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ABSTRACT

We study the asymptotic cone of arbitrary symmetric spaces. The main case to

consider is when the symmetric space is irreducible and of noncompact type. It is

known that if P is a symmetric space of noncompact type, then P is a homogeneous

space and can be written as P = G/K where G is a semisimple Lie group and K

is a maximal compact subgroup. The asymptotic cone of P , denoted Coneω P ,

is naturally a homogeneous space with respect to the group Coneω G. We show

that Coneω G is an algebraic group that can be obtained from the group G by

extending the field of real numbers. Using this description of the asymptotic cone

as a homogeneous space, along with the study of the field extension, we identify the

stabilizer of a point in Coneω P and show that the asymptotic cone of a symmetric

space is independent of the base point, scale factors and the ultrafilter.
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CHAPTER 1

INTRODUCTION

One of the main techniques in topology and geometry is to look closely. Given a

topological space, we generally concentrate on small neighborhoods of points. One

defines limits as sequences approaching a point. Similarly, derivatives are defined

at points. Thinking infinitesimally has led to many deep and powerful results such

as differential and integral calculus. Recently, many geometers and group theorists

have begun to use large scale or asymptotic techniques. Instead of looking at

shrinking neighborhoods, expanding neighborhoods are investigated. Rather than

looking at sequences converging to a given point, one looks at diverging sequences.

This new approach has been particularly fruitful in the field of geometric group

theory. Here, the geometric spaces are discrete metric spaces. The classical in-

finitesimal techniques are of little use when looking at discrete spaces. Rather

than looking at the local level, geometers and group theorists look at large scale

properties of these discrete spaces. This approach naturally led to the notion of

quasi-isometry in contrast to the usual notion of isometry. A quasi-isometry is

a map between spaces that may not even be continuous, but it does not distort

distances “too much.”

Definition 1.1. Let (X, d) and (Y, d′) be metric spaces. A map f : X → Y is a

quasi-isometry if there exists some L > 1 and some C > 0 satisfying the following

properties:

1. 1
L
d(x, x̃)− C ≤ d(f(x), f(x̃)) ≤ Ld(x, x̃) + C, for all x, x̃ ∈ X;

2. d′(y, f(X)) < C, for all y ∈ Y
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Using quasi-isometries, one can talk about spaces that are quasi-isometric and

properties that are invariant under quasi-isometry. This approach leads to many

techniques that are quite different from classical infinitesimal techniques.

One of the new tools obtained as a result of looking at the large scale is the

asymptotic cone of a metric space. Intuitively, if (X, d) is a metric space, then the

asymptotic cone of X is the space that appears in the limit as one moves further

and further from X. This is accomplished by rescaling the metric on X and looking

for a limit space while the metric is scaled down to zero. Ultrafilters are required

to ensure that there is always a limit. We will describe ultrafilters and the actual

construction of the asymptotic cone briefly below.

The asymptotic cone of X, Coneω X, hides the local structure of the metric

space X. Surprisingly, this allows one to use infinitesimal techniques to prove large

scale results. For example, the asymptotic cone of Zn is Euclidean space Rn, and

one can use infinitesimal techniques in Rn to recover large scale properties of Zn.

Using the asymptotic cone to study quasi-isometries between spaces is based

on the fact that if f : X → Y is a quasi-isometry, then f induces a bi-Lipschitz

map between Coneω X and Coneω Y . This idea has been used by Kleiner and Leeb

to prove that if two symmetric spaces are quasi-isometric, then they are actually

homothetic [17]. This idea was also used by Kapovich and Leeb to classify many

3-manifolds groups according to quasi-isometry type [15].

An essential ingredient to actually construct the asymptotic cone of a metric

space is the use of ultrafilters. To define an ultrafilter, let P(N) denote the power

set of N, the set of all subsets of N.

Definition 1.2. A family of subsets ω ⊆ P(N) is said to be a nonprincipal ultrafilter

if ω satisfies the following conditions:

1. ∅ /∈ ω;

2. if A ⊆ B ⊆ N and A ∈ ω, then B ∈ ω;

3. if A, B ∈ ω then A ∩B ∈ ω;
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4. for any A ⊆ N, either A ∈ ω or N− A ∈ ω;

5. if A ⊆ N and A is finite, then A /∈ ω.

Definition 1.3. Given an ultrafilter ω, if xi ∈ R is a sequence, then x ∈ [−∞,∞]

is an ultralimit of the sequence (written limω xi = x), if for every neighborhood

U ⊆ [−∞,∞] of x {i | xi ∈ U} ∈ ω.

It is well known that every sequence has a unique ultralimit (see Lemma 2.13).

To actually show that nonprincipal ultrafilters exist requires the Axiom of

Choice. This is a potential problem because the use of the Axiom of Choice means

there is no canonical choice for a nonprincipal ultrafilter. Instead there are many

different nonprincipal ultrafilters, as will be described in Section 2.3.1.

After fixing a nonprincipal ultrafilter ω, we may fix scale factors λi ∈ R, such

that limω λi = ∞. We also fix a base point ? ∈ X. The asymptotic cone is then the

set of sequences xi ∈ X such that there is some constant C ∈ R with d(xi, ?) < Cλi

for all i ∈ N. We define the distance between two sequences to be

d((xi), (yi)) = lim
ω

(
d(xi, yi)

λi

)
and we identify two sequences if their distance is zero.

The construction outlined above is actually equivalent, in some cases, to looking

at the Gromov-Hausdorff limit of the metric space X rescaled by the scale factors

λi. In particular, given (X, d), one can consider the sequence of metric spaces(
X,

1

λi

d

)
where 1

λi
d is the distance function on X multiplied by 1

λi
. If this sequence of

metric spaces converges in the sense of Gromov-Hausdorff, then it converges to the

asymptotic cone. If the sequence does not converge, one can still construct the

asymptotic cone using ultrafilters.

