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ABSTRACT

We study the asymptotic cone of arbitrary symmetric spaces. The main case to
consider is when the symmetric space is irreducible and of noncompact type. It is
known that if P is a symmetric space of noncompact type, then P is a homogeneous
space and can be written as P = G /K where G is a semisimple Lie group and K
is a maximal compact subgroup. The asymptotic cone of P, denoted Cone, P,
is naturally a homogeneous space with respect to the group Cone, G. We show
that Cone, GG is an algebraic group that can be obtained from the group G by
extending the field of real numbers. Using this description of the asymptotic cone
as a homogeneous space, along with the study of the field extension, we identify the
stabilizer of a point in Cone,, P and show that the asymptotic cone of a symmetric

space is independent of the base point, scale factors and the ultrafilter.
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CHAPTER 1

INTRODUCTION

One of the main techniques in topology and geometry is to look closely. Given a
topological space, we generally concentrate on small neighborhoods of points. One
defines limits as sequences approaching a point. Similarly, derivatives are defined
at points. Thinking infinitesimally has led to many deep and powerful results such
as differential and integral calculus. Recently, many geometers and group theorists
have begun to use large scale or asymptotic techniques. Instead of looking at
shrinking neighborhoods, expanding neighborhoods are investigated. Rather than
looking at sequences converging to a given point, one looks at diverging sequences.

This new approach has been particularly fruitful in the field of geometric group
theory. Here, the geometric spaces are discrete metric spaces. The classical in-
finitesimal techniques are of little use when looking at discrete spaces. Rather
than looking at the local level, geometers and group theorists look at large scale
properties of these discrete spaces. This approach naturally led to the notion of
quasi-isometry in contrast to the usual notion of isometry. A quasi-isometry is
a map between spaces that may not even be continuous, but it does not distort

distances “too much.”

Definition 1.1. Let (X, d) and (Y, d’) be metric spaces. A map f: X — Y isa
quasi-isometry if there exists some L > 1 and some C > 0 satisfying the following

properties:

d(z,z) — C < d(f(x), f(Z)) < Ld(z,z) + C, for all z,7 € X;

=

2. d(y, f(X))<C,forally e Y



Using quasi-isometries, one can talk about spaces that are quasi-isometric and
properties that are invariant under quasi-isometry. This approach leads to many
techniques that are quite different from classical infinitesimal techniques.

One of the new tools obtained as a result of looking at the large scale is the
asymptotic cone of a metric space. Intuitively, if (X, d) is a metric space, then the
asymptotic cone of X is the space that appears in the limit as one moves further
and further from X. This is accomplished by rescaling the metric on X and looking
for a limit space while the metric is scaled down to zero. Ultrafilters are required
to ensure that there is always a limit. We will describe ultrafilters and the actual
construction of the asymptotic cone briefly below.

The asymptotic cone of X, Cone, X, hides the local structure of the metric
space X. Surprisingly, this allows one to use infinitesimal techniques to prove large
scale results. For example, the asymptotic cone of Z" is Euclidean space R", and
one can use infinitesimal techniques in R™ to recover large scale properties of Z".

Using the asymptotic cone to study quasi-isometries between spaces is based
on the fact that if f : X — Y is a quasi-isometry, then f induces a bi-Lipschitz
map between Cone,, X and Cone, Y. This idea has been used by Kleiner and Leeb
to prove that if two symmetric spaces are quasi-isometric, then they are actually
homothetic [17]. This idea was also used by Kapovich and Leeb to classify many
3-manifolds groups according to quasi-isometry type [15].

An essential ingredient to actually construct the asymptotic cone of a metric
space is the use of ultrafilters. To define an ultrafilter, let P(N) denote the power
set of N, the set of all subsets of N.

Definition 1.2. A family of subsets w C P(N) is said to be a nonprincipal ultrafilter

if w satisfies the following conditions:
L )¢ w;
2. if AC BCNand A € w, then B € w;

3. if A,B € wthen AN B € w;



4. for any A C N, either A€e¢wor N— A € w;
5. if A C N and A is finite, then A ¢ w.

Definition 1.3. Given an ultrafilter w, if x; € R is a sequence, then = € [—o0, 0]
is an wltralimit of the sequence (written lim, x; = x), if for every neighborhood

UC|[—o0,00]of 2 {i|z; €U} € w.

It is well known that every sequence has a unique ultralimit (see Lemma 2.13).

To actually show that nonprincipal ultrafilters exist requires the Axiom of
Choice. This is a potential problem because the use of the Axiom of Choice means
there is no canonical choice for a nonprincipal ultrafilter. Instead there are many
different nonprincipal ultrafilters, as will be described in Section 2.3.1.

After fixing a nonprincipal ultrafilter w, we may fix scale factors \; € R, such
that lim,, A; = oco. We also fix a base point x € X. The asymptotic cone is then the
set of sequences x; € X such that there is some constant C' € R with d(z;, *x) < C\;
for all ¢ € N. We define the distance between two sequences to be

d((x:), (y:)) = lim (M)

w

and we identify two sequences if their distance is zero.
The construction outlined above is actually equivalent, in some cases, to looking
at the Gromov-Hausdorff limit of the metric space X rescaled by the scale factors

Ai- In particular, given (X, d), one can consider the sequence of metric spaces

1
X. —d
( ’)\i)

where )\%d is the distance function on X multiplied by A% If this sequence of
metric spaces converges in the sense of Gromov-Hausdorff, then it converges to the
asymptotic cone. If the sequence does not converge, one can still construct the
asymptotic cone using ultrafilters.

In some sense, asymptotic cones were first used by Gromov [12]. Gromov did
not use ultrafilters which required extra work to extract a convergent subsequence

from the sequence of metric spaces (X, )\id) Later, van den Dries and Wilkie



reworked Gromov’s results using ultrafilters and defined the asymptotic cone using
a nonprincipal ultrafilter as above [32].

As mentioned, the existence of a nonprincipal ultrafilter requires the Axiom of
Choice. Thus, the construction of the asymptotic cone is not canonical. In fact, one
can exhibit a metric space X and two different ultrafilters that result in asymptotic
cones that are not homeomorphic. The example of Thomas and Velickovic is of a
finitely generated but not finitely presented group [29]. It is still an open question
if the asymptotic cone is unique for finitely presented groups. Given a metric space,
an important question is if the asymptotic cone is independent of the base point,
scale factors and ultrafilter. We answer this question affirmatively for symmetric

spaces:

Theorem 1.4. Let X be a symmetric space. Then the asymptotic cone of X is

independent of the base point, scale factors and the ultrafilter.

Asymptotic cones of symmetric spaces were first studied by Kleiner and Leeb
[17]. Among their results, they show that the asymptotic cone of a symmetric
space is a Euclidean building. Euclidean buildings are higher dimensional analogs
of trees. Bruhat and Tits studied Euclidean buildings in [4] and [31]. They showed
that Euclidean buildings arise from algebraic groups and valuation fields. In the
case of the symmetric space for the group SL(n,R), Leeb identified the asymptotic
cone as a homogeneous space over an algebraic group [18]. Parreau showed that
the asymptotic cone of the symmetric space for SL(n,R) fits a certain model for
Euclidean buildings over the group SL,, [22].

In Chapter 5, we study the asymptotic cone of an arbitrary symmetric space as
a homogeneous space. We show that the transitive group acting on the asymptotic
cone is an algebraic group over a valuation field obtained by a field extension
of the field of real numbers. It is this description of the asymptotic cone as a
homogeneous space together with an analysis of the valuation field that helps us

establish Theorem 1.4.



CHAPTER 2

FIELDS

One goal of this chapter is to construct both the nonstandard real numbers and
another similar nonarchimedean field. Before we actually do this, we need some

background on ordered fields and valuation fields.

2.1 Ordered fields
A field £ is ordered if there is a total ordering on k compatible with the field

operations. This means that for all u,z,y,2z € K, u > 0, we have

r<y — T+z<y+z

r<y = wzu<yu

These properties immediately imply that k& has characteristic zero. All ordered
fields contain the rationals QQ, as a subfield.

Given an ordered field k, there exists a unique maximal algebraic extension of
k which is still ordered [5, p. 269]. This is called the real closure of k. A field is
said to be a real closed field if k is equal to its real closure. The standard example
of a real closed field is the real numbers, R. A basic result on real closures is the

following theorem [5, Section 7.4].

Theorem 2.1. £ is real closed if and only if it is ordered, every positive element

of k is a square and every polynomial of odd degree has a root in k.

2.1.1 Order properties for fields
Definition 2.2. Let £ be an ordered field and let x € k. We say that x is

1. anfinite if |z| > n for all n € N;



2. finite if |z| < n for some n € N;
3. infinitesimal if |z| < £ for all n € N.

k is archimedian if k contains no infinite elements. Otherwise, k is nonar-

chimedean.

Note that R is a real closed archimedian field. It is well known that any archime-
dian field is isomorphic to a subfield of R. In fact, any complete, archimedian field
is isomorphic to R [5, p. 259]. This is an example of order properties determining

the ordered field. We will want a similar property for nonarchimedean fields.
Definition 2.3. Let S be an ordered set.

1. A subset B C S is said to be cofinal if for any x € S, there is some b € B with
x < b. The cofinality of S, cof(S), is the minimum cardinality of a cofinal
subset of S.

2. A subset B C S is said to be coinitial if for any = € S, there is some b € B
with b < z. The coinitiality of S, coi(S), is the minimum cardinality of a

coinitial subset of S.

Notice that if B C k is cofinal in the field k, then —B is coinitial. Therefore,
for a field, the concepts of coinitiality and cofinality are equivalent. It is easy to
see that cof(R) = cof(Q) = Ny. A field with cof(k) > Ny must necessarily be
nonarchimedean.

The order properties that interest us are contained in the following definition.
First, if A, B C k, we say A << B if every element of A is less than every element
of B.

Definition 2.4. Let k£ be an ordered field. We say that k is

1. an n-field if for each pair of (possibly empty) subsets A, B C k with A < B
and |A U B| < Xy, there is some z € k with A < {z} << B;



2. a semi-n;-field if for each strictly increasing sequence a; € k and strictly
decreasing sequence b; € k, such that a; < b; for all 7, there exists some z € k

such that a; < x < b; for all i.

Note that R is a semi-n;-field but not an n;-field. As already mentioned, R is
the unique complete archimedean field. For nonarchimedean fields, we have the

following result of Erdds, Gillman and Henriksen [10, Theorem 2.1].
Theorem 2.5. Any two real closed n;-fields of cardinality N; are isomorphic.

