V, P )

dP
≥ 0 for all V (3.4)

The first condition (3.2) guarantees a zero of f as P increases. The second

condition forces f to have a negative slope for all V for p sufficiently large. The

final condition ensures that at each point V , f is an increasing function of P . For

example, f(V, P ) = (1 − P )V (V − a)(1 − V ) + P (1 − V ) with V ∗ = 1, the MM
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model (2.6) with V ∗ = 1, and the RHH model (2.4) all satisfy the stated conditions.

Finally, we let γ be such that −f(V, p)+ 1
γ
V is strictly increasing and has a unique

zero.

3.3 Steady State Behavior

The steady state solution (V (x), w(x))) to (3.1) satisfies the equations,

0 = (D(x)Vx)x + f(V, P (x))− w,

0 = V − γw,

with boundary conditions D(0)Vx(0) = D(1)Vx(1) = 0. We write this as a second

order ordinary differential equation in V

0 = (D(x)Vx)x + f(V, P (x))− 1

γ
V, (3.5)

which we rewrite as a system of first order equations in space and study in the

phase plane as

D(x)Vx = U, (3.6)

Ux = (−f(V, P (x)) +
1

γ
V ),

with D(x) and P (x) piecewise constant. Since −f(V, p)+ 1
γ
V is strictly increasing it

has a unique zero at V = φ(P (x)). Figure 3.1 shows the phase plane for P (x) = p0.

The first order system (3.6) then has a unique equilibrium at (V, U) = (φ(P (x)), 0).

The stability of the equilibrium is found by linearizing about the equilibrium and

solving the characteristic equation for the eigenvalues, which are

λ1,2 = ± 1√
D

√
−f ′(φ(P ), P ) +

1

γ
.

Since −f(V, P ) + 1
γ
V is strictly increasing in V , −f ′(V, P ) + 1

γ
is positive for all

V . Thus, the equilibrium is a saddle point with a stable and an unstable manifold.

These manifolds are calculated explicitly as solutions to (3.5). Multiplying each

side of (3.5) by DVx and integrating yields
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U

V0V

Figure 3.1: Phase plane for the system (3.6) with P (x) = p0 and φ(p0) = 0.
V0 denotes the intersection of the V -axis by the steady state solution
trajectory with V (0) = V0.

DVx = ±
√

2D

√∫
(−f(V, P )Vx +

1

γ
V Vx) dx

= ±
√

2D

√∫ V

K

(−f(s, p) +
1

γ
s) ds

The constant, K, is chosen depending upon which solution is desired. For the stable

(unstable) manifold, as x → −∞(x → ∞) with P = p0, DVx should go to 0 and

V should go to φ(p0), so K = φ(p0). Solutions crossing the V -axis at V = V0

are represented by K = V0. These trajectories may be thought of as the solution

to the boundary value problem (3.5) with boundary conditions DVx(0) = 0 and

V (0) = V0. However, there is no way to satisfy DVx(1) = 0 and DVx(0) = 0 with

such a trajectory.

With piecewise constant P (x) and D(x), φ(P (x)) has two values depending on

the point in space, so there are two steady states of the system (3.6)

(φ(P (x)), 0) =

{
(φ(p0), 0) x < m
(φ(p), 0) x > m.

Without loss of generality we let φ(p0) = 0 and φ(p) = V (see Figure 3.2).
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Define ΓL(x, V L
0 ) as the trajectory in phase space following dynamics for 0 <

x < m with V (0) = V L
0 and U(0) = 0.

Similarly, let ΓR(x, V R
0 ) be the trajectory in phase space following dynamics for

m < x < 1 with V (1) = V R
0 and U(1) = 0. Notice that ΓL(x, V L

0 ) is a monotonically

increasing function in the (V, U)-plane, and ΓL(x, V R
0 ) is a monotonically decreasing

function in the (V, U)-plane for U > 0 and V ∈ [0, V ] (see Figure 3.2). There exists

a solution to (3.5) with no flux boundary conditions if for some 0 < V L
0 < V R

0 < V ,

ΓL(m,V L
0 ) = ΓR(1 − m,V R

0 ). Consider ΓL(m,V L
0 ) as a curve parameterized by

V L
0 ∈ [0, V ]. Then

(a) ΓL(m,V L
0 ) is continuous in V L

0 .

(b) On ΓL(m, 0), V ≡ 0 and U ≡ 0.

(c) The V component of Γ(m,V L
0 ) is increasing for increasing V L

0 .

Property (a) holds because each component of ΓL(m,V L
0 ) depends continuously

on V L
0 (V -component depends continuously on initial conditions). Property (b)

holds because (0,0) is a fixed point of (3.6). Property (c) holds because (3.6) is

autonomous on 0 < x < m.

We also consider ΓR(1−m,V R
0 ) as a curve parameterized by V R

0 ∈ [0, V ]. Then

(a) ΓR(1−m,V R
0 ) is continuous in V R

0 .

(b) On ΓR(1−m, 1), V ≡ V and U ≡ 0.

(c) The V component of Γ(1−m,V R
0 ) is decreasing for decreasing V R

0 .

The U-component of each of ΓL(m,V L
0 ) and ΓR(1 − m,V R

0 ) as it depends on

V L
0 and V R

0 , respectively, is bounded below by 0. The U-component of ΓL(m,V L
0 )

is bounded above by the unstable manifold coming from (0,0) for U > 0, and the

U -component of ΓR(1−m,V R
0 ) is bounded above by the stable manifold coming into

(V̄ , 0) for U > 0. This means that ΓL(m,V L
0 ) and ΓR(1−m,V R

0 ) are forced to cross

at least once in the (V, U) plane. This yields the desired solution to (3.5). In Figure

3.2, a caricature of the curves ΓL(m,V L
0 ) and ΓR(1−m,V R

0 ) parameterized by V L
0
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V

U

V

m

1-m

V0

L
V0

R

Figure 3.2: Phase plane for the system (3.6) for the piecewise constant
P (x) and D(x). The vertical dashed line, V = V , is the U-nullcline for
x > m, the U-axis is the U-nullcline for x < m, and the V -axis is the
V -nullcline for all of x. The solid curves intersecting at the origin and at
(V, U) = (V̄ , 0) are the stable and unstable manifolds of the unique steady
state for x < m and x > m, respectively. The dashed curve originating at
V L

0 and ending at V R
0 represents a solution to (3.5).

and V R
0 are shown and denoted by thick lines and m and 1−m, respectively. The

solution trajectory is the dashed curve above the V -axis. An m amount of space is

traversed by the left trajectory followed by an 1−m amount of space traversed by

the right trajectory. At the corner where ΓL(m,V L
0 ) and ΓR(1−m,V R

0 ) intersect,

x = m. At x = m, both V and U = D(x)Vx are continuous, as required, though

not differentiable. Uniqueness is guaranteed with monotonicity of the m and 1−m
curves, but monotonicity of the m and 1−m curves is not guaranteed for a general

cubic like f . In the following section, a super and subsolution technique is used to

show existence and uniqueness.
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3.4 Existence and Uniqueness of the

Steady State Solution

To establish the existence and uniqueness of the solution to (3.5) with no flux

boundary conditions, we first consider the general equation defining ′ ≡ ∂
∂x

.

0 = (D(x)u′)′ + g(u, x) (3.7)

with boundary conditions

u′|x=1
x=0 = 0

where g : R × [0, 1] → R is Lipschitz continuous in u with a unique zero u = z(x)

and is piecewise continuous and bounded in x and D(x) is discontinuous.

Since g is potentially discontinuous in x, we consider the weak formulation of

(3.7) and seek a weak solution u ∈ H1([0, 1]) to

∫ 1

0

Du′v′ dx =

∫ 1

0

g(u, x)v dx (3.8)

where this equation holds for all v ∈ H1([0, 1]). Weak supersolutions u and

subsolutions u of (3.7) satisfy the differential inequalities∫ 1

0

Du′v′ dx ≥
∫ 1

0

g(u, x)v dx (3.9)∫ 1

0

Du′v′ dx ≤
∫ 1

0

g(u, x)v dx (3.10)

where these inequalities hold for all v ∈ H1([0, 1]) and v ≥ 0. For example, u = z(1)

and u = z(0) are super and subsolutions of (3.7), respectively.

Theorem 1 Suppose there exist weak super and subsolutions to (3.7) such that

u ≤ u a.e. in [0, 1].