In some sense, asymptotic cones were first used by Gromov [12]. Gromov did

not use ultrafilters which required extra work to extract a convergent subsequence

from the sequence of metric spaces (X, 1
λi

d). Later, van den Dries and Wilkie
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reworked Gromov’s results using ultrafilters and defined the asymptotic cone using

a nonprincipal ultrafilter as above [32].

As mentioned, the existence of a nonprincipal ultrafilter requires the Axiom of

Choice. Thus, the construction of the asymptotic cone is not canonical. In fact, one

can exhibit a metric space X and two different ultrafilters that result in asymptotic

cones that are not homeomorphic. The example of Thomas and Velickovic is of a

finitely generated but not finitely presented group [29]. It is still an open question

if the asymptotic cone is unique for finitely presented groups. Given a metric space,

an important question is if the asymptotic cone is independent of the base point,

scale factors and ultrafilter. We answer this question affirmatively for symmetric

spaces:

Theorem 1.4. Let X be a symmetric space. Then the asymptotic cone of X is

independent of the base point, scale factors and the ultrafilter.

Asymptotic cones of symmetric spaces were first studied by Kleiner and Leeb

[17]. Among their results, they show that the asymptotic cone of a symmetric

space is a Euclidean building. Euclidean buildings are higher dimensional analogs

of trees. Bruhat and Tits studied Euclidean buildings in [4] and [31]. They showed

that Euclidean buildings arise from algebraic groups and valuation fields. In the

case of the symmetric space for the group SL(n, R), Leeb identified the asymptotic

cone as a homogeneous space over an algebraic group [18]. Parreau showed that

the asymptotic cone of the symmetric space for SL(n, R) fits a certain model for

Euclidean buildings over the group SLn [22].

In Chapter 5, we study the asymptotic cone of an arbitrary symmetric space as

a homogeneous space. We show that the transitive group acting on the asymptotic

cone is an algebraic group over a valuation field obtained by a field extension

of the field of real numbers. It is this description of the asymptotic cone as a

homogeneous space together with an analysis of the valuation field that helps us

establish Theorem 1.4.



CHAPTER 2

FIELDS

One goal of this chapter is to construct both the nonstandard real numbers and

another similar nonarchimedean field. Before we actually do this, we need some

background on ordered fields and valuation fields.

2.1 Ordered fields

A field k is ordered if there is a total ordering on k compatible with the field

operations. This means that for all u, x, y, z ∈ K, u > 0, we have

x < y =⇒ x + z < y + z

x < y =⇒ xu < yu

These properties immediately imply that k has characteristic zero. All ordered

fields contain the rationals Q, as a subfield.

Given an ordered field k, there exists a unique maximal algebraic extension of

k which is still ordered [5, p. 269]. This is called the real closure of k. A field is

said to be a real closed field if k is equal to its real closure. The standard example

of a real closed field is the real numbers, R. A basic result on real closures is the

following theorem [5, Section 7.4].

Theorem 2.1. k is real closed if and only if it is ordered, every positive element

of k is a square and every polynomial of odd degree has a root in k.

2.1.1 Order properties for fields

Definition 2.2. Let k be an ordered field and let x ∈ k. We say that x is

1. infinite if |x| > n for all n ∈ N;
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2. finite if |x| < n for some n ∈ N;

3. infinitesimal if |x| < 1
n

for all n ∈ N.

k is archimedian if k contains no infinite elements. Otherwise, k is nonar-

chimedean.

Note that R is a real closed archimedian field. It is well known that any archime-

dian field is isomorphic to a subfield of R. In fact, any complete, archimedian field

is isomorphic to R [5, p. 259]. This is an example of order properties determining

the ordered field. We will want a similar property for nonarchimedean fields.

Definition 2.3. Let S be an ordered set.

1. A subset B ⊆ S is said to be cofinal if for any x ∈ S, there is some b ∈ B with

x ≤ b. The cofinality of S, cof(S), is the minimum cardinality of a cofinal

subset of S.

2. A subset B ⊆ S is said to be coinitial if for any x ∈ S, there is some b ∈ B

with b ≤ x. The coinitiality of S, coi(S), is the minimum cardinality of a

coinitial subset of S.

Notice that if B ⊆ k is cofinal in the field k, then −B is coinitial. Therefore,

for a field, the concepts of coinitiality and cofinality are equivalent. It is easy to

see that cof(R) = cof(Q) = ℵ0. A field with cof(k) > ℵ0 must necessarily be

nonarchimedean.

The order properties that interest us are contained in the following definition.

First, if A, B ⊆ k, we say A << B if every element of A is less than every element

of B.

Definition 2.4. Let k be an ordered field. We say that k is

1. an η1-field if for each pair of (possibly empty) subsets A, B ⊆ k with A << B

and |A ∪B| < ℵ1, there is some x ∈ k with A << {x} << B;
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2. a semi-η1-field if for each strictly increasing sequence ai ∈ k and strictly

decreasing sequence bi ∈ k, such that ai < bi for all i, there exists some x ∈ k

such that ai < x < bi for all i.

Note that R is a semi-η1-field but not an η1-field. As already mentioned, R is

the unique complete archimedean field. For nonarchimedean fields, we have the

following result of Erdös, Gillman and Henriksen [10, Theorem 2.1].

Theorem 2.5. Any two real closed η1-fields of cardinality ℵ1 are isomorphic.

It is clear that this isomorphism must preserve the orderings on the fields. This

is because in a real closed field the set of all squares is the set of all nonnegative

numbers. The set of all squares must be preserved in an isomorphism.

Without assuming the Continuum Hypothesis (ℵ1 = c), Theorem 2.5 says

nothing about fields of cardinality c. It is interesting to note that if we assume

the negation of the Continuum Hypothesis, then as was shown by Roitman, there

are infinitely many nonisomorphic η1-fields of cardinality c [26]. We will be assuming

the Continuum Hypothesis throughout, so we can apply Theorem 2.5 to real closed

η1-fields of cardinality c.