It is clear that this isomorphism must preserve the orderings on the fields. This
is because in a real closed field the set of all squares is the set of all nonnegative
numbers. The set of all squares must be preserved in an isomorphism.

Without assuming the Continuum Hypothesis (X; = ¢), Theorem 2.5 says
nothing about fields of cardinality c¢. It is interesting to note that if we assume
the negation of the Continuum Hypothesis, then as was shown by Roitman, there
are infinitely many nonisomorphic 7;-fields of cardinality ¢ [26]. We will be assuming
the Continuum Hypothesis throughout, so we can apply Theorem 2.5 to real closed

n-fields of cardinality c.

2.2  Valuation fields
Definition 2.6. Let k be a field and let I" be an ordered abelian group. A wvaluation

on k is a surjective map v : k — I' U {oo} satisfying the following properties:
1. v(z) =00 <= z=0;
2. v(zy) =v(z) +v(y);
3. v(z +y) > min{v(z),v(y)}.

' is called the value group of the valuation v.

In practice, the value group will generally be an additive subgroup of R. In this
case we say that v is a real valuation. If the value group is a discrete subgroup of

R, then we say that v is a discrete valuation.



Definition 2.7. Let (k,v) and (K, vk) be fields with valuations, with the same
value group. Let ¢ : K — K be an isomorphism. Then ¢ is said to be wvaluation

preserving if v (o(z)) = v(x).

We will be interested in ordered fields that have a valuation. How the valuation

and ordering interact is important and we make the following definition.

Definition 2.8. Let (k,v) be an ordered valuation field. The valuation is said to

be compatible with the ordering if 0 <z <y = v(x) > v(y).

An immediate consequence of this definition is that if v(z) > v(y) then |z| < |y|.

It is important to note that v(z) > v(y) does not imply that |z| < |y].

Definition 2.9. Let (k,v) be a valuation field. The valuation ring of v is
O={xek|v(x)>0} (2.1)
and the valuation ideal of v is
J={xek]|v(x)>0} (2.2)

One can show that J is a maximal ideal in O and therefore the quotient is a

field. This quotient field is called the residue field: R = O/ J.

2.2.1 Fields of power series
Let k be a field and I' an ordered abelian group. We let kU be the set of all
functions from I' to k. If f € k', we define the support of f to be

supp f ={z € I' | f(x) # 0}

We now define

E((T)) = {f € k" | supp f is well-ordered }

k((T")) is called a Hahn field. We think of elements of k((I")) as formal power series:

F=Y_kt (2.3)

vel



where I C I' is a well-ordered set. This formal power series makes the following

definitions of addition and multiplication a bit more transparent:

(f+9)(=) = f(x)+g(x)
(fo)@) = D flu)g(v)

utv=z
It is not too difficult to show that £((I")) is closed under addition and multiplication,
making k((I')) a ring with identity. It is much more difficult to show that k((I")) is
actually a field. This was done by Hahn in 1907 [1, Sections 6.20,7.20].

Hahn fields can be given a valuation v : k((I')) — T, defined by

v(f) = inf (supp f)

It is not difficult to show that this satisfies the definition of a valuation. If, in
addition, k is an ordered field, we can order k((I')) by declaring f positive if and
only if f(v(f)) is positive in k.

Proposition 2.10. Let k, K be fields. Let I' be an ordered group. Suppose that
¢ : k — K is an isomorphism. Then ¢ induces a valuation preserving isomorphism
of Hahn fields @ : k((I")) — K((I')) given by ®(f)(z) = ¢(f(x)). If k£ and K are

ordered fields and ¢ is order preserving, then ® is also ordered preserving.

In the power series notation (2.3), ® : k((I')) — K((I')) is given by

o (Z /cﬂ) =" 6k

Proof: Given f,g € k((I")) and z € I":

O(f+g)(x) = o((f+9)(x) = o(f(x) +g(x))
= o(f(x)) + ¢(g(z))
= O(f)(z) + 2(g)(x)
and therefore ®(f + g) = ®(f) + ®(g). Similarly, ®(fg) = ®(f)D(g).
If ®(f)(z) = ®(g)(z) for all z € T, then ¢(f(z)) = d(g(z)) for all z € T Since

¢ is an isomorphism, f(x) = g(x) for all z. Therefore f = g and ® is injective.

Similarly, ®~! is injective and ® must be an isomorphism.
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Notice that because ¢ is an isomorphism, f(z) = 0 if and only if ®(f)(x) = 0.
This shows that

supp ®(f) = supp f

and therefore v(®(f)) = v(f) and ® is valuation preserving.

If ¢ is an isomorphism of ordered fields, then using the above results,

O(f)(w(@(f)) = 2(f)(v(f)) = o(f(v([))) (2.4)

Recall that f > 0 if and only if f(v(f)) > 0. The equation (2.4) now shows that
f > 0 if and only if ®(f) > 0. Therefore ® is order preserving because ¢ is order

preserving. O

2.3 The nonstandard real numbers
2.3.1 Ultrafilters
We will let P(N) denote the power set of N, the set of all subsets of N.

Definition 2.11. A family of subsets w C P(N) is said to be a filter if it satisfies

the following conditions:
1. 0 ¢ w;
2. if AC BCNand A € w, then B € w;
3. if A,B € wthen ANB € w.
w is an wultrafilter if w also satisfies
4. for any A C N, either Ac worN— A € w.
w is a nonprincipal filter if w also satisfies
5. if A C N and A is finite, then A ¢ w.
Example 2.12. Fix n € N and define
w,={ACN|neA}

It is straightforward to check that w, satisfies all the properties in Definition 2.11,
except for property 5. w, is the principal ultrafilter determined by n € N.
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A small note about language and ultrafilters. If A € w, then we will say that
A is a set of full w-measure. Suppose we have an ultrafilter and a sequence of

statements P;. If

{i| P} ew

then we will say that P; is true for w-almost all 7, or that P; is true on a set of full
w-measure. This terminology comes from viewing w as a finitely additive measure
on N.

Our main purpose for ultrafilters is to generalize convergence of sequences as in

the following lemma. For a proof, see [15, Section 3.1].

Lemma 2.13. Let w be an ultrafilter. Let z; € R be a real valued sequence.
Then there exists a unique point z € [—o00, 0] such that for every neighborhood
U C [—o00,00] of z, {i | z; € U} € w. We define this point z, to be the ultralimit
of the sequence, and we write

limx; =z
w

Consider the principal ultrafilter w,, of Example 2.12 for somen € N. Let x; € R

be a sequence. It is fairly easy to see that

limz; = x,

Wn,
The ultralimit of a principal ultrafilter “picks out” the respective term in the
sequence. This makes principal ultrafilters uninteresting. We will therefore be
interested in nonprincipal ultrafilters. To construct a nonprincipal ultrafilter, one

begins with the cofinite filter 1 defined as:
n={ACN]|N-— A is finite}

A quick check shows that 7 satisfies all the properties in Definition 2.11, except

property 4. We now consider
P, ={w CP(N)|nCw, w a filter}

We can apply Zorn’s Lemma to the set P, to get an ultrafilter w. In fact, it is

easy to see that any nonprincipal ultrafilter must contain the cofinite filter 7. The
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Axiom of Choice is required to construct a nonprincipal ultrafilter, and therefore
there is no canonical nonprincipal ultrafilter. To illustrate this problem, consider

the following example.

Example 2.14. Let £ C N denote the set of even integers. We can apply Zorn’s

Lemma to the following sets:

P = {wCPN)|nCw, F€w, wa filter}

P = {wWCPN)|nCw FE ¢w, wa filter}

This will give ultrafilters w and w’. These ultrafilters are different since E € w but

E ¢ &'. Consider the sequence (x;) given by

0 if 7 even
xT; =
1 if4odd

Taking the ultralimit with respect to both these ultrafilters gives

limz; = 0

limz;, = 1
‘UI

For us, this is the inherent problem with ultrafilters, the ultralimits might be

different.

2.3.2 Ultrapowers
Let X be some set and let w be an ultrafilter. We consider the set of sequences
in X:
XN ={(2;) | z; € X,i € N}

We say two sequences are equivalent if they agree on a set of full w-measure:
(i) ~ (yi) <= {i|zi=vy} €w

We define * X as the set of equivalence classes under this equivalence relation. Notice
that we can embed X into XV as the set of constant sequences. If X is an infinite
set then it is easy to see that *X # X. We say that *X is an ultrapower of X.
Notice that *X depends on the ultrafilter w.
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Remark 2.15. If (z;) € XV is a sequence, then we will denote by [z;] the corre-
sponding element in *X. If x € X, then we can consider x as a constant sequence,

(z) € XN and the corresponding element in *X will be denoted by [z].

2.3.3 The nonstandard real numbers
We construct an ultrapower of R. This construction is due to Abraham Robin-
son and a good reference is his book [24]. One of the main points is that *R is
a field with field structure inherited from R. There are many references for this
construction as well as for the proofs of the properties stated below. In addition
to [24], other good references include [11], [19] and [20].

Notice first, R is a partially ordered ring with operations defined point wise:

@)+ (w:) = (zi+wy)
(@)(ys) = (ziw)
(.QTZ) < (yz) — I; <Y for all 4
Let w be a nonprincipal ultrafilter and let *R be the corresponding ultrapower of R.

We embed R C *R via the embedding x +— [z], where [z] represents the constant

sequemnce.

Proposition 2.16. *R is a nonarchimedean ordered field with operations and
ordering induced from RY. The ultralimit lim, , is a homomorphism from the

ring of finite elements in *R to R.

For a proof, see [11, Theorem 5.6.2]. To emphasize the field operations in *R,

we have the following:

[T +y] = [vi+uyl
] [yi] = [:yi)

;] < [yi] <= ax; <y, for w-almost all i
Proposition 2.17. *R is a real closed field.

The proof is straightforward, see [10, Lemma 3.3].
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Proposition 2.18. *R is an n;-field.

The proof is basically a diagonal argument and can be found in [10, Theorem
3.4].

Notice that the set RN has cardinality c¢. Therefore the field *R has cardinality
¢. Applying Theorem 2.5 gives the following isomorphism theorem [10, Theorem
3.4]. Note that the Continuum Hypothesis is required.

Corollary 2.19. For any ultrafilters, the fields *R are all isomorphic.