Then there exists a weak solution u(x) to (3.7) such that

u ≤ u ≤ u a.e. in [0, 1]
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Proof: We proceed following Evans [7]. Fix λ so large that g(u, x) + λu is

nondecreasing in u. This is possible since the slope of g is bounded. Write u0 = u,

and then given uk(k = 0, 1, 2, ...) inductively define uk+1 ∈ H1([0, 1]) to be the

unique weak solution of the linear boundary value problem

Luk+1 = −(Du′)′ + λuk+1 = g(uk, x) + λuk (3.11)

with boundary conditions

u′|x=0,1 = 0 (3.12)

The unique weak solution for Lu = f(x) with u′|x=0,1 is

u(x) =

∫ x

0

u2(x)u1(ξ)

D(ξ)W (ξ)
f(ξ) dξ +

∫ 1

x

u1(x)u2(ξ)

D(ξ)W (ξ)
f(ξ) dξ

where u1 solves the homogeneous equation Lu = 0 and u′|x=0 = 0 and u2 solves the

homogeneous equation Lu = 0 and u′|x=1 = 0. W (ξ) = u′1(ξ)u2(ξ)− u1(ξ)u
′
2(ξ) is

the Wronskian.

We claim:

u = u0 ≤ u1 ≤ u2 ≤ ... ≤ uk ≤ ...

For k = 0, from (3.11)∫ 1

0

Du′1v
′ + λu1v dx =

∫ 1

0

g(u0, x)v + λu0v dx.

Subtracting this from (3.10) and recalling that u0 = u yields∫ 1

0

D(u0 − u1)
′v′ + λ(u0 − u1)v dx ≤

∫ 1

0

(g(u0, x)− g(u0, x))v dx = 0.

Let v = (u0 − u1)
+ ∈ H1([0, 1]) and v ≥ 0 where u+ =

{
u u ≥ 0
0 u ≤ 0

. Then

∫ 1

0

D(u0 − u1)
′[(u0 − u1)

+]′ + λ(u0 − u1)(u0 − u1)
+ dx ≤ 0

and over the part of [0, 1] where {u0 ≥ u1} we get∫
{u0≥u1}

D[(u0 − u1)
′]2 + λ(u0 − u1)

2 dx ≤ 0

so that u0 ≤ u1 a.e. in [0,1].
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Now assume inductively

uk−1 ≤ uk a.e. in [0, 1].

From (3.11) we find∫ 1

0

Du′k+1v
′ + λuk+1v dx =

∫ 1

0

g(uk, x)v + λukv dx (3.13)

and ∫ 1

0

Du′kv
′ + λukv dx =

∫ 1

0

g(uk−1, x)v + λuk−1v dx. (3.14)

Subtract (3.13) from (3.14), and set v = (uk − uk+1)
+. We deduce∫

{uk≥uk+1}
D[(uk − uk+1)

′]2 + λ(uk − uk+1)
2 dx

=

∫ 1

0

[(g(uk−1, x) + λuk−1)− (g(uk, x) + λuk)](uk − uk+1)
+ dx ≤ 0,

the last inequality holding because uk1
≤ uk and g(u, x) + λu is nondecreasing.

Therefore, uk ≤ uk+1 a.e. in [0,1] proving the claim.

Now we show that uk is bounded above by u a.e. in [0,1] for k = 0, 1, 2, ... By

assumption u = u0 ≤ u. Assume uk ≤ u a.e. in [0,1] for some k. Subtracting (3.9)

from (3.13) and taking v = (uk+1 − u)+, we get∫
{uk+1≥u}

D[(uk+1 − u)′]2 + λ(uk+1 − u)2 dx

≤
∫ 1

0

[(g(uk, x) + λuk)− (g(u, x) + λu)](uk+1 − u)+ dx ≤ 0.

Thus, uk+1 ≤ u a.e. in [0,1].

Now we have an increasing sequence bounded below by u and above by u a.e.

in [0,1], so that

u(x) = lim
k→∞

uk(x)

exists for a.e. x. Furthermore we have uk → u in L2([0, 1]) as guaranteed by the

Dominated Convergence Theorem. Since we have

||g(uk, x)||L2([0,1]) ≤ C(||uk||L2([0,1]) + 1)

from the bounded slope of g with respect to u, we get from the weak formulation

of the linear boundary value problem (3.11) that ||uk||H1([0,1]) < ∞ for each k
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including the supremum so that the sequence uk weakly converges in H1([0, 1]) to

u(x) ∈ H1([0, 1])

We verify that u is a weak solution to (3.7). Fix v ∈ H1([0, 1]). Then taking

the limit k →∞ of (3.13) we find∫ 1

0

Du′v′ + λuv dx =

∫ 1

0

g(u, x)v + λuv dx.

Canceling the terms with λ confirms that∫ 1

0

Du′v′ dx =

∫ 1

0

g(u, x)v dx,

as desired.

Since H1([0, 1]) ⊂ C([0, 1]) [22], u(x) ∈ C([0, 1]). We also verify that the flux

D(x)u′ is continuous by integration by parts while considering a discontinuity in D

at x0. Multiplying (3.7) by a test function v ∈ H1([0, 1]) and integrating by parts

on each side of x0 yields

D(x)u′(x)|x=x+

0

x=x−
0

+

∫ 1

0

Du′v′ dx =

∫ 1

0

g(u, x)v dx

Since u is a weak solution of (3.7), D(x)u′(x)|x=x+

0

x=x−
0

= 0, so that D(x)u′ is continuous

at x0. It is worth noting that outside of discontinuities in g and D, the solution

u(x) is a classical solution (i.e., u ∈ C2([0, 1])). This shows the equivalence between

the weak solution described here and the solution found in Section (3.3), so that

the phase plane solution in indeed unique.

3.5 Explicit Calculation of the Steady

State Solution

Recall that the function f(V, P (x) defined in Section 2.5 for the modified McK-

ean (MM) model is

f(V, P ) =


−V + P V ≤ a

2
+ P

k

σV + η a
2

+ P
k
≤ V ≤ 1+a

2

−V + 1 1+a
2
≤ V

where

σ =
2Pk − 2P − k

2P − k
,
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and

η =
2P + ak − aPk − Pk

2P − k
.

To find a solution of (3.5) on 0 < x < 1 we construct a solution VL(x) on

0 < x < m and VR(x) on m < x < 1 and then require continuity of V and U .

As discussed in Section 3.3 and shown in Figure 3.2, there exists a unique

steady state for each region in space 0 < x < m and m < x < 1, φ = 0 and φ = V̄ ,

respectively. Solutions corresponding to 0 < x < m, VL(x), are matched smoothly

to solutions of m < x < 1, VR(x). Toward this end each solution is calculated

separately leaving open VL(0) = V0 and VR(1) = Vf conditions to be found while

achieving continuity of the solution and continuity of the flux.

Define ξ1 and ξ2 by VL(ξ1) = a
2

and VR(ξ2) = a
2
+ p

k
. If they exist, ξ1 ≤ ξ2. From

the definition of f(V, P (x)), φ(P ) never exceeds (1+a)
2

, so we need not consider that

branch of the dynamics when calculating the steady state solutions.

The steady state solutions are classified into four cases:

• Case I: 0 < ξ1 < ξ2 < 1; (V0 <
a
2
, Vf >

a
2

+ p

k
)

• Case II: 0 < ξ2 < 1; (V0 >
a
2
, Vf >

a
2

+ p

k
)

• Case III: 0 < ξ1 < 1; (V0 <
a
2
, Vf <

a
2

+ p

k
)

• Case IV: no ξ1, ξ2; (V0 <
a
2
, Vf <

a
2

+ p

k
)

The steady states are further classified into subcases depending on the interval

in which m is located (i.e., Case I, Subcase I: 0 < m < ξ1). The results of the

steady state calculations are found in Appendix C. An example of a steady state is

shown in Figure 3.3. With the steady states calculated, we linearize the full partial

differential system (3.1) about them and determine their linear stability.

3.6 Stability of the Steady State Solution

The question now is the linear stability of the steady state solution, (V ∗, w∗) =

(φ(x), 1
γ
φ(x)) of (3.1), found in the previous section. We linearize the system (3.1)
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V(p)*

0 1m x

φ

Figure 3.3: An example of a steady state solution to (3.1) with MM
dynamics. The dashed line φ = V ∗(p) is the steady state if m = 0, while
the φ = 0 line is the steady state for m = 1. The solid curve is the steady
state with m = 0.5. The solution is not differentiable at x = m.

about (φ(x), 1
γ
φ(x)). We perturb the steady state solution with a small amplitude

function (δV̂ (x, t), δŴ (x, t)), where delta is small,

V (x, t) = φ(x) + δV̂ (x, t),

W (x, t) =
1

γ
φ(x) + δŴ (x, t)

and substitute into (3.1) to get

δV̂t(x, t) = (Dφx(x))x + (DδV̂x(x, t))x + f(φ(x) + δV̂ (x, t), p)−
1

γ
φ(x)− δŴ (x, t)

δŴt(x, t) = ε(φ(x) + δV̂ (x, t)− γ(
1

γ
φ(x) + δŴ (x, t)))
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Linearizing the nonlinearity and using that φ(x) solves the steady state problem,

the linearized system reduces to

V̂t(x, t) = (DV̂x)x(x, t) + f ′(φ(x), p)V̂ (x, t)− Ŵ (x, t) (3.15)

Ŵt(x, t) = ε(V̂ (x, t)− γŴ (x, t))

yielding equations for the perturbation functions.