2.2 Valuation fields

Definition 2.6. Let k be a field and let Γ be an ordered abelian group. A valuation

on k is a surjective map v : k → Γ ∪ {∞} satisfying the following properties:

1. v(x) = ∞ ⇐⇒ x = 0;

2. v(xy) = v(x) + v(y);

3. v(x + y) ≥ min{v(x), v(y)}.

Γ is called the value group of the valuation v.

In practice, the value group will generally be an additive subgroup of R. In this

case we say that v is a real valuation. If the value group is a discrete subgroup of

R, then we say that v is a discrete valuation.
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Definition 2.7. Let (k, vk) and (K, vK) be fields with valuations, with the same

value group. Let φ : k → K be an isomorphism. Then φ is said to be valuation

preserving if vK(φ(x)) = v(x).

We will be interested in ordered fields that have a valuation. How the valuation

and ordering interact is important and we make the following definition.

Definition 2.8. Let (k, v) be an ordered valuation field. The valuation is said to

be compatible with the ordering if 0 ≤ x < y =⇒ v(x) ≥ v(y).

An immediate consequence of this definition is that if v(x) > v(y) then |x| < |y|.

It is important to note that v(x) ≥ v(y) does not imply that |x| ≤ |y|.

Definition 2.9. Let (k, v) be a valuation field. The valuation ring of v is

O = {x ∈ k | v(x) ≥ 0} (2.1)

and the valuation ideal of v is

J = {x ∈ k | v(x) > 0} (2.2)

One can show that J is a maximal ideal in O and therefore the quotient is a

field. This quotient field is called the residue field : R = O/J .

2.2.1 Fields of power series

Let k be a field and Γ an ordered abelian group. We let kΓ be the set of all

functions from Γ to k. If f ∈ kΓ, we define the support of f to be

supp f = {x ∈ Γ | f(x) 6= 0}

We now define

k((Γ)) = {f ∈ kΓ | supp f is well-ordered }

k((Γ)) is called a Hahn field. We think of elements of k((Γ)) as formal power series:

f =
∑
γ∈I

kγt
γ (2.3)
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where I ⊆ Γ is a well-ordered set. This formal power series makes the following

definitions of addition and multiplication a bit more transparent:

(f + g)(x) = f(x) + g(x)

(fg)(x) =
∑

u+v=x

f(u)g(v)

It is not too difficult to show that k((Γ)) is closed under addition and multiplication,

making k((Γ)) a ring with identity. It is much more difficult to show that k((Γ)) is

actually a field. This was done by Hahn in 1907 [1, Sections 6.20,7.20].

Hahn fields can be given a valuation v : k((Γ)) → Γ, defined by

v(f) = inf (supp f)

It is not difficult to show that this satisfies the definition of a valuation. If, in

addition, k is an ordered field, we can order k((Γ)) by declaring f positive if and

only if f(v(f)) is positive in k.

Proposition 2.10. Let k,K be fields. Let Γ be an ordered group. Suppose that

φ : k → K is an isomorphism. Then φ induces a valuation preserving isomorphism

of Hahn fields Φ : k((Γ)) → K((Γ)) given by Φ(f)(x) = φ(f(x)). If k and K are

ordered fields and φ is order preserving, then Φ is also ordered preserving.

In the power series notation (2.3), Φ : k((Γ)) → K((Γ)) is given by

Φ
(∑

kγt
γ
)

=
∑

φ(kγ)tγ

Proof: Given f, g ∈ k((Γ)) and x ∈ Γ:

Φ(f + g)(x) = φ((f + g)(x)) = φ(f(x) + g(x))

= φ(f(x)) + φ(g(x))

= Φ(f)(x) + Φ(g)(x)

and therefore Φ(f + g) = Φ(f) + Φ(g). Similarly, Φ(fg) = Φ(f)Φ(g).

If Φ(f)(x) = Φ(g)(x) for all x ∈ Γ, then φ(f(x)) = φ(g(x)) for all x ∈ Γ. Since

φ is an isomorphism, f(x) = g(x) for all x. Therefore f = g and Φ is injective.

Similarly, Φ−1 is injective and Φ must be an isomorphism.
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Notice that because φ is an isomorphism, f(x) = 0 if and only if Φ(f)(x) = 0.

This shows that

supp Φ(f) = supp f

and therefore v(Φ(f)) = v(f) and Φ is valuation preserving.

If φ is an isomorphism of ordered fields, then using the above results,

Φ(f)(v(Φ(f))) = Φ(f)(v(f)) = φ(f(v(f))) (2.4)

Recall that f > 0 if and only if f(v(f)) > 0. The equation (2.4) now shows that

f > 0 if and only if Φ(f) > 0. Therefore Φ is order preserving because φ is order

preserving.

2.3 The nonstandard real numbers

2.3.1 Ultrafilters

We will let P(N) denote the power set of N, the set of all subsets of N.

Definition 2.11. A family of subsets ω ⊆ P(N) is said to be a filter if it satisfies

the following conditions:

1. ∅ /∈ ω;

2. if A ⊆ B ⊆ N and A ∈ ω, then B ∈ ω;

3. if A, B ∈ ω then A ∩B ∈ ω.

ω is an ultrafilter if ω also satisfies

4. for any A ⊆ N, either A ∈ ω or N− A ∈ ω.

ω is a nonprincipal filter if ω also satisfies

5. if A ⊆ N and A is finite, then A /∈ ω.

Example 2.12. Fix n ∈ N and define

ωn = {A ⊆ N | n ∈ A}

It is straightforward to check that ωn satisfies all the properties in Definition 2.11,

except for property 5. ωn is the principal ultrafilter determined by n ∈ N.
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A small note about language and ultrafilters. If A ∈ ω, then we will say that

A is a set of full ω-measure. Suppose we have an ultrafilter and a sequence of

statements Pi. If

{i | Pi} ∈ ω

then we will say that Pi is true for ω-almost all i, or that Pi is true on a set of full

ω-measure. This terminology comes from viewing ω as a finitely additive measure

on N.