Ezample 2.20. 1. Consider the sequence (i) = (1,2,3,...). This defines an
element in RY and hence an element in *R. We will denote this element
by [i] € *R. If x € R, then [z] € *R, represented as a constant sequence.
Then, except for a finite number of ¢, x < 4, and therefore [z] < [i] in *R.
Therefore [7] is infinite and *R is nonarchimedean. The element [1/7] is a

nonzero infinitesimal.

2. Let p(t) € *R[t] be a polynomial of one variable. We can consider each of the
coefficients of p(t) as a sequence of real numbers. As such, this will give a
sequence of polynomials p;(t) € R[t]. We can write p = [p;]. To find roots of
p, we can just find roots of the polynomials p;(t). If p;(¢;) = 0 for w almost
all 4, then [t;] is a root of p.

3. If f: R — R is a function, then we can extend this function to a function

“f:*R — *R as follows. If [x;] € *R, we define

“flxi]) = [f (2]

We will often write f instead of *f for this extension. See Section 2.5 for

more details.

2.4 The field ’R

We are going to use *R to construct another field. This field, like *R, was intro-

duced by Abraham Robinson. This new field is not as prevalent in the literature
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as the field *R. The references are [19], [25], [21] and [23]. Most of the elementary

results can be found in [19].

2.4.1 The definitions

We fix a positive infinitesimal p € *R. We consider the following sets

My = {z € R||z| < p ™ for some n € N} (2.5)
M, = {z € R||z| < p" for all n € N} (2.6)

My is a ring of *R and M is a maximal ideal of My [19, pp 77-78]. Therefore,
My /M, is a field, which we define to be the field 7R.

_ My

PR —
M,

(2.7)

We denote the projection from M, to PR by II : My — PR. If x € My C *R, we will
write T for the element II(z).

Notice that if z € M; and 0 < y < z then y € M; (which means that M; is
a convex ideal). This implies that the ordering on *R induces an ordering on ”R.

This ordering can be described as
T<7y(in’R) < z <y (in My)
Proposition 2.21. ”R is a real closed field.

Proof: Recall Theorem 2.1, which states that an ordered field is real closed if and
only if every positive element is a square and every polynomial of odd degree has
a root. We first verify that every positive element in PR is a square. Let T € PR
be given with T > 0 (z € My). Then x > 0 and because *R is real closed, there is
some z € PR such that z? = . Since x € M, we must have z € M, and therefore
7z> =7 and 7 is a square.

If we have a polynomial of odd degree P(X) € PR[X], we can lift the coefficients
of P (which are elements of ?R) to My C *R. Thus we obtain a polynomial P(X) €

My[X] C *R[X]. Since *R is real closed, there is some z € *R such that P(z) = 0.
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If v € My, then P(x) = P(Z) = 0 and we have a root of P. So, we have to show
that x € My. Suppose to the contrary that x ¢ M.

r¢ My <= VneN|z[>p™"
< VneN, |z <p"

— o 'eM —{0} (2.8)
Now suppose that P(X) is given by
PX)=a, X"+ -+ a1 X + ag

where a; € M, for all i and a,, ¢ M;. We rearrange the equation P(z) = 0:

Ant" = —ap 12" —a, 0" — - —ag
Ap—1 Ap—2 1 Qo 1
€T — — — —_— e e e e — . —
n, a, | x an, ) x
ap—1 Ap—2 1 Qg 1
ol < - Go)| (2.9)
y, a, ||z an | |x

Notice that since a,, € My — M; and a; € My, we have a;/a, € M, for all i. We
are also assuming that = ¢ M, which, by (2.8), means that =" € M; C M, for
all . Because My is a ring, the sum in (2.9) is in M. Because M, is convex, the
inequality (2.9) now implies that x € My, a contradiction. Therefore z € M, and
7 will be a root of P(X). O

2.4.2 The valuation
If 2 # 0 € "R, we define log, |z| = (In|z])/(In p). We can compose log, and the
ultralimit:
liur)nologp] -] "R = {0} — [—o00, 9]
If © € My — My, then p" < |z| < p~™ for some n € N. This implies nlnp < In|z| <
—nlInp and therefore —n < log, |z| < n. Thus, if x € My — M, log, |z| is finite

and

limolog,: My — M; — R

Lemma 2.22. If z € My and h € M, then lim,, o log, || = lim,, o log, |z + hl.
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For a proof, see [21, p. 194].
Lemma 2.22 tells us that lim,, o log, | - | descends to a well-defined function on
PR — {0}. We now define
v:’R— RU{oo}
o(T) = { lim,, o log, x| if T#0

00 ifx=0
Proposition 2.23. v is a valuation on the field PR. The valuation is compatible

with the ordering on RR.
For a proof, see [19, pp. 79-84].
Proposition 2.24. R embeds into R, and for all z € R — {0} C R, v(x) = 0.

See [19, p. 82] for a proof.

Fxample 2.25. Proposition 2.24 shows that the valuation of any finite element is
zero. However, there are also infinite elements of R that have zero valuation. To
see this, consider the element in ’R represented by log p. It is clear that log p € M,

and log p is infinite. A small calculation shows that log p has zero valuation as well.

2.4.3 Order properties
Proposition 2.26. cof(’R) = N,.

Proof: Consider the element p € R (the projection of p from My to *R). The set
{p~"} is countable and cofinal in ?R. For if z € PR — {0}, then v(x) = r for some
r € R. Let n € N be such that —n < r. Because the valuation is compatible with

the ordering, we have
vip ") =—n<r=vr) = p ">z
Therefore the set {p~"} must be cofinal. O

Proposition 2.27. PR is not an 7, field.

Proof: We need to exhibit sets A << B such that |[AU B| < ®; and there does not
exist x € PR such that A << {z} << B. To do this let A = {0} and let B = {p"}.



18

Suppose that z is such that A << {2} << B. Then, by taking valuations and using

the fact that the valuation is compatible with the ordering, we see that

n=v(p") <v(r) <v(0) =00

Since this must be true for all n, v(x) = co. However, because v is a valuation, this
means that © = 0, a contradiction (since we had assumed {0} = A << {z}). O

Notice in the proof that A is not an increasing sequence, even though B is a
decreasing sequence. In fact, this must be the case in any example showing that

PR is not 7;.
Proposition 2.28. PR is a semi-7; field.

Proof: Suppose @, € ?R is a strictly increasing sequence and b, € ?R is a strictly
decreasing sequence such that @, < b, for all n. We need to show that there is
some T € R such that @, < T < b, for all n.

We lift @, and b, to strictly monotonic sequences a,, b, € *R. Because @, < b,
we have a, < b, for all n. We now apply the semi-1; property for *R. This implies
that there is an element = € *R such that a, < x < b,. Now consider T € *R.
Because a,, < x < b,,, we must have a,, < T < b,. Notice that since @, is strictly
increasing and b, is strictly decreasing we cannot have T =@, or T = b, for any n.

Therefore @, < T < b, and *R is semi-7 . O

2.4.4 The residue field
Since PR is a valuation field, there is a valuation ring O, a valuation ideal J and

a residue field R. Recall that O, J and R are defined as:

O = {zxe’R|v(x)>0}
J = {xe’R|v(x) >0}
R = 0/J

We will use the notation that if x € O, then the corresponding element in R will

be denoted . Notice that J is a convex set, therefore the ordering on ?R induces
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an ordering on fR. This ordering can be described as
T <7y (inR) < z <y (in’R)
Lemma 2.29. ‘R is real closed.

Proof: This is basically the same proof as when we proved that R is real closed,
Proposition 2.21. It is clear that fR is ordered and that every positive element has
a square. The key point here is that if z € R, z > 0 and v(z) > 0 then v(y/x) > 0.

Now, suppose we have a polynomial P(X) € R[X] of odd degree. We lift this
to a polynomial P(X) € O[X] Since, PR is real closed, there is some x € PR such
that p(x) = 0. If x € O, then z will project to a root T € R. So, we have to show
that € O. Assume that P(X) is given by

P(X) = aan+"'+CL1X+a0

where n is odd and a,, ¢ J. In particular this means that v(a,) = 0. Suppose that
x ¢ O. Then v(z) <0, v(z™1) > 0 and therefore 7! € J. We now manipulate the

expression P(z) = 0.

" = —a, 12"t —a, x"t— . —ag
(p—1 ap—2\ 1 ag 1
S “\a r  \a, ) an!
n n n
(p—1 an—2| |1 agp || 1
2| < - i (2.10)
n, an ||z an | |

Notice that v(a;/a,) = v(a;) —v(a,) = v(a;) > 0 because v(a,) = 0. This shows
that a;/a, € O. Also, by assumption, z=! € J. Because J is an ideal and O a
ring, every term on the right in (2.10) is in O. O is a convex ring, so we must have

x € O, a contradiction. Thus we have # € O and 7 is a root of P(X). O
Proposition 2.30. fR is a semi-n;-field.

Proof: This follows from the corresponding fact in R. We suppose that we have a
strictly increasing sequence @, € R and a strictly decreasing sequence b,, € R such

that @,, < b,, for all n where an, b, € PR. Because the ordering on fR is induced from
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the ordering on PR, we also have a,, < b, for all n. We can now use that fact that
PR is semi-n; and find = € R such that a, < x < b, for all n. Then @, < 7T < by,

and therefore R is semi-7);. O
Proposition 2.31. R is an n; field.

Proof: We need to show that given any two subsets A, B C R such that |AUB| < X;
and A << B, there exists © € R such that A << {z} << B. Notice first that if
cof(A) = 1, then we can replace A by a single element set. Similarly if coi(B) = 1.

We can also transform the sets A and B by any of the following transformations:
1. Translation: z — x + ¢, ¢ € ‘R.
2. Dilation: z +— Az, A # 0.
3. Inversion: x +— 1/z.

These transformations will change the sets A and B, but finding an element between
A and B will be equivalent to finding an element between the corresponding

transformed sets. There are several cases to consider.

Case I. If cof(A) = Xy and coi(B) = Ry, then this is the semi-7; case that was
handled in Proposition 2.30.

Case II. A= 0 and B = (). This case is trivial since any = € R will work.

Case III. cof(A) = 1 and coi(B) = 1. This case is also trivial since it is easy to

find an element between any two given elements.

Case IV. cof(A) = Ry and B = (). This will be our main case to prove. We do
this below.

Case V. cof(A) = Ny and coi(B) = 1. By translation we can assume B = {0}.
We then apply dilation by —1 and then inversion. Then net result is to

be in the situation of Case IV.
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Case VI. coi(B) = XN and cof(A) = 1. In this case we translate to assume A =

{0}. We then apply inversion to arrive at Case IV.