Now we look for an eigenvalue problem of the linearized system (3.15) by

substituting the form V̂ (x, t) = eλtv(x) and Ŵ (x, t) = eλtw(x). Notice that

Re(λ) < 0 are associated with perturbations of the steady state solution which

decay, so that if the Re(λ) < 0 for all λ, the steady state solution is stable. Those

that have Re(λ) > 0 are associated with perturbations of the steady state solution

which grow, so that if Re(λ) > 0 for any λ, the steady state solution is unstable.

Substituting in V̂ (x, t) = eλtv(x) and Ŵ (x, t) = eλtw(x) into (3.15) returns the

ordinary differential system of equations in space

λv = (Dvx)x + f ′(φ(x), p)v − w

λw = ε(v − γw)

so

w =
εv

λ+ εγ

and

(Dvx)x +

[
f ′(φ(x), p)− λ− ε

λ+ εγ

]
v = 0 (3.16)

with the boundary conditions v′(0) = v′(1) = 0. The eigenpairs (λ, v(x)) satisfying

(3.16) are sought. Notice that (3.16) is a Sturm-Liouville problem of the form

(Dvx)x + [ψ(x) + µ]v = 0 (3.17)

where the potential function is ψ(x) = f ′(φ(x), p) and eigenvalues are given by µ

where
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µ =

(
−λ− ε

λ+ εγ

)
.

A similar analysis has been done for a semi-infinite domain and FitzHugh-

Nagumo nonlinearity in [27],[28].

In this section we state general properties of eigenvalues of Sturm-Liouville

problems of the form (3.17) [33]. Since the sign of the eigenvalues are important,

bounds on eigenvalues based on the potential function are proven.

Properties of Sturm-Liouville Eigenvalues:

The eigenvalues of (3.17) with boundary conditions vx(0) = vx(1) = 0 are real,

discrete and form an ordering such that

µ0 < µ1 < µ2, ...

and

lim
n→∞

µn = ∞.

We narrow the region where the eigenvalues of interest exist based on the sign

of ψ(x) with the following lemma.

Lemma 1 Since D(x) > 0, if ψ(x) ≤ 0, then µ ≥ 0. Furthermore, µ = 0 only if

ψ(x) ≡ 0 and vx ≡ 0

Proof:

Write (3.17) as

(Dvx)x + ψ(x)v = −µv.

Multiply both sides by v and integrate over [0,1] integrating the second order

term by parts to get

−
∫ 1

0

Dv2
x dx+

∫ 1

0

ψ(x)v2 dx = −µ
∫ 1

0

v2 dx. (3.18)

Everything on the left side is less than or equal to 0 so that µ ≥ 0. Notice µ = 0

only if ψ(x) ≡ 0 and vx ≡ 0 so that the eigenfunction must be a constant. 2
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The following lemma is useful in bounding the eigenvalues below even if the

potential function is only bounded above by a positive constant.

Lemma 2 If ψ(x) ≤M for some constant M > 0, then µ ≥ −M .

Proof:

From (3.18) in the above proof, we write

−
∫ 1

0

Dv2
x dx+

∫ 1

0

ψ(x)v2 dx = −µ
∫ 1

0

v2 dx

from which we get

−
∫ 1

0

Dv2
x dx+M

∫ 1

0

v2 dx ≥ −µ
∫ 1

0

v2 dx

and

µ ≥ −M +

∫ 1

0
Dv2

x dx∫ 1

0
v2 dx

≥ −M.2

The relationship between µ and λ is basic to understanding the stability of the

steady state solution in (3.1). The eigenvalues of the Sturm-Liouville problem, µ,

have the properties described in the previous section, while the sign of Re(λ) deter-

mines whether perturbations to the steady state solution of (3.1) grow (Re(λ) > 0)

or decay ((Re(λ) < 0). The following calculation and graphs in Figures 3.4 and 3.5

describe the transformation between the two parameters.

µ = −λ− ε

λ+ εγ
(3.19)

so that

λ =
−(µ + εγ)±√(µ− εγ)2 − 4ε

2
.

Notice that λ is real provided

µ > 2
√
ε+ εγ

or

µ < −2
√
ε+ εγ.
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If the above inequalities are not satisfied, then at µ = −εγ, Re(λ) = 0. This

crossing of the µ-axis with λ imaginary always occurs (rather than occurring only

when λ is real) because γ > 1√
ε
.

The asymptotic Re(λ) values are −µ,−εγ. For large negative µ (µ < −1/γ),

Re(λ) has one negative and one positive value, but for µ > −εγ, both values of

Re(λ) are negative. Therefore, Re(λ) < 0 for all λ if and only if µ > −εγ for each

µ. If there exists a µ < −εγ, then the steady state of the system (3.1) with MM

dynamics is unstable. Similarly, if there does not exist a µ < −εγ , then the steady

state of the system (3.1) with MM dynamics is stable. From the Sturm-Liouville

theory it is sufficient to show the smallest µ is greater than (or less than) −εγ to

ensure stability (or instability) of the steady state.

We calculate the eigenfunctions and eigenvalues much like the steady state

functions. The same four cases and their subcases apply. The eigenvalues are

solved for from characteristic equations which come out of the matching. The

calculations utilize Lemma 1 and Lemma 2 and the results are found in Appendix

D.

In Figures 3.6 and 3.7, we show several regions of instability corresponding to

different m-values in the p vs. D2 parameter plane. The boundaries in these figures

represents curves in parameter space where the Re(λ) = 0 or equivalently where

the lowest Sturm-Liouville eigenvalue µ0 = −εγ. In Figure 3.6, k = 6, and so the

ischemic model dynamics are not self-oscillatory under increases in p. Only for p

sufficiently high and coupling in the ischemic region sufficiently close to that of the

normal region is the full system unstable and then only for an intermediate range of

m-values. However, in Figure 3.7 the ischemic model dynamics are self-oscillatory

under increases in p. This leads to a much larger region of instability and regions

which exist for a much broader range of m-values. For m small, the region of

instability due to the self-oscillatory nature of the ischemic dynamics is the band

of p-values between 0.22 and 0.58 for all D2-values. As m increases, the region

of instability grows beyond the self-oscillatory band. Comparing the regions in

Figures 3.6 and 3.7, we can separate the instability regions into their mechanisms
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Figure 3.5: Plot of the Re(λ) as a function of µ from (3.19) for |µ| larger
than Figure (3.4). In a) λ− crosses 0 at µ = −1/γ and asymptotes to
Re(λ) = −εγ. In b) λ+ asymptotes to Re(λ) = −εγ and remains below 0.
ε = 0.01, γ = 0.2
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Figure 3.6: Instability regions of the in p and D2 for several values of m
and for k = 6 with D1 = 0.1. Instability regions exist in the upper right
corner of the figure.
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and for k = 8 with D1 = 0.1. The shaded region is the region of instability
for m = 0.4
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of instability. One mechanism is the self-oscillatory ischemic region driving os-

cillations, and the other mechanism is oscillations due to the coupling of two

otherwise stable, quiescent regions. As m continues to increase, the instability

region decreases. For m sufficiently large and the ischemic coupling strong enough

the normally self-oscillatory dynamics in the band of p-values stabilizes. Only with

very weak coupling for m large does the ischemic region oscillate.