Our main purpose for ultrafilters is to generalize convergence of sequences as in

the following lemma. For a proof, see [15, Section 3.1].

Lemma 2.13. Let ω be an ultrafilter. Let xi ∈ R be a real valued sequence.

Then there exists a unique point x ∈ [−∞,∞] such that for every neighborhood

U ⊆ [−∞,∞] of x, {i | xi ∈ U} ∈ ω. We define this point x, to be the ultralimit

of the sequence, and we write

lim
ω

xi = x

Consider the principal ultrafilter ωn of Example 2.12 for some n ∈ N. Let xi ∈ R

be a sequence. It is fairly easy to see that

lim
ωn

xi = xn

The ultralimit of a principal ultrafilter “picks out” the respective term in the

sequence. This makes principal ultrafilters uninteresting. We will therefore be

interested in nonprincipal ultrafilters. To construct a nonprincipal ultrafilter, one

begins with the cofinite filter η defined as:

η = {A ⊆ N | N− A is finite}

A quick check shows that η satisfies all the properties in Definition 2.11, except

property 4. We now consider

Pη = {ω ⊆ P(N) | η ⊆ ω, ω a filter}

We can apply Zorn’s Lemma to the set Pη to get an ultrafilter ω. In fact, it is

easy to see that any nonprincipal ultrafilter must contain the cofinite filter η. The
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Axiom of Choice is required to construct a nonprincipal ultrafilter, and therefore

there is no canonical nonprincipal ultrafilter. To illustrate this problem, consider

the following example.

Example 2.14. Let E ⊆ N denote the set of even integers. We can apply Zorn’s

Lemma to the following sets:

P = {ω ⊆ P(N) | η ⊆ ω,E ∈ ω, ω a filter}

P ′ = {ω ⊆ P(N) | η ⊆ ω,E /∈ ω, ω a filter}

This will give ultrafilters ω and ω′. These ultrafilters are different since E ∈ ω but

E /∈ ω′. Consider the sequence (xi) given by

xi =

{
0 if i even

1 if i odd

Taking the ultralimit with respect to both these ultrafilters gives

lim
ω

xi = 0

lim
ω′

xi = 1

For us, this is the inherent problem with ultrafilters, the ultralimits might be

different.

2.3.2 Ultrapowers

Let X be some set and let ω be an ultrafilter. We consider the set of sequences

in X:

XN = {(xi) | xi ∈ X, i ∈ N}

We say two sequences are equivalent if they agree on a set of full ω-measure:

(xi) ∼ (yi) ⇐⇒ {i | xi = yi} ∈ ω

We define ∗X as the set of equivalence classes under this equivalence relation. Notice

that we can embed X into XN as the set of constant sequences. If X is an infinite

set then it is easy to see that ∗X 6= X. We say that ∗X is an ultrapower of X.

Notice that ∗X depends on the ultrafilter ω.
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Remark 2.15. If (xi) ∈ XN is a sequence, then we will denote by [xi] the corre-

sponding element in ∗X. If x ∈ X, then we can consider x as a constant sequence,

(x) ∈ XN and the corresponding element in ∗X will be denoted by [x].

2.3.3 The nonstandard real numbers

We construct an ultrapower of R. This construction is due to Abraham Robin-

son and a good reference is his book [24]. One of the main points is that ∗R is

a field with field structure inherited from R. There are many references for this

construction as well as for the proofs of the properties stated below. In addition

to [24], other good references include [11], [19] and [20].

Notice first, RN is a partially ordered ring with operations defined point wise:

(xi) + (yi) = (xi + yi)

(xi)(yi) = (xiyi)

(xi) < (yi) ⇐⇒ xi < yi for all i

Let ω be a nonprincipal ultrafilter and let ∗R be the corresponding ultrapower of R.

We embed R ⊆ ∗R via the embedding x 7→ [x], where [x] represents the constant

sequence.

Proposition 2.16. ∗R is a nonarchimedean ordered field with operations and

ordering induced from RN. The ultralimit limω , is a homomorphism from the

ring of finite elements in ∗R to R.

For a proof, see [11, Theorem 5.6.2]. To emphasize the field operations in ∗R,

we have the following:

[xi] + [yi] = [xi + yi]

[xi][yi] = [xiyi]

[xi] < [yi] ⇐⇒ xi < yi for ω-almost all i

Proposition 2.17. ∗R is a real closed field.

The proof is straightforward, see [10, Lemma 3.3].
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Proposition 2.18. ∗R is an η1-field.

The proof is basically a diagonal argument and can be found in [10, Theorem

3.4].

Notice that the set RN has cardinality c. Therefore the field ∗R has cardinality

c. Applying Theorem 2.5 gives the following isomorphism theorem [10, Theorem

3.4]. Note that the Continuum Hypothesis is required.

Corollary 2.19. For any ultrafilters, the fields ∗R are all isomorphic.

Example 2.20. 1. Consider the sequence (i) = (1, 2, 3, . . .). This defines an

element in RN and hence an element in ∗R. We will denote this element

by [i] ∈ ∗R. If x ∈ R, then [x] ∈ ∗R, represented as a constant sequence.

Then, except for a finite number of i, x < i, and therefore [x] < [i] in ∗R.

Therefore [i] is infinite and ∗R is nonarchimedean. The element [1/i] is a

nonzero infinitesimal.

2. Let p(t) ∈ ∗R[t] be a polynomial of one variable. We can consider each of the

coefficients of p(t) as a sequence of real numbers. As such, this will give a

sequence of polynomials pi(t) ∈ R[t]. We can write p = [pi]. To find roots of

p, we can just find roots of the polynomials pi(t). If pi(ti) = 0 for ω almost

all i, then [ti] is a root of p.