To deal with Case IV, let @, € R be a strictly increasing sequence, lifting to a
strictly increasing sequence a, € O C PR. We have v(a,) > 0 for all n. Consider

the strictly decreasing sequence {p~'/"} C #R. We have
v(E V™) = ~1/n < 0<v(a,) =0 (2.11)

for all n € N. Because the valuation is compatible with the ordering, (2.11) implies

that for all n,

a, < ﬁfl/n

Because R is semi-7;, we can find an element x € PR, such that for all n
p < T < ﬁfl/ "
Applying the valuation to this inequality, we have for all n:
o) = —1/n < () < v(an) = 0

which says that v(z) = 0. So x € O and because the sequence a,, was strictly
increasing, x # a, for any n. Therefore we have @, < T for all n. This proves
Case IV and finishes the proof of the proposition. n

Assuming the Continuum Hypothesis gives the following.
Theorem 2.32. ‘R is isomorphic to *R.

Proof: We know that *R and fR are both real closed n;-fields of cardinality ¢. We

can therefore apply the isomorphism theorem, Theorem 2.5. O

2.4.5 An isomorphism theorem
The following isomorphism is due to Pestov and Diarra [23, Theorem 1.8] [6,

Corollaire de la Proposition §]).

Theorem 2.33. PR is isomorphic both as an ordered field and as a valuation field

to the Hahn field R((R)).



22

This theorem does not require the Continuum Hypothesis. If we assume the
Continuum Hypothesis, as usual, we can combine Theorem 2.33 with Theorem

2.32, Corollary 2.19 and Proposition 2.10 to get the following result.

Theorem 2.34. For any choice of ultrafilter, and any choice of infinitesimals, the

fields PR are all isomorphic as valuation fields.

2.4.6 Some remarks
The field R was introduced by A. Robinson [25]. Luxemburg mentions the
isomorphism (Theorem 2.34) and mentions an argument for the proof [21, p. 196].
Luxemburg’s argument relies on a theorem of Kaplansky [14, Theorem 7], but this
method seems flawed as it does not account for our requirement of the Continuum
Hypothesis. Finally, Pestov gives Theorem 2.33. As Pestov states, the proof of
this theorem is actually due to Diarra. It appears that neither Pestov nor Diarra

investigated the properties of the residue field, and Theorem 2.34 is a new result.

2.5 Extending functions
2.5.1 Extending functions to *R
We mentioned briefly in Example 2.20 how to extend a real function to a
nonstandard function. We state more details of this extension, especially for
functions that are given by power series.
Suppose D C R is a set. Then, by *D, we mean the subset of *R formed by
sequences in D. Suppose f : D — R is a function. We define *f : *D — *R as

follows. If z = [x;] € *D we define

“f(lw]) = [f ()] (2.12)

Since x; € D for w-almost all 7, *f is well-defined.
We now suppose that f : R — R is given by a power series with a radius of
convergence 1 > 0. Then, for z € R:

o0

fz) = Z anx"” for all |z| <r (2.13)

n=0
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As before, this extends to a nonstandard function. If x = [2;] € *R and |z| < r,

then |z;| < r for w-almost all 7, and

If we take as a definition that infinite sums in *R are defined point wise, then (2.13)

also makes sense for x € *R.

Example 2.35. The exponential series. For any x € R, we have
2 3
x

v T
et = 1—|—w+2!+3!+
= 2
n=0

Because this formula is valid for all x € R, this formula is also valid for all z € *R.

We can therefore write, for x = [z;] € *R,

e’ = [e"] = [Z %]

n=0
-3
- n!
“— nl
FExample 2.36. The logarithm series. For z € R, the series
x?2 2 2t
In(1 — - -z e
n(l—x) T = 3 1
N n
n=1

converges for |x| < 1. Therefore, this series also makes sense for |z| < 1, z € *R.

2.5.2 Extending functions to "R
Now consider extending functions to PR. If f : R — R is a function, then as
in (2.12), one can define *f : *R — *R. We would like to define 7f : PR — *R. If

T € PR and = € M, projects to T, one would like to define:

Pf(@) =11("f(x))
where II : My — PR is the projection. For this definition to make sense, we

need *f(z) € My for all x € M, and *f(x) —*f(y) € M; whenever x —y € M;. To
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illustrate that these conditions will not in general be satisfied, consider the following

examples.

Ezample 2.37. 1. Consider exp : *R — *R. p € My, but exp(p) ¢ M,.

2. Consider the function f: R — R defined by

0 ifz=0
f(:r)z{1 it £ 0 (2.14)

Notice that for all x € My, = # 0, f(z) = 1. But, f(0) = 1, so this function

will not extend to a function f : R — R as in (2.12)

Thus, real functions cannot in general be extended to ?R functions.

2.5.3 Extending matrix functions
Consider the exponential of a matrix. If A is an n X n matrix with entries in R,

we can define
I o 1 4
—’EZH (2.15)
k=0

If A =[A;]is a matrix with entries in *R, represented by matrices A; with entries

in R. Then, we define the matrix series point wise as in (2.13).

expA = [exp A4}

_ 1 2 1 3
= P+A+5A+§A+~~

o
Lo
- S5
k=1
This means that we are free to use matrix exponentials with matrices with entries

in *R.

(2.16)

2.6 Solutions to polynomials
The linear algebraic groups we will study will be defined over R (or Z). See

Appendix C for a brief introduction on linear algebraic groups. We will often be
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concerned with the *R and the PR-points of these groups. Therefore we will need
to investigate the *R solutions to polynomials in R[T]. As in Appendix C, we will

assume that 7" represents several variables so that
R[T] =RI[TY,...,T,]
For this section, we will fix f € R[T], and we define the following sets

V.= {zeR"| f(z) =0}
Vo= {ze*R"| f(z) =0}
PV = {xe’fR"| f(x)=0}
V] = {[a;] € *R" | z; € R", f(z;) = 0 for all i}
V = {Z € R" | 2; € R, f(x;) = 0 for all i}

The following relationships between these sets are mostly trivial.
V =1[V] Vv

Similarly, we also have

Proposition 2.38. V =*V.

Proof: This takes a bit of work and relies on Appendix D. We will denote by II,
the projections:

IT: My — "R IT: M) — PR"

We define
Z ={xe€*R"| f(x) € My} U={xecR"|*d(z,"V) € M}
Notice that we have the following.

' (V) = ZnM?
(V) = UnM

Our goal is to show that II! (°V) = II7' (V).
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Notice that because V' C R" is defined by f(z) =0, V is a closed set of R". We
apply Lemma D.5 to this set, and we see that the following semi-algebraic functions

x—d(x,V) x— f(z)
have the same zero sets (namely V). We now apply Theorem D.7 to the functions
d(z,V) and f(x). This yields integers N1, No € N and continuous semi-algebraic
functions hq, hy : R® — R satisfying

(d(x, V)™ = i(2)f(x) (2.17)
(f@)™ = ha(x)d(z,V) (2.18)
for all z € R™. We now apply Proposition D.6 to the semi-algebraic functions hq, hs,

giving us ¢ € R, p € N such that for 1 = 1,2,
|hi(z)] < e (1+ |2)*)" (2.19)

Combining (2.17), (2.18) and (2.19) gives us
(d, V)™ < e(L+|2l*)"[£(2)] (2.20)
f@)™ < c(l+2?)"d(z,V) (2.21)
for all z € R™. We emphasize that (2.20) and (2.21) hold for all x € R". Therefore,

(2.20) and (2.21) will also hold for any sequence of real numbers. This gives us the

corresponding inequalities for x € *R":

F@)™ < e(1+ [z d(z,*V) (2.23)

(d(z, V)™ < e (1+]2])"|f (@) (2.22)

for all z € *R".

We now show that Z N Mg = U N Mg. The key point is that M; is an ideal of
M. First, suppose z € Z N M{'. Then, f(z) € M;. Since |z| € My, c(1 + |z|*)? is
also in My (this is because M, is a ring). This means that the right hand side of
inequality (2.22) is in My - My C M;. Therefore the left hand side is in M; which
immediately implies that d(x,*V) € M;. This means that x € U N M} and shows
that Z N M} C U N Mg.

The proof that U N M} C Z N M{ is more or less identical using (2.23) O
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Corollary 2.39. Let G be a linear algebraic group, defined over R. Then the
projection IT : M} — PR™ maps G(M,) onto G(°R):

[1(G(Mo)) = G("R)

Proof: Notice that G(My) C G(*R) are defined by a finite set of polynomials in
R[T]. If {f1,..., fn} CR[T] are the polynomials, we can define

f:ZfiQ

Then f also defines the algebraic set G. We can now directly apply Proposition
2.38. ]



CHAPTER 3

ASYMPTOTIC CONES

3.1 The construction

The asymptotic cone is a modified geometric ultrapower construction. We start
with a metric space (X,d) and a nonprincipal ultrafilter w. We then form the
ultrapower *X as in Section 2.3.2. We can use the distance function on X to get a
nonstandard distance function *d : *X x *X — *R. This nonstandard distance is
given by applying d to two sequences in X. Notice that *d satisfies all conditions
of being a distance function except it takes values in *R instead of in R.

We now fix a positive infinite number A\ € *R. We define, for z,y € *X:

doo(,y) = lim (@)

Thus, for all z,y € *X, we have d(z,y) € [0,00]. By fixing a base point x € *X,

we can pick out a component:
Xoo ={2 € "X | doo(z,%) < 00} (3.1)

X is a pseudo-metric space with pseudo-distance d,,. After we identify elements
with distance zero, we obtain the metric space that we call the asymptotic cone of

X:

Xeo
Cone, X = —

Notice that if we start with a metric space, the asymptotic cone depends on the
ultrafilter w, the infinite number A and the base point x. The basic question is how
Cone, X changes when these inputs change. It is well known that in some cases,

changing these inputs yields asymptotic cones that are not isometric [29].
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3.2 Basic properties of Cone, X
Here we outline some basic properties of the asymptotic cone. For the most

part, these are easy to prove and can be found in [15] or [17].
Proposition 3.1. 1. Cone,(X x Y) = Cone, X x Cone, Y.
2. If X is a geodesic space then Cone,, X is also a geodesic space.
3. If X is a CAT(0) space, then Cone, X is also a CAT(0) space.