3.7 Results

In Figure 3.8 a spatial plot, a phase plot, and a time plot are shown for parameter

choices yielding an unstable steady state solution to (3.1). The spatial plot is a

snapshot in time, t0, of an oscillatory solution. That this solution is quite close

to the steady state solution is observed in the phase plot as the thick line lying

almost exactly along the dashed w-nullcline. The star and the circle represent

V (1, t0) and V (0, t0), respectively, while the asterisk represents V (m, t0). The

two loops in the phase plot are the trajectories parameterized by time in phase

space of the two spatial endpoints. The thin lines on the phase plot represent the

nullclines of the uncoupled (ODE in time) systems. The upper curve is with p = 0.8,

while the lower one is p = 0. The loops in the phase portrait do not follow what

would be the ODE dynamics due to the coupling. In fact, each of the two ODE

dynamics separately would not be oscillatory. The lower V -nullcline and w-nullcline

intersection indicates stability with excitability, while the upper V -nullcline and

w-nullcline intersection indicates stability with inexcitability. So uncoupled, these

two regions would be stable, but coupled together, oscillations ensue. The time

plot in the bottom of Figure 3.8 shows this oscillation for transmembrane potential

at x = 0, m, and 1.
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Figure 3.8: Spatial plot, phase plot, and time plot for parameter choices
yielding an unstable steady state solution to (3.1) (p = 0.8, k = 8, D1 =
0.1, D2 = 0.1, m = 0.3). The spatial plot shows the transmembrane
potential at a point in time. The closed loops in the phase plot are
parameterizations of time at the end of the normal tissue (x = 0 − ?)
and the end of the ischemic tissue (x = 1 − ◦). The curve lying almost
exactly on V = 1

γ
, the w-nullcline, is a parameterization of space for the

fixed time. Notice where the x = m - * sits on that curve. The time
plot shows the oscillation at the three points x = 0, m, 1. The position of
the symbols in time correlates with the position in time in the other two
plots.
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3.8 Comparison with Picard Experiment

In the Picard experiment, electrodes were placed at either end of the cardiac

strip, one in the ischemic region and one in the normal region. A recording of

a spontaneous rhythm is shown in Figure 3.9 with measurements from each end

along with the time plots from Figure 3.8 of the two spatial endpoints. The baseline

transmembrane potential of the ischemic region in both the experimental and model

plots is raised. The amplitude of the spontaneous action potentials that occur

within the ischemic region of both the experimental and model plots is greatly

reduced. The frequencies for the experimental and model plots are comparable,

but this is coincidental and not mechanistic. The model seems to exhibit a slow

depolarizing rise in transmembrane potential while there apparently is none in the

experimental plot.

3.9 Short Strip Limit

It is useful to study an approximation of experimental relevance. In the limit

that the coupling coefficient is large, possibly due to the length of tissue prepa-

ration being short (but still reasonable to model as a continuum), the following

approximation is relevant.

Claim 1 Let z : R → Rn, y : [a, b] × R → Rn, and F : Rn × [a, b] → Rn be such

that
dz

dt
=

∫ b

a

F (z, x) dx

has periodic solutions, then

∂y

∂t
=

1

ε
D
∂2y

∂x2
+ F (y, x) (3.20)

with boundary conditions ∂y

∂x
|x=a = ∂y

∂x
|x=b = 0 has oscillatory solutions for ε << 1

and D ∈ Rn × Rn.

We explore this claim using a perturbation argument. Since ε is small, we write a

perturbation expansion in powers of ε. y(x, t) has the representation in powers of ε
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Figure 3.9: Qualitative comparison between (a) a typical recording
of spontaneous oscillations in the Picard experiment and (b) the one-
dimensional spatial model using MM dynamics. In both the experiment
and the model, the ischemic zone (AZ) produces short action potentials
returning to an elevated baseline, while the normal zone (NZ) has
normal action potentials returning to a normal baseline. This particular
recording was made in the presence of 1µM bimakalim which tended to
increase the occurrence of spontaneous rhythms. The frequency of the
oscillation is about 10Hz in the experiment.



81

y(x, t) = y0(x, t) + εy1(x, t) + ε2y2(x, t) + ... (3.21)

We multiply (3.20) by ε so that the lowest order term is order 1.

ε
∂y

∂t
= D

∂2y

∂x2
+ εF (y, x)

Substituting in the expansion of y from (3.21) we get the first order ordinary

differential equation in space

D
∂2y0

∂x2
= 0

with boundary conditions ∂y0

∂x
|x=a = ∂y0

∂x
|x=b = 0, which has the undetermined

solution y0(x, t) = y0(t). The order ε equation is

D
∂2y1

∂x2
=
∂y0

∂t
− F (y0 + εy1 + ..., x)

with boundary conditions ∂y1

∂x
|x=a = ∂y1

∂x
|x=b = 0. We expand F about the y0(t)

solution to get the equation

D
∂2y1

∂x2
=
∂y0

∂t
− F (y0, x)− εF ′(y0, x)y1 − ...

where F ′ is the Jacobian of F . Dropping the higher order terms yields

D
∂2y1

∂x2
=

∂y0

∂t
− F (y0, x), (3.22)

and to guarantee a solution, y1, exists, by the Fredholm Alternative Theorem [14]

the right hand side of the equation must be orthogonal to the nullspace of the

adjoint of the D ∂2

∂x2 operator subject to boundary conditions. Since this operator is

self-adjoint including the boundary conditions, we know y0(t) spans this nullspace.

So for a solution, y1, to exist the following equation must be satisfied
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∫ b

a

(
∂y0

∂t
− F (y0, x)

)
y0 dx = 0,

so that

∂y0

∂t
=

∫ b

a

F (y0, x) dx. (3.23)

This is an equation for the first order solution to the partial differential equation

(3.20). From the assumptions, this equation has a periodic solution.

By substituting (3.23) into (3.22), we see that the ε order solution of (3.20)

solves

D
∂2y1

∂x2
=

∫ b

a

F (y0, x) dx− F (y0, x)

where the right hand side is the deviation in x from the average behavior of the

reaction term.

For example, let y = (V, w)T and consider the system (3.1) with a constant D

large and MM dynamics for f . The integral over [0,1] of the function representing

MM dynamics is∫ 1

0

F (y, P (x)) =

∫ m

0

F (y, p0) dx+

∫ 1

m

F (y, p) dx = mF (y, p0) + (1−m)F (y, p).

This is a homotopy between the ischemic and normal dynamics with m the homo-

topy parameter. The dynamics for the order one solution come from choosing an m

which fixes the homotopy parameter. The first order solution y0 = (V0, w0)
T then

satisfies the ODE in time(
V0

w0

)
t

=

(
mf(V0, p0) + (1−m)f(V0, p)− w0)

ε(V0 − w0)

)
(3.24)

and

mf(V, 0) + (1−m)f(V, p) =
−V + (1−m)p V ≤ a

2

(−1 + 2m)V − am+ (1−m)p a
2
≤ V ≤ a

2
+ p

k

(m+ (1−m)σ)V − am+ (1−m)η a
2

+ p

k
≤ V ≤ 1+a

2

−V + 1 1+a
2
≤ V
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where

σ =
2pk − 2p− k

2p− k
,

and

η =
2p+ ak − apk − pk

2p− k
.

Figure 3.10 shows the nullclines of (3.24) for m = 0,0.7, and 1 and for p = 0.8

and k = 6. The steady state when m = 0.7 is unstable yielding oscillatory solutions

to (3.24), while a fully ischemic dynamic (m = 0) or a fully normal dynamic (m = 1)

has a stable steady state.

The mechanism of this oscillation is different here than in Theorem 1. Here the

time dependent first order solution oscillates because of average reaction dynam-

ics. In Theorem 1, the coupled cell oscillation is due to an applied current with

appropriate leak from the ischemic cell driving the normal cell.

3.10 Conclusion

Using a modified McKean piecewise linear model of cardiac transmembrane

ionics, a model strip of tissue oscillates when part of the tissue has an increased

degree of ischemia. Parameter regions in relative size of ischemic tissue, con-

ductance through ischemic tissue, and degree of ischemia are found where these

oscillations exist. Mathematically these regions relate to instability of the steady

state solution. The existence of a steady state solution is shown graphically in a

phase plane for a general two-variable model. We state and prove a theorem using

super and subsolutions shows existence and uniqueness of steady solutions following

dynamics with more general inhomogeneities beyond that used for the MM model.

For certain parameter regions where the model strip of tissue oscillates, if the tissue

is cut at the membrane dividing ischemic and normal regions, each region would

be independently stable. The normal region would recover to its stable, uniform,

excitable rest state, while the ischemic region would return to its stable uniform,

inexcitable rest state.
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Figure 3.10: Nullclines for the first order problem (3.23) with
m=0,0.6,and 1 and p = 0.8 and k = 6.
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The appearance of oscillations initiating at the border between normal and

ischemic tissue is explained by referring to the phase plot in Figure 3.8. The

transmembrane potential for x < m is pulled up so that the values of V at x closest

to m are the most superthreshold. There is a balance between the superthreshold

points exciting and their being restrained by coupling with points following ischemic

dynamics. The direction of force of each of these regions of points is also dependent

on the state of recovery of the respective system.