3. If f : R → R is a function, then we can extend this function to a function

∗f : ∗R → ∗R as follows. If [xi] ∈ ∗R, we define

∗f([xi]) = [f(xi)]

We will often write f instead of ∗f for this extension. See Section 2.5 for

more details.

2.4 The field ρR
We are going to use ∗R to construct another field. This field, like ∗R, was intro-

duced by Abraham Robinson. This new field is not as prevalent in the literature
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as the field ∗R. The references are [19], [25], [21] and [23]. Most of the elementary

results can be found in [19].

2.4.1 The definitions

We fix a positive infinitesimal ρ ∈ ∗R. We consider the following sets

M0 = {x ∈ ∗R | |x| < ρ−n for some n ∈ N} (2.5)

M1 = {x ∈ ∗R | |x| < ρn for all n ∈ N} (2.6)

M0 is a ring of ∗R and M1 is a maximal ideal of M0 [19, pp 77-78]. Therefore,

M0/M1 is a field, which we define to be the field ρR.

ρR =
M0

M1

(2.7)

We denote the projection from M0 to ρR by Π : M0 → ρR. If x ∈ M0 ⊆ ∗R, we will

write x for the element Π(x).

Notice that if x ∈ M1 and 0 < y < x then y ∈ M1 (which means that M1 is

a convex ideal). This implies that the ordering on ∗R induces an ordering on ρR.

This ordering can be described as

x < y (in ρR) ⇐⇒ x < y (in M0)

Proposition 2.21. ρR is a real closed field.

Proof: Recall Theorem 2.1, which states that an ordered field is real closed if and

only if every positive element is a square and every polynomial of odd degree has

a root. We first verify that every positive element in ρR is a square. Let x ∈ ρR

be given with x > 0 (x ∈ M0). Then x > 0 and because ∗R is real closed, there is

some z ∈ ρR such that z2 = x. Since x ∈ M0, we must have z ∈ M0 and therefore

z2 = x and x is a square.

If we have a polynomial of odd degree P (X) ∈ ρR[X], we can lift the coefficients

of P (which are elements of ρR) to M0 ⊆ ∗R. Thus we obtain a polynomial P (X) ∈

M0[X] ⊆ ∗R[X]. Since ∗R is real closed, there is some x ∈ ∗R such that P (x) = 0.



16

If x ∈ M0, then P (x) = P (x) = 0 and we have a root of P . So, we have to show

that x ∈ M0. Suppose to the contrary that x /∈ M0.

x /∈ M0 ⇐⇒ ∀n ∈ N, |x| > ρ−n

⇐⇒ ∀n ∈ N, |x−1| < ρn

⇐⇒ x−1 ∈ M1 − {0} (2.8)

Now suppose that P (X) is given by

P (X) = anX
n + · · ·+ a1X + a0

where ai ∈ M0 for all i and an /∈ M1. We rearrange the equation P (x) = 0:

anx
n = −an−1x

n−1 − an−2x
n−2 − · · · − a0

x = −
(

an−1

an

)
−
(

an−2

an

)
1

x
− · · · −

(
a0

an

)
1

xn−1

|x| ≤
∣∣∣∣an−1

an

∣∣∣∣+

∣∣∣∣an−2

an

∣∣∣∣ ∣∣∣∣1x
∣∣∣∣+ · · ·+

∣∣∣∣a0

an

∣∣∣∣ ∣∣∣∣ 1

xn−1

∣∣∣∣ (2.9)

Notice that since an ∈ M0 −M1 and ai ∈ M0, we have ai/an ∈ M0 for all i. We

are also assuming that x /∈ M0 which, by (2.8), means that x−i ∈ M1 ⊆ M0 for

all i. Because M0 is a ring, the sum in (2.9) is in M0. Because M0 is convex, the

inequality (2.9) now implies that x ∈ M0, a contradiction. Therefore x ∈ M0 and

x will be a root of P (X).

2.4.2 The valuation

If x 6= 0 ∈ ∗R, we define logρ |x| = (ln |x|)/(ln ρ). We can compose logρ and the

ultralimit:

lim
ω
◦ logρ | · | : ∗R− {0} → [−∞,∞]

If x ∈ M0−M1, then ρn < |x| < ρ−n for some n ∈ N. This implies n ln ρ < ln |x| <

−n ln ρ and therefore −n < logρ |x| < n. Thus, if x ∈ M0 − M1, logρ |x| is finite

and

lim
ω
◦ logρ : M0 −M1 → R

Lemma 2.22. If x ∈ M0 and h ∈ M1 then limω ◦ logρ |x| = limω ◦ logρ |x + h|.
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For a proof, see [21, p. 194].

Lemma 2.22 tells us that limω ◦ logρ | · | descends to a well-defined function on

ρR− {0}. We now define

v : ρR → R ∪ {∞}

v(x) =

{
limω ◦ logρ |x| if x 6= 0

∞ if x = 0

Proposition 2.23. v is a valuation on the field ρR. The valuation is compatible

with the ordering on ρR.

For a proof, see [19, pp. 79-84].

Proposition 2.24. R embeds into ρR, and for all x ∈ R− {0} ⊆ ρR, v(x) = 0.

See [19, p. 82] for a proof.

Example 2.25. Proposition 2.24 shows that the valuation of any finite element is

zero. However, there are also infinite elements of ρR that have zero valuation. To

see this, consider the element in ρR represented by log ρ. It is clear that log ρ ∈ M0

and log ρ is infinite. A small calculation shows that log ρ has zero valuation as well.

2.4.3 Order properties

Proposition 2.26. cof(ρR) = ℵ0.