4. If X is a CAT(k) space for k < 0, then Cone, X is a CAT(—o0) space (a

metric tree).
5. If X is homogeneous, then Cone,, X is homogeneous.

Proposition 3.2. An element f € *(Isom X') determines a element of the nonstan-
dard isometry group Isom(*X). Such an f determines an isometry of Cone, X if

and only if do(f(%),*) < oc.

Proof: Let f € *(Isom X). Then f can be represented by a sequence f; € Isom X.
If [2;], [y;] € *X then:

which shows that f is a nonstandard isometry of *X.
Clearly if f determines an isometry of Cone,, X then d.(f(x),*) < co. Suppose
that doo(f(x),*) < co. Let [z;] € X&. Then

oo (f(2), %) < doo(f(2), f(¥)) 4 doo(f (%), %)
= doo(£7*) + doo(f(*)a*) < 00
Therefore, f preserves X, and must give an isometry of Cone, X. [
3.3 Dependence on the base point

Theorem 3.3. If X is a homogeneous space, then the asymptotic cone is indepen-

dent of the choice of base point in *X.
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Proof: Let [z;] and [y;] be two different base points in *X. Since X is homogeneous,
for each ¢ there exists some g; € Isom X such that g; - ©; = y;. By Proposition 3.2,

lgi] defines a nonstandard isometry of *X. Therefore [g;] defines an isometry

[gi] : Cone,, (X, [z;]) — Cone, (X, [yi])

O
3.4 Examples
3.4.1 Bounded spaces
Proposition 3.4. If X is a bounded space, then Cone, X is a point.
Proof: We just compute distance. If = = [z;],y = [y;] € X then:
*d iy Y1
doo(,y) = lim (—(x / )>
w A
< lim (dlamX) 0
w A
O

3.4.2 Hyperbolic spaces
H" has strictly negative curvature and is therefore a CAT(k) space for some
k < 0. By Proposition 3.1, we see that Cone,, H" is a metric tree. In fact, it is not

too hard to see the following properties [7]:
1. Cone,, H" is a metric tree with uncountable branching at every point.

2. Cone, H" and Cone,, H™ are isometric for all n, m.

3.4.3 Euclidean spaces
The next example is X = R. We start with R, w and A. Our first step in

the construction of Cone, R gives us the nonstandard real numbers *R and the
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nonstandard distance *d on *R. Notice that *d can be written as *d(x,y) = |x —y].

We also have the (possibly) infinite real distance d., on *R:

doo(,y) = lim (@)

We fix a base point in *R. By Theorem 3.3, we are free to choose any base
point. An obvious choice is the point 0 € R C *R. To determine the space
R C *R defined in (3.1), notice that for x € *R, *d(z,0) = |z|.

Ry = {z € R |dw(z,0) < o0}
= {z € "R ||z| < nA for some n € N}

Define a map ¢ : Cone,, R — R. Defined as ¢(x) = sign(z)d(z,0), where sign(z) €
{—1,0, 1} is defined as usual. Given z,y € Cone, X

d(o(x), 9(y)) = Ifb(iﬁ)—cb( )!
= |[sign(z () — sign(y)doo (y, 0)]

= hm(

which shows that ¢ is an isometry and Cone, R = R. By combining this result

with Proposition 3.1 we get the following result.
Proposition 3.5. Cone, R" = R".

Remark 3.6. As was briefly mentioned in the introduction, when the spaces (X, Aid)
converge in the sense of Gromov-Hausdorff, the asymptotic cone is equal to this
limit space. This is the case when X = R. The spaces (R, 5d) converge to R,

showing another way to prove Proposition 3.5.



CHAPTER 4
SYMMETRIC SPACES

4.1 Basic definitions and properties
The general reference for nearly everything to do with symmetric spaces is
Helgason’s book on symmetric spaces [13]. Another very good reference is Eberlein’s
book on nonpositively curved manifolds [9]. All the results in this chapter that are
not referenced or proved can be found in one of these references. One of the main
points of this chapter is the statement of Theorem 4.6 and the distance formula of

Proposition 4.4.

Definition 4.1. A Riemannian manifold P is a symmetric space if for each p € P,
there is an involutive isometry with p as an isolated fixed point. This isometry is

called the reflection or symmetry at p.

The easiest examples of symmetric spaces are Euclidean spaces and spheres.
In these cases, the symmetries are the usual reflections through points. Given a
symmetric space P, we can apply the de Rham decomposition and write P as a

product of irreducible symmetric spaces:
P=Myx M; x---x M,

Each of these manifolds will either be compact, a Euclidean space, or noncompact
and not a Euclidean space. We will be interested in finding the asymptotic cone
of the symmetric space. By Proposition 3.1, to find the asymptotic cone of a
symmetric space, it suffices to consider each irreducible component of P. By
Proposition 3.4 and Proposition 3.5, we already know everything about asymptotic

cones of compact spaces and Euclidean spaces. Therefore, we will be concerned
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only with irreducible symmetric spaces of noncompact type, meaning the irreducible

symmetric space is noncompact and not Euclidean space.

4.2 Symmetric spaces of noncompact type

Let P be a symmetric space of noncompact type. Let G be the connected
component of the identity in the isometry group. Then G is a Lie group and acts
transitively on P. We fix a point p € P and let K C G be the stabilizer of p. K
is a maximal compact subgroup of G. Let g be the Lie algebra of G and & the Lie
algebra of K.

Let o, : P — P be the reflection at p. Then g — 0,90, defines an involution
o : G — G. This also gives an involution do : g — g, of the Lie algebra. These

involutions have the fixed point sets

Fix(c) = K
Fix(do) = ¢

Since do is an involution, we can find the complement of ¢ in g:
p={Xecg|do(X)=-X}

We have g = ¢ @ p.

We know that G acts on P transitively which gives us the identification P =
G/K. On the Lie algebra level, the Lie algebra maps onto the tangent space
g — T, P. This map has kernel £, and thus we see we can identify the tangent space
T, P with p.

In g we have the Killing form B : g x g — R given by

B(X,Y)=tr(ad X oadY)

Using the Killing form and the identification T,,P = p, we define a positive definite
inner product on T, P.

(X,Y), =B(X,Y)

Using the transitive group action, we can move this inner product around the

symmetric space to get a Riemannian metric. It is known that with this metric,
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symmetric spaces of noncompact type satisfy the CAT(0) inequality [16, Section
2.1]).

Definition 4.2. Let P be a metric space. A k-flat in P is a complete, totally

geodesic submanifold that is isometric to R¥.
The following theorem can be found in [9, Section 2.10].

Theorem 4.3. 1. Every flat 7 C P through the base point p € P is the orbit

of the exponential of an abelian subspace a C p:
F =exp(a)-p

2. If F; and F;y are k-flats in P and p; and py are points in F; and F5, then
there exists g € G such that g - F; = F5 and g - p; = pe.

3. If v is a maximal geodesic of P, then there exists at least one maximal flat

containing ~.

4.3 The symmetric space P(n,R)

The canonical example of a symmetric space of noncompact type is the space
P(n,R). By definition, P(n,R) is the set of positive definite, symmetric n x n
matrices of determinant one with coefficients in R. A natural base point in P(n,R)
is the matrix I. Our goal in this section is to better understand P(n,R) and, in
particular, find a distance formula.

SL(n,R) acts on P(n,R). If g € SL(n,R) and A € P(n,R), we define the
action

g-A=gAg’
It is an elementary fact from linear algebra that this is a transitive action. The
stabilizer of the base point I € P(n,R) is SO(n). The Lie algebra of SL(n,R) is

sl(n,R), the set of all trace zero matrices. The Lie algebra of SO(n) is so(n), the

set of skew symmetric matrices with trace zero. Notice that the exponential map,
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exp : sl(n,R) — SL(n,R), is given by matrix exponentiation. The symmetry at
I € P(n,R) is given by

UI(A) = A_l
It is clear that o is involutive and has I as an isolated fixed point. Using o; we
obtain involutions ¢ : SL(n,R) — SL(n,R) and do : sl(n,R) — sl(n,R) which are

easily seen to be given by the formulas:

o(g) = ogor=(g7")
do(X) = —-X'

This allows us to decompose the Lie algebra sl(n, R) = so(n) @ p(n,R), where

so(n) = {Xe€sl(n,R)| X"'=—-Xtr X =0}
p(n,R) = {X esl(n,R)| X'=X,tr X =0}

Given X € sl(n,R), ad X : sl(n,R) — sl(n,R) is given by
ad X(Y)=[X,Y] = XY - YX

One can compute the Killing form and see that B(X,Y) = 2ntr(XY). Since
replacing B with B(X,Y) = tr(XY') will only change the metric by a fixed scale,
we do this. The metric at I € P(n,R) is therefore:

(X,Y); = tr(XY)

To find the metric at another point in P(n,R), we use the group action to move
the inner product defined at I around the symmetric space. If g - p = I then the
metric at p is given by

<dg(X>7 dg<y)>13 = <X7 Y>I

This definition ensures that SL(n,R) acts on P(n,R) via isometries. It can also be
shown that o; is an isometry of P(n,R).
We now determine the geodesics of P(n,R). It is well known that the orbits of

one parameter subgroups in the isometry group, which are tangent to P(n, R), give
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geodesics through the base point in a symmetric space. One parameter subgroups
in SL(n,R) are seen in the Lie algebra as lines. Thus, the geodesics through I are
of the form ~(t) = exp(tX) for some X € p(n,R).

To find a formula for length of such a geodesic, let X € p(n,R). Let v(t) =
exp(tX) be the corresponding geodesic. Notice that 7/(0) = X. To find length of a

curve we use the metric on X and integrate:

a1, exp(X)) = length(2) = [ (/(0).7/ (1) (1)

To compute this integral, we use transvections. In particular, for each ¢, consider

the isometry g¢;, defined by
gt = 01 O Ox(t/2)
One can verify that
g:(y(w)) = y(u—1)

and therefore, the family {g;} translate along the geodesic . Therefore,

dg:(v'(t)) = +'(0)
V()Y Oy = (dge(v'(£), dge(v' () gur)
= (7(0),7(0))50)
= (X, X)r = tr(X?)

Thus, the distance in (4.1) becomes

d(I,exp(X)) = / () dt

0

- <§(, tr(X2)

To actually compute distances in P(n,R), we notice that log : P(n,R) — p(n,R)
is the inverse of the exponential map and is well-defined because exp : p(n,R) —

P(n,R) is bijective. Therefore

d(A, 1) = \/tr[(log A)7] (4.2)
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Proposition 4.4. Given A, B € P(n,R), d(A, B) = \/tr[(log AB~1)?].