We compare the MM model results with the Picard experiment. There are

regions of model parameters that allow for oscillatory behavior, and these oscilla-

tions have qualitative similarities to the experimental result. The action potential

amplitude in the ischemic part of the tissue is greatly reduced from normal tissue

levels. The baseline membrane potential is elevated or depolarized from the normal

tissue levels. The fact that a two-variable system captures these features leads us to

believe that the mechanism of oscillations occurring from elevated resting potentials

and decoupling in ischemic tissue coupled to normal tissue is generic and robust.



APPENDIX A

LOU-RUDY I MODEL

The equations and parameters for the Luo-Rudy Model used in Chapter 2.

Parameter Name Symbol Value
Intracellular Potassium Ki 145mM
Extracellular Sodium Nao 140mM
Intracellular Sodium Nai 18mM
% of Sodium Potassium PRNaK 0.01833
Ideal Gas Constant R 8.315J mol−1·K−1

Temperature T 310K
Faraday’s Constant F 96.49 ×103 C· mol−1

Variable Name Symbol
Transmembrane potential V
Sodium Activation Gating Variable m
Sodium Fast Inactivation Gating Variable h
Sodium Slow Inactivation Gating Variable j
Calcium Activation Gating Variable d
Calcium Inactivation Gating Variable f
Potassium Activation Gating Variable x
Intracellular Calcium Cai

Nernst Potential Symbol Value
Sodium VNa 54.4mV
Calcium VSi 7.77− 13.0287 log(Cai)
Potassium VK

RT
F

log((Ko + PRNaKNao)/(Ki + PRNaKNai))
Potassium VK1

RT
F

log(Ko/Ki)
Potassium VKp VK1
Background Vb -59.87
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Probabilities for Gating Variables
For V <-40

ah = 0.135 exp((80 + V )/(−6.8))
aj = (−1.2714× 105 exp(0.2444V )−

3.474× 10−5 exp(−0.04391V ))·
(V + 37.78)/(1 + exp(0.311(V + 79.23)))

bh = 3.56 exp(0.079V ) + 3.1× 105 exp(0.35V )
bj = 0.1212 exp(−0.01052V )/(1 + exp(−0.1378(V + 40.14)))

For V ≥ 40
ah = 0
aj = 0
bh = 1/(0.13(1 + exp((V + 10.66)/(−11.1))))
bj = 0.3 exp(−2.535× 10−7V )/(1 + exp(−0.1(V + 32)))

For all V
am = 0.32(V + 47.13)/(1− exp(−0.1(V + 47.13)))
bm = 0.08 exp(−V/11)
ad = 0.095 exp(−0.01(V − 5))/(1 + exp(−0.072(V − 5)))
bd = 0.07 exp(−0.017(V + 44))/(1 + exp(0.05(V + 44)))
af = 0.012 exp(−0.008(V + 28))/(1 + exp(0.15(V + 28)))
bf = 0.0065 exp(−0.02(V + 30))/(1 + exp(−0.2(V + 30)))

For V >-100
xi = 2.837(exp(0.04(V + 77))− 1)/

((V + 77) exp(0.04(V + 35)))
For V ≤ -100

xi = 1
ax = 0.0005 exp(0.083(V + 50))/(1 + exp(0.057(V + 50)))
bx = 0.0013 exp(−0.06(V + 20))/(1 + exp(−0.04(V + 20)))
ak1 = 1.02/(1 + exp(0.2385(V − VK1 − 59.215)))
bk1 = (0.49124 exp(0.08032(V − VK1 + 5.476))+

exp(0.06175(V − VK1 − 594.31)))/
(1 + exp(−0.5143(V − VK1 + 4.753)))

Kp conductance Kp = 1/(1 + exp((7.488− V )/5.98))

Channel Conductance Symbol and Value
Sodium gNa = 23m3hj
Calcium gSi = 0.09df

Potassium gK = 0.282
√
Ko/5.4xxi

Potassium gK1 = 0.6047
√
Ko/5.4

ak1

ak1+bk1

Potassium gKp = 0.0183Kp

Background gb = 0.03921

Membrane Capacitance
Cm = 1
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Currents Symbol and Value
Sodium INa = gNa(V − VNa)
Calcium ISi = gSi(V − VSi)
Potassium IK = gK(V − VK)
Potassium IK1 = gK1(V − VK1)
Potassium IKp = gKp(V − VKp)
Background Ib = gb(V − Vb)

Equations

dV

dt
= −1/Cm(INa + ISi + IK + IK1 + IKp + Ib)

dy

dt
=

y∞ − y

τy
dCai

dt
= −10−4ISi + 0.07(10−4 − Cai)

for y ∈ {m, h, j, d, f, x} and y∞ = ay/(ay + by), τy = 1/(ay + by).



APPENDIX B

RHH MODEL BIFURCATION STUDY

Some of the bifurcation structure of the coupled cell system with RHH ionics

has already been discussed within the main text (see Section 2.4). However, there

are multiple co-dimension 2 bifurcations and a co-dimension 3 bifurcation, which

are not particularly germane to understanding the stability boundary in parameter

space but are nonetheless mathematically interesting.

As discussed in Chapter 2, we take a pair of cells and couple them as below

m

(
dV1

dt
− F (V1,w1,p0)

)
= χδ(V2 − V1)

dw1

dt
= g(V1,w1) (B.1)

(1−m)

(
dV2

dt
− F (V2,w2, p̂)

)
= χδ(V1 − V2)

dw2

dt
= g(V2,w2)

Understanding the behavior of the above system under various values of the

relative mass, m, the degree of ischemia, p̂ = p, and the coupling χδ is of interest.

We choose the RHH model for its explicit dependence on extracellular potassium

which we take to be the ischemic parameter. The ionic and recovery dynamics are

F (V, n, p) = −[ḡNam
3
∞(0.85− n)(V − VNa) + ḡKn

4(V − VK(p)) + gL(V − VL)]

g(V, n) =
n∞(V )− n

τn(V )

We consider the three bifurcation parameters m, p, and χδ, though at times we

will use m, p, and χδ

m
for bifurcation diagrams. We refer to the p-value of a given

bifurcation point B as pB.
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Following the steady state in p for all χδ

m
andm creates an S-shaped curve with an

interval of p where there exist three steady states or branches (see Figure 2.3). There

are two limit point bifurcations, LP1 and LP2, at pLP1
and pLP2

each associated with

a bend in the steady state curve. At each limit point a real eigenvalue becomes

zero. These are interpreted as a saddle equilibrium and a node equilibrium coming

together at a saddle-node bifurcation, and they occur such that the middle branch

of steady states is hyperbolic.

A second type of bifurcation occurs along the steady state curve, as well. A Hopf

bifurcation, at which a complex pair of eigenvalues have zero real part, nonzero

imaginary part, appears at least twice and up to four times. The solid and dashed

lines of Figure 2.5 exhibit the position of the Hopf points in χδ

m
versus p parameter

space for a given m.

B.1 Subcritical Hopf Bifurcation

For sufficiently small m (m < 0.86) and all d when p increases to pHB1
a Hopf

bifurcation occurs (the HB1 curve in the χδ

m
versus p plane - see Figure 2.5). This

Hopf bifurcation is subcritical leading to an unstable periodic solution emanating

from the Hopf bifurcation for p < pHB1
. For m small, the HB1 curve is essentially

constant in p for all χδ

m
. As m increases, the HB1 curve appears like a saturating

function in χδ

m
with positive slope for small χδ

m
and flattening for larger χδ

m
. For m

larger than 0.86, the HB1 curve ends in a co-dim 3 bifurcation at finite values of p

and χδ

m
, which is discussed later.

B.2 Supercritical Hopf Bifurcation

Similarly, for m sufficiently small and all d as p decreases from potentially large

values where the system maintains only a stable steady state, a super critical Hopf

bifurcation occurs (the HB2 curve in the χδ

m
versus p plane). A stable periodic

solution emanates from the steady state at this p-value. The HB2 curve blows up

in p as χδ

m
→ 0 and, at least for small m, asymptotes to an m dependent p-value

for large χδ

m
. This curve shifts to larger p and χδ

m
values as m increases so that

the important aspect of the HB2 curve is the remaining stable periodic solution
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emanating from it.

B.3 Secondary Hopfs - Hopf Loop

In the χδ

m
versus p plane as χδ

m
decreases a looping Hopf curve appears in a

Hopf-Hopf (HH2) (two pairs of complex eigenvalues each pair with zero real part

and nonzero imaginary part) co-dim 2 bifurcation. This bifurcation occurs on the

upper branch of the steady state diagram. As χδ

m
decreases slightly further, the

lower (in p) of the Hopfs, a supercritical Hopf (HBL), “goes around the corner” of

the steady state diagram corresponding to a Fold-Hopf (FH2) (a pair of complex

eigenvalues with zero real part and nonzero imaginary part occurring with a real

zero eigenvalue) co-dim 2 bifurcation and appears in the χδ

m
versus p plane as a

tangency between the HBloop curve and the LP1 curve. Continuing to decrease

χδ

m
following the lower part of the HBloop the lower Hopf comes back around the

corner and through another Hopf-Fold co-dim 2 bifurcation (FH1), which is a

second tangency between the HBloop curve and the LP1 curve in χδ

m
versus p space.