Proof: Consider the element ρ ∈ ρR (the projection of ρ from M0 to ρR). The set

{ρ−n} is countable and cofinal in ρR. For if x ∈ ρR− {0}, then v(x) = r for some

r ∈ R. Let n ∈ N be such that −n < r. Because the valuation is compatible with

the ordering, we have

v(ρ−n) = −n < r = v(x) =⇒ ρ−n > x

Therefore the set {ρ−n} must be cofinal.

Proposition 2.27. ρR is not an η1 field.

Proof: We need to exhibit sets A << B such that |A∪B| < ℵ1 and there does not

exist x ∈ ρR such that A << {x} << B. To do this let A = {0} and let B = {ρn}.
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Suppose that x is such that A << {x} << B. Then, by taking valuations and using

the fact that the valuation is compatible with the ordering, we see that

n = v(ρn) ≤ v(x) ≤ v(0) = ∞

Since this must be true for all n, v(x) = ∞. However, because v is a valuation, this

means that x = 0, a contradiction (since we had assumed {0} = A << {x}).

Notice in the proof that A is not an increasing sequence, even though B is a

decreasing sequence. In fact, this must be the case in any example showing that

ρR is not η1.

Proposition 2.28. ρR is a semi-η1 field.

Proof: Suppose an ∈ ρR is a strictly increasing sequence and bn ∈ ρR is a strictly

decreasing sequence such that an < bn for all n. We need to show that there is

some x ∈ ρR such that an < x < bn for all n.

We lift an and bn to strictly monotonic sequences an, bn ∈ ∗R. Because an < bn,

we have an < bn for all n. We now apply the semi-η1 property for ∗R. This implies

that there is an element x ∈ ∗R such that an < x < bn. Now consider x ∈ ρR.

Because an < x < bn, we must have an ≤ x ≤ bn. Notice that since an is strictly

increasing and bn is strictly decreasing we cannot have x = an or x = bn for any n.

Therefore an < x < bn and ρR is semi-η1.

2.4.4 The residue field

Since ρR is a valuation field, there is a valuation ring O, a valuation ideal J and

a residue field R. Recall that O, J and R are defined as:

O = {x ∈ ρR | v(x) ≥ 0}

J = {x ∈ ρR | v(x) > 0}

R = O/J

We will use the notation that if x ∈ O, then the corresponding element in R will

be denoted x. Notice that J is a convex set, therefore the ordering on ρR induces
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an ordering on R. This ordering can be described as

x < y (in R) ⇐⇒ x < y (in ρR)

Lemma 2.29. R is real closed.

Proof: This is basically the same proof as when we proved that ρR is real closed,

Proposition 2.21. It is clear that R is ordered and that every positive element has

a square. The key point here is that if x ∈ ρR, x ≥ 0 and v(x) ≥ 0 then v(
√

x) ≥ 0.

Now, suppose we have a polynomial P (X) ∈ R[X] of odd degree. We lift this

to a polynomial P (X) ∈ O[X] Since, ρR is real closed, there is some x ∈ ρR such

that p(x) = 0. If x ∈ O, then x will project to a root x ∈ R. So, we have to show

that x ∈ O. Assume that P (X) is given by

P (X) = anX
n + · · ·+ a1X + a0

where n is odd and an /∈ J . In particular this means that v(an) = 0. Suppose that

x /∈ O. Then v(x) < 0, v(x−1) > 0 and therefore x−1 ∈ J . We now manipulate the

expression P (x) = 0.

anx
n = −an−1x

n−1 − an−2x
n−2 − · · · − a0

x = −
(

an−1

an

)
−
(

an−2

an

)
1

x
− · · · −

(
a0

an

)
1

xn−1

|x| ≤
∣∣∣∣an−1

an

∣∣∣∣+

∣∣∣∣an−2

an

∣∣∣∣ ∣∣∣∣1x
∣∣∣∣+ · · ·+

∣∣∣∣a0

an

∣∣∣∣ ∣∣∣∣ 1

xn−1

∣∣∣∣ (2.10)

Notice that v(ai/an) = v(ai) − v(an) = v(ai) ≥ 0 because v(an) = 0. This shows

that ai/an ∈ O. Also, by assumption, x−1 ∈ J . Because J is an ideal and O a

ring, every term on the right in (2.10) is in O. O is a convex ring, so we must have

x ∈ O, a contradiction. Thus we have x ∈ O and x is a root of P (X).

Proposition 2.30. R is a semi-η1-field.

Proof: This follows from the corresponding fact in ρR. We suppose that we have a

strictly increasing sequence an ∈ R and a strictly decreasing sequence bn ∈ R such

that an < bn for all n where an, bn ∈ ρR. Because the ordering on R is induced from
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the ordering on ρR, we also have an < bn for all n. We can now use that fact that

ρR is semi-η1 and find x ∈ ρR such that an < x < bn for all n. Then an < x < bn

and therefore R is semi-η1.

Proposition 2.31. R is an η1 field.

Proof: We need to show that given any two subsets A, B ⊆ R such that |A∪B| < ℵ1

and A << B, there exists x ∈ R such that A << {x} << B. Notice first that if

cof(A) = 1, then we can replace A by a single element set. Similarly if coi(B) = 1.

We can also transform the sets A and B by any of the following transformations:

1. Translation: x 7→ x + c, c ∈ R.

2. Dilation: x 7→ λx, λ 6= 0.

3. Inversion: x 7→ 1/x.

These transformations will change the sets A and B, but finding an element between

A and B will be equivalent to finding an element between the corresponding

transformed sets. There are several cases to consider.

Case I. If cof(A) = ℵ0 and coi(B) = ℵ0, then this is the semi-η1 case that was

handled in Proposition 2.30.

Case II. A = ∅ and B = ∅. This case is trivial since any x ∈ R will work.

Case III. cof(A) = 1 and coi(B) = 1. This case is also trivial since it is easy to

find an element between any two given elements.

Case IV. cof(A) = ℵ0 and B = ∅. This will be our main case to prove. We do

this below.