Proof: Using the group action, we find g € SL(n,R) such that g- B = I, or
gBg' = I. Therefore by (4.2),

= /tr((log gAg")?)

Define X =log(gAg"). Then
d(A, B) = y/tr(X?) (4.3)
Notice that since X = log(gAg'), exp(X) = gAg"'. We rearrange this expression.

exp(X) = gAg' =gAB'Bg' = gAB g lg7 "y
= gAB ¢! (4.4)

Rearranging (4.4) gives
AB™' =g~ exp(X)g = exp(g™' Xg)
Therefore,

g 'Xg = log(AB™)
X = glog(AB Hg™* (4.5)

We now put equation (4.5) this into the formula (4.3):

d(A,B) = tr((X)?)
= Vtr(g(log(AB~1))g~1)?
= Vtr(g(log(AB1))2g71)
= /tr(log(AB—1))2
The last equality is because trace is invariant under conjugation. O]

Notice that in sl(n,R) a maximal abelian subspace is the set of diagonal trace

zero matrices. Theorem 4.3 implies the set of diagonal matrices in P(n,R) is a
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maximal flat. Because SL(n,R) must act transitively on maximal flats (again,
Theorem 4.3), we see that any element of P(n,R) can be diagonalized using an

element of SL(n,R). This is a well known result of elementary linear algebra.

Proposition 4.5. If A € P(n,R), then there exists some g € SL(n,R) such that

gAg' is diagonal.

4.4 The embedding

Let P be an irreducible symmetric space of noncompact type and let p € P be a
point. Let GG be the connected component of the isometry group of P. Let K C G
be the stabilizer of p € P.

We have the following theorem that can be found in [8, p. 134].

Theorem 4.6. There is some n such that there is a diffeomorphism P — P(n,R)
onto a complete totally geodesic submanifold of P(n,R). It is possible to rescale
the metric on P so that this map is an isometry. The group G embeds in SL(n,R)
and the group K embeds in SO(n), and this group embedding respects the group

action.

Thus, we can assume that every irreducible symmetric space of noncompact type
is a submanifold of P(n,R). To compute distances in P, it is enough to compute

distances in P(n,RR). We also have the following.

Proposition 4.7. In the embedding of Theorem 4.6, we can assume that every

element A € P C P(n,R) is diagonalizable by an element of K.

Proof: Suppose P C P(n,R) is embedded and F C P is a maximal flat. Let F be a
maximal flat in P and let p € F be an arbitrary point. Let D be the flat of diagonal
matrices in P(n,R). Then, by Theorem 4.3, there exists some g € SL(n,R) such
that

g-FcD g-p=1I

By using this element g to modify the embedding, we can assume that there is a

maximal flat of P contained in D. Let D’ C P be a maximal flat such that D’ C D.
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Now let A € P be arbitrary. Let v be a geodesic connecting I and A. By Theorem
4.3, there is a group element g € G such that

g-veD g-I1=1

Since g-I = I, we actually have g € K, the compact subgroup. And, since g-A € D/,
g - A is diagonal. O]



CHAPTER 5

ASYMPTOTIC CONES OF SYMMETRIC
SPACES

We now construct the asymptotic cone of an irreducible symmetric space of
noncompact type P, and prove the main theorem regarding this asymptotic cone.
We will assume that P C P(n,R) and that this embedding satisfies Theorem 4.6
and Proposition 4.7. We take the base point to be I € P(n,R). We also fix a
nonprincipal ultrafilter w and an infinite number, A € *R. We let p = e, a
positive infinitesimal in *R. Recall that this leads to the definitions of M, (2.5),

M, (2.6) and the field *R (2.7).

5.1 Py
Recall that P, is defined in (3.1) as

P ={z €"P|dy(z,*) < 0}

where

doo(,y) = lim (@)

Also note, as mentioned in Example D.3, that for any ordered field K, P(n, K) is a
semi-algebraic set. We can consider the semi-algebraic sets P(n,*R) and P(n,”R).
Notice that because P C P(n,R), *P C *(P(n,R)). The ultrafilter actually gives
equality:

“(P(n,R)) = P(n,"R)

Proposition 5.1.

Ps = *P N P(n, M)



41

Proof: Take A € *P. Let {ay,...,a,} be the eigenvalues of A. Because exp :
p — P is onto, there exists some X € *p such that exp X = A. By Lemma A.1,
the eigenvalues of X are {logay,...,loga,}. Similarly, the eigenvalues of X? are
{(log1)?, ..., (log a,)*}. Because the trace of a matrix is the sum of its eigenvalues
and by Proposition 4.4,

do(A ) <00 = lig}n (w) zlign (M) < 00

< 30 eR, tr((logA)?) < (CN)?

= JCEeR, ) (loga;)’ < (CA)

<« 3C R Vi (loga;)* < (CN)?

— dCeR Vi —Cl<loga; <CA

— JCeRYi p=eP<q<er=p° (5.1)

This shows that A is in P, if and only if the eigenvalues of A are in My — M;.
Lemma A.2 tells us that if o; € My — M; for all 7, then the matrix entries of A
satisfy |A;| < np~ < p~ (@D, Thus, if A € P, then A has entries in M,. Because
A must be symmetric, positive definite and det A =1, A € P(n, My).

Similarly, if A € *PNP(n, M), then all entries of A satisfy |A;;| < p=¢ for some
C € R. Therefore, since A € SL(n,*R), Lemma A.2 implies that the eigenvalues
{ai,...,a,}, of A must all satisfy

(nQP—C)—(n—l) < ’al’ < n2p—C

Thus, there is some C" € R (we can take C' = nC') so that all eigenvalues of A
satisfy

P <oy < p=¢
In other words, all the eigenvalues of A are in My — M;. Therefore by (5.1),
AeP,. O

5.2 The group action
The action G ~ P is a transitive isometric action. Therefore, the action G ~

PN defined point wise, must also be transitive. By applying the ultrafilter, we
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get a transitive action *G ~ *P. This “nonstandard” action is by nonstandard
isometries. We want to determine the subgroup of *G that stabilizes the subset

P, C*P.
Proposition 5.2. The stabilizer of Py, in *G is the group G(My).

Proof: By Proposition 3.2, g stabilizes Py, if and only if g- I € P.
Assume first that g € *G stabilizes P,,. Then ¢g-I = g¢' € P,,. Proposition 5.1
implies gg' € SL(n, My). Therefore, for all 4, j and for some C' € R, |(gg")i;] < p=C.

In particular, this is true when i = j:

Z GikGik
k=1

Therefore, g;, € My for all i, k and g € G(M,).
Now assume that g € G(My). Then g;; € M, for all i, j and

p~ ¢ > (99"l =

= Z(%k)Q > |gan?
1

k=

(9-1)ij = (99")ij = Zgikgjk (5.2)

Because M) is a ring and each g;; € M), the sum (5.2) must be in M,. Thus, by
Proposition 5.1, g - [ = g¢' € Ps. O

5.3 Upgrading to R
The previous section says that each A € P, is a n X n symmetric matrix with
coefficients in My (Proposition 5.1). We can use the quotient map IT : My — R to
induce a quotient I : P(n, My) — P(n,”R). Let P(’R) be the image of P, under

this quotient map.

Proposition 5.3. The quotient map P, — Cone, P, obtained by identifying

distance zero elements, factors through P(’R)

Pe —1 P(R)

l l

Cone, P —— Cone, P



43

Proof: We need to show that if A, B € P, are such that A — B has entries in
M, then d(A, B) = 0 (where this is the pseudo-distance on P(Mj)). Suppose
A, B € P, and A — B has entries in M;. We first simplify the problem using the
group action G(My) ~ P. There exists some g € G(M) such that g- B = I.
Then

(9-A)—(9-B) =gAg' —gBg' = g(A— B)g'

Now, recall that M is an ideal of M,. Therefore, A — B has entries in M; if and
only if g(A — B)g" has entries in M;. Using the transitive action G(My) ~ Pa,
we translate the pair (A, B) to (A’,I) such that A" — I has entries in M;. This
translation is an isometry so d(A, B) = d(A’, I). We want to show that d(A’, I) = 0.
Next, using Proposition 4.7, we diagonalize A’ using an element k € *K.

In other words, we need to show that if D is a diagonal matrix such that D — I
has entries in M; then d(D,I) = 0. Assume that D — I has entries in M; and D
is diagonal. This means that D is of the form D = diag(1 + a1, ...,1+ ), where

a; € M. We now compute distance:

d(D,I) = lim

Since each «; € My, we can apply Lemma 2.22 and see that
lim (log,(1+ ax)) =0

for all k. Therefore d(D,I) = 0. O
The proof of Proposition 5.3 gives formula (5.3) for distance from the base point.
This computation is valid in P(’R). If we follow the computation through, we see

that if {@; ..., @,} are the eigenvalues for A € P(’R), then
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d(AI) = <li£nlogp(ai)>2

M 7

(v(@))?

Corollary 5.4. If A € P(’R) has eigenvalues {ay,...,a,} then

d(A 1) =/ (v(e)”
Corollary 5.5. A € P(’R) is distance zero to I if and only if all the eigenvalues

of A have zero valuation.

Recall that *G ~ *P by nonstandard isometries and therefore G(My) ~ Px
is a nonstandard isometric action as well. Proposition 3.2 says that this action

descends to an action G(My) ~ Cone,, P.

Lemma 5.6. The action G(My) ~ P induces an action G(’R) ~ P(’R). This

action preserves the pseudo-distance on P(’R).

Proof: We first check that this action is well-defined. Let § € G(’R). By Corollary
2.39, 7 is in the image of the projection G(My) — G(°R). Suppose g1, g2 € G(My)
both project to g. To show that the action is well-defined, we have to show that if
A€ P(PR) with A € P, then

H(Ql A) = H(92 : A)

where II : P(n, My) — P(n,”R) is the projection. Since g; and g both project to
g, g1 — g2 has entries in M;. Let h = g3 — go. Since M is an ideal of M,, any
matrix with entries in My, when multiplied by A, will have entries in M;. This

observations yields

(g1-A) = (92- A) = qAg] — g2Ad}
= qi1Agl — (g1 — h)A(g1 — h)’
= g Ah' + hAg, + hAR! (5.4)

where every term in the sum (5.4) must have entries in M;. Therefore g, - A and

g2 - A must be equal in P(’R) and the action is well-defined.
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To see that the pseudo-distance is preserved, one only needs to see that the
action G(My) n Py preserves the pseudo-distance and that the pseudo-distance
in P(*R) is actually computed in P.. O

Thus we get an action G(’R) ~ P(’R) which induces a transitive action of

G(’R) on Cone, P.