Decreasing χδ

m
still further the the lower Hopf curve intersects with the upper Hopf

curve, a subcritical Hopf (HBU), leading to a second Hopf-Hopf (HH1) co-dim 2

bifurcation. This crossing changes the stability of the steady state on the upper

branch. Previously the interval of p between the two Hopf points on the HBloop

at any χδ

m
value had been unstable, but for χδ

m
below (HH1) the interval becomes

stable. The HBL exists for 0 < χδ

m
and finite p, while HBU →∞ in p as χδ

m
→ 0.

B.4 Periodic Solutions Related to the Hopf points

With four periodic solutions, two stable and two unstable, connected to the

preceding Hopf points, it is important to understand for which parameter values

they exist and how they may interact with each other and other steady states.

For small χδ

m
there exist four Hopf bifurcation points in p. As p increases we

encounter HB1, HBL, HBU , and HB2. They alternate between sub and supercritical

bifurcations. HB1 has an unstable periodic orbit that ends in a homoclinic orbit,

HC1, at pHC1
. The stable orbit emanating from HBL also ends in a homoclinic

orbit, HCL, at pHCL
. The unstable periodic orbit from HBU and the stable orbit
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from HB2 are connected at a limit point of the amplitude solution, LPA, at pLPA
<

pHBU
< pHB2

. There is a p-interval of bistability of (pLPA
, pHBU

) since both a

stable orbit and stable steady state (and an unstable orbit) exist on this interval.

Similarly, for the other pair of Hopf bifurcations, if pHCL
< pHB1

then there exists

a p-interval of bistability of (pHCL
, pHB1

).

As χδ

m
increases, HBU decreases until meeting with HBL at the bifurcation HH2.

At this point the super-critical HBL joins with the sub-critical HBU . When HBL

and HBU reorient themselves in the HBloop their periodic orbits, now both unstable,

connect and become of little consequence for the determination of stability in

parameter space.

B.5 Co-dimension 3 Bifurcation

As m increases the HB1 curve increases in slope more quickly than the LP2

curve above it in the χδ

m
versus p plane. At about m = 0.86 the HB1 curve and LP2

curve become tangent (p = 58,χδ

m
= 0.6) in a Bogdonov-Takens-Fold (three real

zeros) co-dim 3 bifurcation (the imaginary part of the Hopf eigenvalues become 0).

This point of tangency then splits in χδ

m
and p plane as m increases and becomes

two Bogdonov-Takens bifurcations (BT1,BT2)(two real zeros) leaving only the limit

point curve LP2 between them.

As m continues to increase BT2 increases along the LP2 curve creating a loop in

the HB2 curve. In this loop there is another Hopf-Hopf bifurcation and a Hopf-Fold

bifurcation (see Figure 2.5 (c)).



APPENDIX C

ANALYTICAL SOLUTION TO MM PDE

f(V, p) is the piecewise linear function. For convenience p = p(x).

f(V, p) =


−V + p V ≤ a

2
+ p

k

σV + η a
2

+ p

k
≤ V ≤ 1+a

2

−V + 1 1+a
2
≤ V

where

σ =
2pk − 2p− k

2p− k

and

η =
2p+ ak − apk − pk

2p− k

The form of this function is based on the reduced Hodgkin-Huxley model under

changes in extracellular potassium. p denotes the level of “ischemia” while k affects

the position of the minimum between V = a/2 and w = V − a for a given p level

which controls excitability and stability in the ODE sense.

This formulation follows the same idea as the standard cubic nonlinearity, but

yields an analytically tractable problem. However, it is not possible to calculate

such quantities as the direction of Hopf bifurcation due to the lack of continuity in

the derivative of f with respect to u.

As exhibited in Figure(3.2), there exists a unique steady state for each p-value

(0 or p̄) for its respective space. Solutions corresponding to the p = 0 case, VL(x),

will be matched continuously with continuous flux to solutions of the p = p̄ case,

VR(x). Toward this end each solution will be calculated separately leaving open

VL(0) = V0 and VR(1) = Vf conditions to be solved for during matching.

Let VL(ξ1) = a
2

and VR(ξ2) = a
2

+ p

k
. Notice that ξ1 ≤ ξ2. It is clear from the

definition of f(V, p(x)) that the steady state will never exceed V = (1+a)
2

so we will

not bother to calculate steady state solutions in this regime.
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Also let

βi =

√
1
γ

+ 1

Di

, ρ =

√
1
γ
− 1

D1

, α =

√
1
γ
− σ

D2

.

for i = 1, 2 representing the normal and ischemic regions, respectively.

Case[I](0 < ξ1 < ξ2 < 1,V0 <
a
2
, Vf >

a
2

+ p

k
)

VL(x) =

{
V0 cosh(β1x), 0 ≤ x ≤ ξ1
AL cosh(ρ(x− ξ1)) +BL sinh(ρ(x− ξ1))− a

1

γ
−1
, ξ1 ≤ x ≤ 1

VR(x) =


AR cosh(β2(ξ2 − x)) +BR sinh(β2(ξ2 − x)) + p̄

1

γ
+1
, 0 ≤ x ≤ ξ2(

Vf − η
1

γ
−σ

)
cosh(α(1− x)) + η

1

γ
−σ
, ξ2 ≤ x ≤ 1

where
AL = a

2
+ a

1

γ
−1

BL = β1

ρ
V0

√(
a

2V0

)2

− 1

AR = a
2

+ p

k
− p̄

1

γ
+1

BR = α
β2

(
Vf − η

1

γ
−σ

)√( a
2
+ p

k
− η

1
γ −σ

Vf− η
1
γ −σ

)2

− 1

So

ξ1 =
1

β1
cosh−1(

a

2V0
)

and

ξ2 = 1− 1

α
cosh−1(

a
2

+ p

k
− η

1

γ
−σ

Vf − η
1

γ
−σ

)

or BL and BR may be written in terms of ξ1 and ξ2 which is useful for the nonlinear

solves.
BL = β1

ρ
a
2
tanh(β1ξ1)

BR = α
β2

(
a
2

+ p

k
− η

1

γ
−σ

)
tanh(α(1− ξ2))

And

V0 =
a

2
sech(β1ξ1),

Vf =

(
a

2
+
p

k
− η

1
γ
− σ

)
sech(α(1− ξ2)) +

η
1
γ
− σ
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Subcase[I](m < ξ1) The matching yields ξ2 as an implicit function of m

0 = AR[sinh(β1m) cosh(β2(ξ2 −m))+
D2β2

D1β1
cosh(β1m) sinh(β2(ξ2 −m))]+

BR[sinh(β1m) sinh(β2(ξ2 −m))+
D2β2

D1β1
cosh(β1m) cosh(β2(ξ2 −m))]+

sinh(β1m) p
1

γ
+1

and V0 as a function of ξ2 and m

V0 = AR[cosh(β1m) cosh(β2(ξ2 −m))+
D2β2

D1β1
sinh(β1m) sinh(β2(ξ2 −m))]+

BR[cosh(β1m) sinh(β2(ξ2 −m))+
D2β2

D1β1
sinh(β1m) cosh(β2(ξ2 −m))]+

cosh(β1m) p
1

γ
+1

Subcase[II](ξ1 < m < ξ2) The matching yields ξ1 and ξ2 as implicit functions of m

AL = AR[cosh(ρ(m− ξ1)) cosh(β2(ξ2 −m))+
D2β2

D1ρ
sinh(ρ(m− ξ1)) sinh(β2(ξ2 −m))]+

BR[cosh(ρ(m− ξ1)) sinh(β2(ξ2 −m))+
D2β2

D1ρ
sinh(ρ(m− ξ1)) cosh(β2(ξ2 −m))]+

cosh(ρ(m− ξ1))[
a

1

γ
−1

+ p̄
1

γ
+1

]