Case V. cof(A) = ℵ0 and coi(B) = 1. By translation we can assume B = {0}.

We then apply dilation by −1 and then inversion. Then net result is to

be in the situation of Case IV.
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Case VI. coi(B) = ℵ0 and cof(A) = 1. In this case we translate to assume A =

{0}. We then apply inversion to arrive at Case IV.

To deal with Case IV, let an ∈ R be a strictly increasing sequence, lifting to a

strictly increasing sequence an ∈ O ⊆ ρR. We have v(an) ≥ 0 for all n. Consider

the strictly decreasing sequence {ρ−1/n} ⊆ ρR. We have

v(ρ−1/n) = −1/n < 0 ≤ v(an) = 0 (2.11)

for all n ∈ N. Because the valuation is compatible with the ordering, (2.11) implies

that for all n,

an < ρ−1/n

Because ρR is semi-η1, we can find an element x ∈ ρR, such that for all n

an < x < ρ−1/n

Applying the valuation to this inequality, we have for all n:

v(ρ−1/n) = −1/n ≤ v(x) ≤ v(an) = 0

which says that v(x) = 0. So x ∈ O and because the sequence an was strictly

increasing, x 6= an for any n. Therefore we have an < x for all n. This proves

Case IV and finishes the proof of the proposition.

Assuming the Continuum Hypothesis gives the following.

Theorem 2.32. R is isomorphic to ∗R.

Proof: We know that ∗R and R are both real closed η1-fields of cardinality c. We

can therefore apply the isomorphism theorem, Theorem 2.5.

2.4.5 An isomorphism theorem

The following isomorphism is due to Pestov and Diarra [23, Theorem 1.8] [6,

Corollaire de la Proposition 8]).

Theorem 2.33. ρR is isomorphic both as an ordered field and as a valuation field

to the Hahn field R((R)).
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This theorem does not require the Continuum Hypothesis. If we assume the

Continuum Hypothesis, as usual, we can combine Theorem 2.33 with Theorem

2.32, Corollary 2.19 and Proposition 2.10 to get the following result.

Theorem 2.34. For any choice of ultrafilter, and any choice of infinitesimals, the

fields ρR are all isomorphic as valuation fields.

2.4.6 Some remarks

The field ρR was introduced by A. Robinson [25]. Luxemburg mentions the

isomorphism (Theorem 2.34) and mentions an argument for the proof [21, p. 196].

Luxemburg’s argument relies on a theorem of Kaplansky [14, Theorem 7], but this

method seems flawed as it does not account for our requirement of the Continuum

Hypothesis. Finally, Pestov gives Theorem 2.33. As Pestov states, the proof of

this theorem is actually due to Diarra. It appears that neither Pestov nor Diarra

investigated the properties of the residue field, and Theorem 2.34 is a new result.

2.5 Extending functions

2.5.1 Extending functions to ∗R

We mentioned briefly in Example 2.20 how to extend a real function to a

nonstandard function. We state more details of this extension, especially for

functions that are given by power series.

Suppose D ⊆ R is a set. Then, by ∗D, we mean the subset of ∗R formed by

sequences in D. Suppose f : D → R is a function. We define ∗f : ∗D → ∗R as

follows. If x = [xi] ∈ ∗D we define

∗f([xi]) = [f(xi)] (2.12)

Since xi ∈ D for ω-almost all i, ∗f is well-defined.

We now suppose that f : R → R is given by a power series with a radius of

convergence r > 0. Then, for x ∈ R:

f(x) =
∞∑

n=0

anx
n for all |x| < r (2.13)
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As before, this extends to a nonstandard function. If x = [xi] ∈ ∗R and |x| < r,

then |xi| < r for ω-almost all i, and

∗f([xi]) = [f(xi)]

=

[
∞∑

n=0

anx
n
i

]
If we take as a definition that infinite sums in ∗R are defined point wise, then (2.13)

also makes sense for x ∈ ∗R.

Example 2.35. The exponential series. For any x ∈ R, we have

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

=
∞∑

n=0

xn

n!

Because this formula is valid for all x ∈ R, this formula is also valid for all x ∈ ∗R.

We can therefore write, for x = [xi] ∈ ∗R,

ex = [exi ] =

[
∞∑

n=0

xn
i

n!

]

=
∞∑

n=0

xn

n!

Example 2.36. The logarithm series. For x ∈ R, the series

ln(1− x) = −x− x2

2
− x3

3
− x4

4
− · · ·

= −
∞∑

n=1

xn

n

converges for |x| < 1. Therefore, this series also makes sense for |x| < 1, x ∈ ∗R.

2.5.2 Extending functions to ρR
Now consider extending functions to ρR. If f : R → R is a function, then as

in (2.12), one can define ∗f : ∗R → ∗R. We would like to define ρf : ρR → ρR. If

x ∈ ρR and x ∈ M0 projects to x, one would like to define:

ρf(x) = Π (∗f(x))

where Π : M0 → ρR is the projection. For this definition to make sense, we

need ∗f(x) ∈ M0 for all x ∈ M0 and ∗f(x)− ∗f(y) ∈ M1 whenever x− y ∈ M1. To



24

illustrate that these conditions will not in general be satisfied, consider the following

examples.

Example 2.37. 1. Consider exp : ∗R → ∗R. ρ ∈ M0, but exp(ρ) /∈ M0.

2. Consider the function f : R → R defined by

f(x) =

{
0 if x = 0

1 if x 6= 0
(2.14)

Notice that for all x ∈ M0, x 6= 0, f(x) = 1. But, f(0) = 1, so this function

will not extend to a function f : ρR → ρR as in (2.12)

Thus, real functions cannot in general be extended to ρR functions.