Proposition 5.7. Every matrix in P(’R) can be diagonalized by an element of

K(*R) C G(*R).

Proof: Notice that if ¢ € K, then every matrix entry of g satisfies |g;;| < 1 and
g € G(My). Therefore, *K = K(*R) = K(M,).

If Ac P(°R) and A € P, are such that II(A) = A, we apply Proposition 4.7.
This gives us k € K(*R) = K (M) such that k- A is diagonal. This clearly implies
that k - A is diagonal in P(’R). O

5.4 The stabilizer of a point
5.4.1 Matrix valuations

Definition 5.8. If g is a matrix with entries in R, we define the matriz valuation
of g as:
og) = min{e(g,)}

Lemma 5.9. Let A, B be matrices with entries in /R. Then v(AB) > v(A) +v(B)

v(AB) = min{v((4B);)} = min {v ( > AuBy ) }
= min{v(Ai) +v(By;)} 2 min{v(Ay)} + min{v(By;)}
= v(A) 4+ v(B)

Proof:

]

Lemma 5.10. If ¢ € O(n,”R) then v(g) = 0. If g,h € GL(n,”R) are such that
gh™ € O(n,”R) then v(g) = v(h).
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Proof: g¢' = I implies that the entries of g satisfy |g;;| < 1. Taking valuations
gives v(g) > v(1) = 0.
If gh=! € O(n,”R), then v(gh™') > 0. We now apply Lemma 5.9:

v(g) = wlgh™h) > v(gh™") +v(h) > v(h)

By symmetry, v(g) = v(h). Notice that v(I) = 0. Therefore, for all g € O(n,”R),
v(g) =v(l) =0. O

Lemma 5.11. If g € O(n,”R) and A € GL(n,”R), then v(gAg") = v(A).
Proof: Applying Lemma 5.9:

v(gAg") = v(g) +v(A) +v(g") = v(A)
Similarly, since A = ¢*(gAg')g,

v(A) = v(g'(9Ag")g) = v(g") +v(gAg") + v(g) = v(gAg")

and therefore v(gAg') = v(A). O
Lemma 5.12. If A € P(’R) then

(n—1)v(A4) < v(A™) <v(4)/(n 1)

Proof: By Proposition 5.7, we first diagonalize A with g € K(*R) so gAg" = D is
diagonal. Lemma 5.11 implies that v(A) = v(D).

D = diag(ay,...,a,)
D' = diag(l/ay,...,1/ay,)

Computing the valuation of A and A™%:
v(A) = (D)= min{v(w;)}
v(A™) = (D) =min{v(1/a;)} = min{—v()} = — max{v(a;)}

Since the determinant of a matrix is the product of its eigenvalues, det A = 1

implies [[a; = 1. Taking the valuation of [[a; = 1 gives Y v(a;) = 0. Let
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m = min{v(a;)} and M = max{v(a;}. Notice v(A) =m and v(A™!) = —M. We

now apply Lemma B.1 which implies
n—1)m < —M <m/(n—1)
and proves the lemma. O

Proposition 5.13. Let A € P(’R) and let {ay,...,a,} be the eigenvalues of A.
Then the following are true (where a condition in all the eigenvalues is written as

a condition in just a)

1.
m <0

m < v(a) < —nm
v(A) >m
d(A,T) < —n3m

M>0

—nM <v(a) <M
v(A) > —nM
d(A, T) <n32M

O
IN
<
I

m <0
v(A) >m = <m<wv(a) < —nm

d(A,I) < —n3?m

d(AT) <d = {_dg (O‘;Sd

v
v(4) > —

Proof: This is an application of Lemma A.2 and Lemma B.1. Since P = exp(p),
Lemma A.1 implies that all eigenvalues of A are positive. Also by our assumptions,
A is diagonalizable by an orthogonal matrix in SO(n,”R), and we can therefore

apply Lemma A.2.
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Since det A = 1, [[ a; = 1. Taking the valuation of the equation []a; = 1 gives

0=v(1) =v(lly) = Zv(ai)

Recall that by Corollary 5.4,
d(AT) =/ ()
We are now set up to use Lemma B.1 with the following definitions:
d=d(AI) m = min{v(a;)} M = max{v(o;)}

1. Since > v(e;) = 0, the lower bound on v(a) must be nonpositive. Therefore
m < 0. We apply Lemma B.1 and see v(a) < —(n — 1)m < —nm. v(a) > m
gives a < p(™~9 for all e > 0,e € R. We now apply Lemma A.2 and see

|Aij| < np™=2 for all i, j. Taking valuations gives, for all £ > 0,
v(Ay) > v(np"™ ) =m -
and therefore v(A;;) > m.
Again, applying Lemma B.1,
d(A, 1) < —n**m
2. Since det A = 1, we have as before > v(a;) = 0 and therefore M > 0. We now
apply Lemma B.1 and immediately see that v(«) > —(n—1)M and therefore
v(a) > —nM. This gives |a| < p(="M~9) for all ¢ > 0. We now apply Lemma

A2 and get |A;j| < np™"M=9). Taking valuations gives v(4;;) > —nM — ¢
for all ¢ > 0. Therefore, v(A4;;) > —nM.

To compute d(A, I) we apply Lemma B.1:

d(A, 1) < n®?M

3. If v(A) > m, then every entry of A must satisfy v(A;;) > m. This implies
that A;; < 7(m=¢) for all € > 0. We now apply Lemma A.2 and see that all
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eigenvalues satisfy |a| < n?p("~¢). Taking valuations gives v(a) > m — ¢ for
all € > 0. Therefore we have v(a) > m. We can now apply part 1 of this

lemma and get the desired results.

4. This is easy because

(d(A, D) = v(a)? = d?

Therefore, for all eigenvalues, —d < v(a)) < d. We can apply part 1 of this

lemma and see that we must have v(A) > —

5.4.2 The stabilizer
We now use the notion of matrix valuation to compute the stabilizer group of
our base point in G(’R). To begin, we have the following immediate consequence

of Proposition 5.13.
Corollary 5.14. Let A € P(’R). Then d(A, ) =0 if and only if v(A) > 0.
Proposition 5.15. For any g € G(’R), d(gg¢',I) = 0 if and only if v(g) = 0.

Proof: Let A = gg'. Assume that v(g) = 0. In this case we have v(gg") >
v(g) +v(g") = 0 and we apply Corollary 5.14 which implies d(A,I) = 0.

Suppose now that d(A,I) = 0. We diagonalize A using an element a € K(*R).
So aAa' = diag(ay,...,a,). Since 0 = d(A,I)* = > v(a;)? we have v(a;) = 0
for each i. We define b = diag(1/\/oq,...,1/\/ay). Notice that v(b) = 0 and
baAa'bt = I. Therefore, if A = g- I, we have (bag)(bag)' = I which implies
bag € SO(n,”R). Lemma 5.10 implies that v(g) = v((ba)™'). Since a € SO(n,’R),
we have v((ba)™!) = v(b™') = 0. Thus v(g) = 0. O

Recall that O C R is the valuation ring (2.1) and G(O) is the set of O-points

of G. We have the following immediate consequence of Proposition 5.15.
Corollary 5.16. Under the action G(’R) ~ Cone,(P),

Stab(I, G("R)) = G(O) = {g € G('R) | v(g) = 0}
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We have identified the asymptotic cone as the homogeneous space:

G("R)
G(0)

Cone,, P = (5.5)
5.5 The isometry

Consider two different ultrafilters wy,ws, leading to two (isomorphic) nonstan-

dard real fields *R; and *Ry. We then pick infinite numbers \; € *R; and Ay € "Ry

determining infinitesimals p; = e™* and p, = e~*2. This leads to two (isomorphic)

valuation fields 7R and ”2R. These valuations fields have valuation rings O; C 1R

and Oy C ”2R. By Theorem 2.34, there is a valuation preserving isomorphism
¢: "R — 7R

Since ¢ is valuation preserving, ¢(O;) = Os.

Next, we introduce our irreducible symmetric space of noncompact type, P =
G /K. We now construct asymptotic cones of P using both sets of data and apply
(5.5):

G("l]R) - G(”R)
GO Coney, P = G(0y)

Using the isomorphism ¢ : /R — P2R, we get a group isomorphism, also denoted

by ¢:

Cone; P =

¢: G("R) — G("R)

Because ¢ is valuation preserving, ¢ maps the subgroup G(O;) onto the subgroup

G(O3). We now define ¢, : Cone; P — Coney P as

d(g-1)=9(g) 1

To see this is well-defined, suppose g; - I = g5 - I in Cone; P. Then g;lgl € G(0y).
Therefore ¢(g5 'g1) = ¢(g2) " *d(g2) € G(O3) (because ¢ maps G(O;) onto G(0Oy)).
Therefore ¢(g1) - I = ¢(g2) - I and ¢, is well-defined.

Theorem 5.17. ¢, : Cone; P — Cones P is an isometry.

Proof: First note that because ¢(G(O;) = G(O,), ¢. maps the base point of

Cone; P to the base point of Coney P. Next, we check that ¢, is an isometry at
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the base point I € Cone; P. We need to check that d(¢.(z), p.(I)) = d(z, I) for all
x € Cone; P. Let g € G(”R) be such that z = ¢g - I. By Corollary 5.4:

d(a, 1) = /Y v((a))?

where «; are the eigenvalues of the matrix gg'. Notice that if € PR is an
eigenvalue of gg', then ¢(a) € PR is an eigenvalue of ¢(g)¢(g)*. And, because ¢ is

valuation preserving, v(a) = v(¢(«)). Thus, we must have

A1) = /3 o((e)? = /3 o((élan))?

= d(¢*($), ])

Thus, ¢, is an isometry at the base point I € Cone; P.
Next, consider two arbitrary points x,y € Cone; P. Using the isometric group

action G("'R) ~ Cone; P, we can translate to the base point:

(z.9) % (g-2,9-y) = (I,2)

Because the action is isometric, d(z,y) = d(I, z). Also notice that because g-z = I,

&(g) - ¢«(x) = I, the base point in Coney P. Similarly, ¢(g) - ¢.(y) = ¢.(g - v).