BL = −{AR[sinh(ρ(m− ξ1)) cosh(β2(ξ2 −m))+
D2β2

D1ρ
cosh(ρ(m− ξ1)) sinh(β2(ξ2 −m))]+

BR[sinh(ρ(m− ξ1)) sinh(β2(ξ2 −m))+
D2β2

D1ρ
cosh(ρ(m− ξ1)) cosh(β2(ξ2 −m))]+

sinh(ρ(m− ξ1))[
a

1

γ
−1

+ p̄
1

γ
+1

]}
Subcase[III](ξ2 < m) The matching yields V0 as an implicit function of m

0 = AL[cosh(ρ(m− ξ1)) sinh(α(1−m))+
D1ρ

D2α
sinh(ρ(m− ξ1)) cosh(α(1−m))]+

BL[sinh(ρ(m− ξ1)) sinh(α(1−m))+
D1ρ

D2α
cosh(ρ(m− ξ1)) cosh(α(1−m))]−

sinh(α(1−m))[ a
1

γ
−1

+ η
1

γ
−σ

]

and Vf as a function of ξ1 and m

Vf = AL[cosh(ρ(m− ξ1)) cosh(α(1−m))+
D1ρ

D2α
sinh(ρ(m− ξ1)) sinh(α(1−m))]+

BL[sinh(ρ(m− ξ1)) cosh(α(1−m))+
D1ρ

D2α
cosh(ρ(m− ξ1)) sinh(α(1−m))]−

cosh(α(1−m))[ a
1

γ
−1

+ η
1

γ
−σ

] + η
1

γ
−σ
.
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Case[II](0 < ξ2 < 1,V0 >
a
2
, Vf >

a
2

+ p

k
)

VL(x) =

(
V0 +

a
1
γ
− 1

)
cosh(ρx)− a

1
γ
− 1

VR(x) =


AR cosh(β2(ξ2 − x)) +BR sinh(β2(ξ2 − x)) + p̄

1

γ
+1
, 0 ≤ x ≤ ξ2(

Vf − η
1

γ
−σ

)
cosh(α(1− x)) + η

1

γ
−σ
, ξ2 ≤ x ≤ 1

Subcase[I](m < ξ2) The matching yields ξ2 as an implicit function of m

0 = AR[sinh(ρm) cosh(β2(ξ2 −m))+
D2β2

D1ρ
cosh(ρm) sinh(β2(ξ2 −m))]+

BR[sinh(ρm) sinh(β2(ξ2 −m))+
D2β2

D1ρ
cosh(ρm) cosh(β2(ξ2 −m))]+

sinh(ρm)[ a
1

γ
−1

+ p̄
1

γ
+1

]

and V0 as a function of ξ2 and m

V0 = AR[cosh(ρm) cosh(β2(ξ2 −m))+
D2β2

D1ρ
sinh(ρm) sinh(β2(ξ2 −m))]+

BR[cosh(ρm) sinh(β2(ξ2 −m))+
D2β2

D1ρ
sinh(ρm) cosh(β2(ξ2 −m))]+

cosh(ρm)[ a
1

γ
−1

+ p̄
1

γ
+1

]− a
1

γ
−1
.

Subcase[II](ξ2 < m) The matching yields Vf and V0 as functions of m

Vf = −
sinh(ρm)[ a

1

γ
−1

+ η
1

γ
−σ

]

sinh(ρm) cosh(α(1−m)) + D2α
D1ρ

cosh(ρm) sinh(α(1−m))
+

η
1
γ
− σ

V0 =
sinh(α(1−m))[ a

1

γ
−1

+ η
1

γ
−σ

]

D1ρ

D2α
sinh(ρm) cosh(α(1−m)) + cosh(ρm) sinh(α(1−m))

− a
1
γ
− 1
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Case[III](0 < ξ1 < 1,V0 <
a
2
, Vf <

a
2

+ p

k
)

VL(x) =

{
V0 cosh(β1x), 0 ≤ x ≤ ξ1
AL cosh(ρ(x− ξ1)) +BL sinh(ρ(x− ξ1))− a

1

γ
−1
, ξ1 ≤ x ≤ 1

VR(x) =

(
Vf − p

1
γ

+ 1

)
cosh(β2(1− x)) +

p
1
γ

+ 1

Subcase[I](m < ξ1) The matching yields Vf and V0 as functions of m

Vf = −
sinh(β1m) p

1

γ
+1

sinh(β1m) cosh(β2(1−m)) + D2β2

D1β1
cosh(β1m) sinh(β2(1−m))

+
p

1
γ

+ 1

V0 =
sinh(β2(1−m)) p

1

γ
+1

D1β1

D2β2
sinh(β1m) cosh(β2(1−m)) + cosh(β1m) sinh(β2(1−m))

Subcase[II](ξ1 < m) The matching yields ξ1 as an implicit function of m

0 = AL[sinh(β2(1−m)) cosh(ρ(m− ξ1))+
D1ρ

D2β2
cosh(β2(1−m)) sinh(ρ(m− ξ1))]+

BL[sinh(β2(1−m)) sinh(ρ(m− ξ1))+
D1ρ

D2β2
cosh(β2(1−m)) cosh(ρ(m− ξ1))]−

sinh(β2(1−m))[ a
1

γ
−1

+ p̄
1

γ
+1

]

and Vf as a function of ξ1 and m

Vf = AL[cosh(β2(1−m)) cosh(ρ(m− ξ1))+
D1ρ

D2β2
sinh(β2(1−m)) sinh(ρ(m− ξ1))]+

BL[cosh(β2(1−m)) sinh(ρ(m− ξ1))+
D1ρ

D2β2
sinh(β2(1−m)) cosh(ρ(m− ξ1))]−
cosh(β2(1−m))[ a

1

γ
−1

+ p̄
1

γ
+1

] + p̄
1

γ
+1
.
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Case[IV](0 < 1 - no ξ1 or ξ2 interior)

VL(x) =

(
V0 +

a
1
γ
− 1

)
cosh(ρx)− a

1
γ
− 1

VR(x) =

(
Vf − p̄

1
γ

+ 1

)
cosh(β2(1− x)) +

p̄
1
γ

+ 1

The matching yields Vf and V0 as functions of m

V0 =
sinh(β2(1−m))[ a

1

γ
−1

+ p̄
1

γ
+1

]

sinh(β2(1−m)) cosh(ρm) + D1ρ

D2β2
cosh(β2(1−m)) sinh(ρm)

− a
1
γ
− 1

Vf = −
sinh(ρm)[ a

1

γ
−1

+ p̄
1

γ
+1

]

D2β2

D1ρ
sinh(β2(1−m)) cosh(ρm) + cosh(β2(1−m)) sinh(ρm)

+
p

1
γ

+ 1



APPENDIX D

MM PDE EIGENFUNCTIONS AND

EIGENVALUES

The potential function for each of the 8 cases and subcases described in the

steady state derivations (Appendix C) is described as

C1S1 ψ(x) =


−1 0 < x < m
−1 m < x < ξ2
σ ξ2 < x < 1

C1S2 ψ(x) =


−1 0 < x < ξ1

1 ξ1 < x < m
−1 m < x < ξ2
σ ξ2 < x < 1

C1S3 ψ(x) =


−1 0 < x < ξ1

1 ξ1 < x < m
σ m < x < 1

C2S1 ψ(x) =


1 0 < x < m

−1 m < x < ξ2
σ ξ2 < x < 1

C2S2 ψ(x) =

{
1 0 < x < m
σ m < x < 1

C3S1 ψ(x) =

{ −1 0 < x < m
−1 m < x < 1

C3S2 ψ(x) =


−1 0 < x < ξ1

1 ξ1 < x < m
−1 m < x < 1

C4 ψ(x) =

{
1 0 < x < m

−1 m < x < 1

From Lemma (1) it is clear that any steady state solution that falls into the

C3S1 category is stable. It is also clear from Lemma (2) and the above table that

−1 < µ. So the main question is whether or not in each case there exists a µ such

that −1 < µ < −εγ.
As an example consider the C1S2 category. We determine a characteristic

function which is solved numerically but which may be considered numerically or
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graphically.

If −1 < µ < −σ, then the eigenfunctions associated with such eigenvalues taking

into account the boundary conditions and letting

αipm =

√
1− µ

Di

, αpp =

√
1 + µ

D1

, ασm =

√−σ − µ

D2

ασp =

√
σ + µ

D2

is of the form

v(x) =


A1 cosh(α1pmx) 0 < x < ξ1

A2 cos(αpp(x− ξ1)) +B2 sin(αpp(x− ξ1)) ξ1 < x < m
A3 cosh(α2pm(ξ2 − x)) +B3 sinh(α2pm(ξ2 − x)) m < x < ξ2

A4 cosh(ασm(1− x)) ξ2 < x < 1

A2 and B2, and A3 and B3 are found in terms of A1 and A4, respectively, from

matching across x = ξ1 and x = ξ2 again respectively. From continuously matching

v and the flux, Dvx, at x = m, we get two equations which are linear in A1 and A4

and are written as [
M11 M12

D1M21 D2M22

] [
A1

A4

]
=

[
0
0

]
where

M11 =
α1pm

αpp
sinh(α1pmξ1) sin(αpp(m− ξ1))

+ cosh(α1pmξ1) cos(αpp(m− ξ1))
M12 = − ασm

α2pm
sinh(ασm(1− ξ2)) sinh(α2pm(ξ2 −m))

− cosh(ασm(1− ξ2)) cosh(α2pm(ξ2 −m))
M21 = α1pm sinh(α1pmξ1) cos(αpp(m− ξ1))

−αpp cosh(α1pmξ1) sin(αpp(m− ξ1))
M22 = ασm sinh(ασm(1− ξ2)) cosh(α2pm(ξ2 −m))

+α2pm cosh(ασm(1− ξ2)) sinh(α2pm(ξ2 −m))

Solving the characteristic equation F (µ) = D1M11M22 − D2M21M12 = 0 for µ

yields the eigenvalues of the Sturm-Liouville problem in the domain −1 < µ < −σ.

Now if −σ < µ < −εγ, the associated eigenfunctions are

v(x) =


A1 cosh(α1pmx) 0 < x < ξ1

A2 cos(αpp(x− ξ1)) +B2 sin(αpp(x− ξ1)) ξ1 < x < m
A3 cosh(α2pm(ξ2 − x)) +B3 sinh(α2pm(ξ2 − x)) m < x < ξ2

A4 cos(ασpx) ξ2 < x < 1

.

The elements of the characteristic equation are
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M11 =
α1pm

αpp
sinh(α1pmξ1) sin(αpp(m− ξ1))

+ cosh(α1pmξ1) cos(αpp(m− ξ1))
M12 = ασp

α2pm
sin(ασp(1− ξ2)) sinh(α2pm(ξ2 −m))

− cos(ασp(1− ξ2)) cosh(α2pm(ξ2 −m))
M21 = −αpp cosh(α1pmξ1) sin(αpp(m− ξ1))

+α1pm sinh(α1pmξ1) cos(αpp(m− ξ1))
M22 = α2pm cos(ασp(1− ξ2)) sinh(α2pm(ξ2 −m))

−ασp sin(ασp(1− ξ2)) cosh(α2pm(ξ2 −m))

C3S2

−1 < µ < −εγ

v(x) =


A1 cosh(α1pmx) 0 < x < ξ1

A2 cos(αpp(x− ξ1)) +B2 sin(αpp(x− ξ1)) ξ1 < x < m
A3 cosh(α2pm(1− x)) m < x < 1

.

M11 =
α1pm

αpp
sinh(α1pmξ1) sin(αpp(m− ξ1))

+ cosh(α1pmξ1) cos(αpp(m− ξ1))
M12 = − cosh(α2pm(1−m))
M21 = α1pm sinh(α1pmξ1) cos(αpp(m− ξ1))

−αpp cosh(α1pmξ1) sin(αpp(m− ξ1))
M22 = α2pm sinh(α2pm(1−m))

C4

−1 < µ < −εγ

v(x) =

{
A1 cos(αppx) 0 < x < m

A2 cosh(α2pm(1− x)) m < x < 1
.

M11 = cos(αppm)
M12 = − cosh(α2pm(1−m))
M21 = αpp sin(αppm)
M22 = −α2pm sinh(α2pm(1−m))

C2S2

−1 < µ < −σ
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v(x) =

{
A1 cos(αppx) 0 < x < m

A2 cosh(ασm(1− x)) m < x < 1
.

M11 = cos(αppm)
M12 = − cosh(ασm(1−m))
M21 = αpp sin(αppm)
M22 = −ασm sinh(ασm(1−m))

−σ < µ < −εγ

v(x) =

{
A1 cos(αppx) 0 < x < m

A2 cos(ασp(1− x)) m < x < 1
.

M11 = cos(αppm)
M12 = − cos(ασp(1−m))
M21 = αpp sin(αppm)
M22 = ασm sin(ασm(1−m))

C2S1

−1 < µ < −σ

v(x) =


A1 cos(αppx) 0 < x < m

A2 cosh(α2pm(ξ2 − x)) +B2 sinh(α2pm(ξ2 − x)) m < x < ξ2
A3 cosh(ασm(1− x)) ξ2 < x < 1

.

M11 = − cos(αppm)
M12 = ασm

α2pm
sinh(ασm(1− ξ2)) sinh(α2pm(ξ2 −m))

+ cosh(ασm(1− ξ2)) cosh(α2pm(ξ2 −m))
M21 = −αpp sin(αppm)
M22 = α2pm cosh(ασm(1− ξ2)) sinh(α2pm(ξ2 −m))

+ασm sinh(ασm(1− ξ2)) cosh(α2pm(ξ2 −m))

−σ < µ < −εγ

v(x) =


A1 cos(αppx) 0 < x < m

A2 cosh(α2pm(ξ2 − x)) +B2 sinh(α2pm(ξ2 − x)) m < x < ξ2
A3 cos(ασp(1− x)) ξ2 < x < 1

.

M11 = − cos(αppm)
M12 = − ασp

α2pm
sin(ασp(1− ξ2) sinh(α2pm(ξ2 −m))

+ cos(ασp(1− ξ2) cosh(α2pm(ξ2 −m))
M21 = −αpp sin(αppm)
M22 = α2pm cos(ασp(1− ξ2) sinh(α2pm(ξ2 −m))

−ασp sin(ασp(1− ξ2) cosh(α2pm(ξ2 −m))
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C1S1

−1 < µ < −σ

v(x) =


A1 cosh(α1pmx) 0 < x < m

A2 cosh(α2pm(ξ2 − x)) +B2 sinh(α2pm(ξ2 − x)) m < x < ξ2
A3 cosh(ασm(1− x)) ξ2 < x < 1

.

M11 = cosh(α1pmm)
M12 = − ασm

α2pm
sinh(ασm(1− ξ2)) sinh(α2pm(ξ2 −m))

− cosh(ασm(1− ξ2)) cosh(α2pm(ξ2 −m))
M21 = α1pm sinh(α1pmm)
M22 = ασm

α2pm
sinh(ασm(1− ξ2)) cosh(α2pm(ξ2 −m))

+ cosh(ασm(1− ξ2)) sinh(α2pm(ξ2 −m))

Notice that the characteristic function is the sum of hyperbolic functions with

positive coefficients and so is never zero.

−σ < µ < −εγ

v(x) =


A1 cosh(α1pmx) 0 < x < m
A1 cosh(α2pmx) m < x < ξ2

A2 cos(ασp(1− x)) ξ2 < x < 1
.

M11 = cosh(α1pmm)
M12 = ασp

α2pm
sin(ασp(1− ξ2)) sinh(α2pm(ξ2 −m))

− cos(ασp(1− ξ2)) cosh(α2pm(ξ2 −m))
M21 = α1pm sinh(α1pmm)
M22 = α2pm cos(ασp(1− ξ2)) sinh(α2pm(ξ2 −m))

−ασp sin(ασp(1− ξ2)) cosh(α2pm(ξ2 −m))

C1S3

−1 < µ < −σ

v(x) =


A1 cosh(α1pmx) 0 < x < ξ1

A2 cos(αpp(x− ξ1)) +B2 sin(αpp(x− ξ1)) ξ1 < x < m
A3 cosh(ασm(1− x)) m < x < 1

.

M11 = α1pm

αpp
sinh(α1pmξ1) sin(αpp(m− ξ1))

+ cosh(α1pmξ1) cos(αpp(m− ξ1))
M12 = − cosh(ασm(1−m))
M21 = −αpp cosh(α1pmξ1) sin(αpp(m− ξ1))

+α1pm sinh(α1pmξ1) cos(αpp(m− ξ1))
M22 = −ασm sinh(ασm(1−m))

−σ < µ < −εγ
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v(x) =


A1 cosh(α1pmx) 0 < x < ξ1

A2 cos(αpp(x− ξ1)) +B2 sin(αpp(x− ξ1)) ξ1 < x < m
A3 cos(ασp(1− x)) m < x < 1

.

M11 =
α1pm

αpp
sinh(α1pmξ1) sin(αpp(m− ξ1))

+ cosh(α1pmξ1) cos(αpp(m− ξ1))
M12 = − cos(ασp(1−m))
M21 = αpp cosh(α1pmξ1) sin(αpp(m− ξ1))

+α1pm sinh(α1pmξ1) cos(αpp(m− ξ1))
M22 = −ασp sin(ασp(1−m))
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