Therefore, we have

d(p«(7), ¢ (y)) = d(@(g) - ¢«(2), 0(9) - P«(y))
= d(I,¢.(9-y)) = d(I, $.(2))
= d(I,z) =d(z,y)

and therefore, ¢, is an isometry. O]

Theorem 5.18. Let P be a symmetric space. Then the asymptotic cone of P is

independent of base point, scale factors and ultrafilter.

Proof: Let P be an arbitrary symmetric space. Applying the de Rham decompo-
sition:

P=P x---x P, xR"xQ
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where each P; is an irreducible symmetric space of noncompact type, m € N and

Q) is compact. By Proposition 3.1,
Cone,, P = Cone,, P; x --- x Cone,, P, x Cone, R™ x Cone,, ()

Proposition 3.5 says Cone, R™ = R™ and Proposition 3.4 says that Cone, () is a

point. We now have
Cone,, P = Cone, P; x -+ x Cone,, P, x R™ (5.6)

Theorem 5.17 and Theorem 3.3 together say that each Cone, P; is independent
of base point, scale factors and ultrafilter. Combining this with (5.6) gives the

theorem. O



CHAPTER 6

OPEN QUESTIONS

Although we have answered the main question in Theorem 5.18, there are many
questions left open. For this section, we will assume that P is a symmetric space

of noncompact type.

1. As mentioned in the introduction, Kleiner and Leeb showed that the asymp-
totic cone of P is a Euclidean building [17]. Bruhat and Tits show how
Euclidean buildings arise from “valued root data” in an algebraic group [4].
Valued root data in an algebraic group can arise from a valuation field. Is the
building Cone,, P, the building that arises from the valued root data from the
algebraic group G and the field ?R?

2. The Tits boundary of a Euclidean building is a spherical building. Tits has
shown that spherical buildings correspond to algebraic groups and fields [30].
Is the Tits boundary of Cone,, P the spherical building associated to G and
the field PR?

3. As showed by Roitman, if one assumes the negation of the Continuum Hy-
pothesis, there are infinitely many nonisomorphic nonstandard real fields [26].
Our proof that PR is independent of ultrafilter and infinitesimal relied on
Theorem 2.5, which relies on the Continuum Hypothesis. If one assumes the
negation of the Continuum Hypothesis, can one obtain nonisomorphic fields,

PR?

4. If one assumes the negation of the Continuum Hypothesis, can one obtain

nonisometric asymptotic cones, Cone,, P?



APPENDIX A

SOME MATRIX RESULTS

Let R be either the field R or *R. See Section 2.5 for a discussion on series of

matrices in *R.

Lemma A.1. Let A be a n X n matrix with entries in R. If « is an eigenvalue of
A, then e” is an eigenvalue of exp(A). Similarly, if log(A) makes sense and « is an

eigenvalue of A, then log «v is an eigenvalue of log(A).

Proof: This is straightforward using the definition of the exponential map. If « is

an eigenvalue with eigenvector v then Av = av. Then

exp(A)v = <Z é—f)v: O‘k—kf’

This computation also makes it clear that log « is an eigenvalue of log(A). O

Lemma A.2. Let A be a symmetric with entries in R.

1. If all the eigenvalues of A satisfy |a| < C then all the entries of A satisfy

2. If the entries of A satisfy |A;;| < C then all the eigenvalues of A satisfy
la] < n?C
Furthermore, if A € SL(n, R) then we also have
(nQC)_("_l) <lo| < nC

and

[log|al| < (n — 1) log(n*C)
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Proof: Since A is symmetric, there exists some B € SO(n, R) such that BAB' = D
is diagonal. Or equivalently, A = B'DB.

1. We write out the entries of the product A = B*DB. Remember that the

norm of the entries of a real orthogonal matrix are bounded by one.

Ayl = [(B'DB);| =

> BiiDyy By,
p
= Y |Buil| Dixl| Byl
k

< ) Dl <nC
k

2. We have BAB! = D is diagonal with the eigenvalues on the diagonal. We

write out the entries of this matrix product:

;| = |Dy| =

> ByAyBi
ol

< Z |Ai| < n?C
il

If Ae SL(n,R) then 1 = det A = Iy, which implies that
il = (Mziay) ™ = (n*C) "

Taking the log of (n2C)~("=1 < |a| < n2C finishes the lemma.



APPENDIX B

A RESULT ON N-TUPLES

Here, we let R be one of the real closed fields R, *R or ?R.

Lemma B.1. Let a = (ay,...,a,) € R" let d > 0, d € R. Let m = min{q;} and
M = max{a;}. Suppose that a satisfies the following conditions

n

Zai:O

i=1
Yat =
i=1
Then

1. m < —d/n3?

2. M > d/n’"?

3. M<—(n—1)m

4. m>—(n—1)M

Proof: Note that for all i, we have m < a; < M. We split the sums into positive
and negative parts:

ZGH‘ZG@':O = Zai:Z—ai

(ZZZO ai<0 (ZZZO ai<0
Looking at each of these sums, noting that each sum must contain between 1 and

n — 1 terms:

M<) a<(n—1)M (B.1)

a; >0
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and

—m < Z —a; < —(n—1)m (B.2)

a; <0

Putting together (B.1) and (B.2):

M

IA
A
S
|
=
3

-m < (n—1)M

2 _ 2
We now use d* = > a;

d? = Za?—l—Zaf

a; >0 a; <0

< (n—=1)M*+ (n—1)m?
< (n—1%*m?+ (n — )m?
= (= 1)((n— 1)+ mi?
< n3m?

This now gives the first inequality. The other inequality is obtained similarly by
using the n-tuple —a. O]



APPENDIX C

LINEAR ALGEBRAIC GROUPS

The basic references for this section are [3], [27], and [28]. Fix a field K and a
subfield £ C K. We will assume that the characteristic of K is zero. Let V = K™.
Let K[T| = K[T1,...,T,] be the polynomial algebra. Given a set of polynomials
I={fi,..., fx} C K[T], we can talk about the zero set of I. Such a set is called
an algebraic set. If I C k[T], we say that the algebraic set V' is defined over k.

Given two algebraic sets V; C K™ and V5, C K™, a map ¢ : Vi — V5 is called
a morphism if the coordinate functions are given by polynomials. If the defining

polynomials have coefficients in &, then we say that the morphism is defined over

k.

Definition C.1. A group G, is a linear algebraic group if G is an algebraic set in

1

K™ for some n, and the map G x G — G defined by (x,y) — zy~' is a morphism.

If GG is defined over k and the morphism is defined over k, then we say that G
is defined over k. If this is the case, then it makes sense to talk about the group of

k-rational points of GG, or the k-points of G:
Gk)=GnNk"

If H and G are algebraic groups and ¢ : H — G is a homomorphism that is
also a morphism of algebraic sets, then we say that ¢ is a group morphism. If a

group morphism is defined over k, then we say that ¢ is a k-morphism.

Example C.2. 1. K, as an additive group, is defined by the zero polynomial.

2. K*, the nonzero elements of K, as a multiplicative group can be defined as a

subset of K2 and the polynomial zy — 1.
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. SL(n,K)C K "* is defined by the polynomial determined by det(A) = 1.

. S0(n,K) C K™ is defined by the polynomial representing det A = 1 (as
above for SL(n, K)) and polynomials for the relation AA* = I.

. The diagonal group, D(n,K) C K"*! is also an algebraic group. It has
polynomials z;; = 0 for i # j. D(n, K) is an algebraic set in K™ *! and
not K™ in order to get a polynomial representing the inequality det A # 0.
See [3] for the details.

. ¢:D(n,K) — K* given by ¢(g) = x1; is a morphism.
. det : GL(n, K) — K* is a morphism.
. The map K* — SL(2, K), defined by
t 0
= [o ]

is a morphism.



APPENDIX D

REAL ALGEBRAIC GEOMETRY

This appendix comes from [2] where all proofs can be found. R designates a
real closed field, which for us will be either R, *R or PR. For z = (xy,...,z,) € R",
we define

lz| = \/ai+ ...+ a2 (D.1)
Notice that for x € R, |z| is an element of R. We give R (and R") the topology
from the ordering on R. As in Appendix C, let T' = [17, ..., T,].

Definition D.1. An algebraic set of R" is a set of the form
{reR"| f(x)=0,Vfel}
were I C R[T] is a finite subset.
Definition D.2. A semi-algebraic set of R" is a set of the form
{reR"| f(x)=0,g9(x) >0,Vf € I,Vg € J}
where I, J C R[T] are finite subsets.

Ezample D.3. For an ordered field K, let P(n, K) be the set of positive definite
symmetric matrices with determinant one. P(n, K) is a semi-algebraic set with
polynomials representing these conditions. Note that the condition of being a

positive definite matrix is defined by polynomial inequalities.

Definition D.4. Let A C R™ and B C R™ be semi-algebraic sets. A map f: A —

B is a semi-algebraic map if its graph in R"™™ is a semi-algebraic set, i.e., if

{(z,y) e R" x R™ |y = f(2)}

is a semi-algebraic set.
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The easiest examples of semi-algebraic maps are polynomials and the map (D.1).

Another important example of a semi-algebraic function is the distance function.
Lemma D.5. Let A C R" be a nonempty semi-algebraic set.

1. Then for every x € R", the distance between x and A
d(z, A) = inf {|z — [}
is well-defined as an element of R,

2. The function x — d(z, A) from R" to R is continuous, semi-algebraic, vanishes

on the closure of A and is positive elsewhere.

The main point in the proof is that the function (D.1) is a semi-algebraic

function.

Proposition D.6. Let A C R™ be a closed semi-algebraic set and f : A — R a
continuous semi-algebraic function. Then there exists ¢ € R, p € N such that for

every x € A,
(@) < e (1+ J2f*)"

Theorem D.7. Let A be a locally closed semi-algebraic set. Let f and g two
continuous semi-algebraic functions from A to R such that f~1(0) C ¢7'(0). Then,
there exists an integer N > 0 and a continuous semi-algebraic function h : A — R,

such that ¢ = hf on A.

For us Theorem D.7, together with Proposition D.6 will be the important keys

for Section 2.6. A nice corollary of Theorem D.7 is Lojasiewicz’s inequality:

Corollary D.8. Let A be a closed and bounded semi-algebraic set and f and g
two continuous semi-algebraic functions from A to R, such that f~1(0) C ¢71(0).

Then, there exists an integer N > 0 and a constant ¢ € R such that |g|¥ < c|f| on
A.
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