2.5.3 Extending matrix functions

Consider the exponential of a matrix. If A is an n×n matrix with entries in R,

we can define

exp A = I + A +
1

2!
A2 +

1

3!
A3 + · · ·

=
∞∑

k=0

1

k!
Ak (2.15)

If A = [Ai] is a matrix with entries in ∗R, represented by matrices Ai with entries

in R. Then, we define the matrix series point wise as in (2.13).

exp A = [exp Ai]

=

[
I + A +

1

2!
A2 +

1

3!
A3 + · · ·

]
=

[
∞∑

k=1

1

k!
Ak

i

]
(2.16)

This means that we are free to use matrix exponentials with matrices with entries

in ∗R.

2.6 Solutions to polynomials

The linear algebraic groups we will study will be defined over R (or Z). See

Appendix C for a brief introduction on linear algebraic groups. We will often be
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concerned with the ∗R and the ρR-points of these groups. Therefore we will need

to investigate the ∗R solutions to polynomials in R[T ]. As in Appendix C, we will

assume that T represents several variables so that

R[T ] = R[T1, . . . , Tn]

For this section, we will fix f ∈ R[T ], and we define the following sets

V = {x ∈ Rn | f(x) = 0}
∗V = {x ∈ ∗Rn | f(x) = 0}
ρV = {x ∈ ρRn | f(x) = 0}

[V ] = {[xi] ∈ ∗Rn | xi ∈ Rn, f(xi) = 0 for all i}

V = {xi ∈ ρRn | xi ∈ Rn, f(xi) = 0 for all i}

The following relationships between these sets are mostly trivial.

∗V = [V ] V ⊆ ρV

Similarly, we also have

Proposition 2.38. V = ρV .

Proof: This takes a bit of work and relies on Appendix D. We will denote by Π,

the projections:

Π : M0 → ρR Π : Mn
0 → ρRn

We define

Z = {x ∈ ∗Rn | f(x) ∈ M1} U = {x ∈ ∗Rn | ∗d(x, ∗V ) ∈ M1}

Notice that we have the following.

Π−1 (ρV ) = Z ∩Mn
0

Π−1
(
V
)

= U ∩Mn
0

Our goal is to show that Π−1 (ρV ) = Π−1
(
V
)
.
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Notice that because V ⊆ Rn is defined by f(x) = 0, V is a closed set of Rn. We

apply Lemma D.5 to this set, and we see that the following semi-algebraic functions

x 7→ d(x, V ) x 7→ f(x)

have the same zero sets (namely V ). We now apply Theorem D.7 to the functions

d(x, V ) and f(x). This yields integers N1, N2 ∈ N and continuous semi-algebraic

functions h1, h2 : Rn → R satisfying

(d(x, V ))N1 = h1(x)f(x) (2.17)

(f(x))N2 = h2(x)d(x, V ) (2.18)

for all x ∈ Rn. We now apply Proposition D.6 to the semi-algebraic functions h1, h2,

giving us c ∈ R, p ∈ N such that for i = 1, 2,

|hi(x)| ≤ c
(
1 + |x|2

)p
(2.19)

Combining (2.17), (2.18) and (2.19) gives us

(d(x, V ))N1 ≤ c
(
1 + |x|2

)p |f(x)| (2.20)

|f(x)|N2 ≤ c
(
1 + |x|2

)p
d(x, V ) (2.21)

for all x ∈ Rn. We emphasize that (2.20) and (2.21) hold for all x ∈ Rn. Therefore,

(2.20) and (2.21) will also hold for any sequence of real numbers. This gives us the

corresponding inequalities for x ∈ ∗Rn:

(d(x, ∗V ))N1 ≤ c
(
1 + |x|2

)p |f(x)| (2.22)

|f(x)|N2 ≤ c
(
1 + |x|2

)p
d(x, ∗V ) (2.23)

for all x ∈ ∗Rn.

We now show that Z ∩Mn
0 = U ∩Mn

0 . The key point is that M1 is an ideal of

M0. First, suppose x ∈ Z ∩Mn
0 . Then, f(x) ∈ M1. Since |x| ∈ M0, c(1 + |x|2)p is

also in M0 (this is because M0 is a ring). This means that the right hand side of

inequality (2.22) is in M0 ·M1 ⊆ M1. Therefore the left hand side is in M1 which

immediately implies that d(x, ∗V ) ∈ M1. This means that x ∈ U ∩Mn
0 and shows

that Z ∩Mn
0 ⊆ U ∩Mn

0 .

The proof that U ∩Mn
0 ⊆ Z ∩Mn

0 is more or less identical using (2.23)



27

Corollary 2.39. Let G be a linear algebraic group, defined over R. Then the

projection Π : Mn
0 → ρRn maps G(M0) onto G(ρR):

Π (G(M0)) = G(ρR)

Proof: Notice that G(M0) ⊆ G(∗R) are defined by a finite set of polynomials in

R[T ]. If {f1, . . . , fn} ⊆ R[T ] are the polynomials, we can define

f =
∑

f 2
i

Then f also defines the algebraic set G. We can now directly apply Proposition

2.38.



CHAPTER 3

ASYMPTOTIC CONES

3.1 The construction

The asymptotic cone is a modified geometric ultrapower construction. We start

with a metric space (X, d) and a nonprincipal ultrafilter ω. We then form the

ultrapower ∗X as in Section 2.3.2. We can use the distance function on X to get a

nonstandard distance function ∗d : ∗X × ∗X → ∗R. This nonstandard distance is

given by applying d to two sequences in X. Notice that ∗d satisfies all conditions

of being a distance function except it takes values in ∗R instead of in R.

We now fix a positive infinite number λ ∈ ∗R. We define, for x, y ∈ ∗X:

d∞(x, y) = lim
ω

(∗d(x, y)

λ

)
Thus, for all x, y ∈ ∗X, we have d∞(x, y) ∈ [0,∞]. By fixing a base point ? ∈ ∗X,

we can pick out a component:

X∞ = {x ∈ ∗X | d∞(x, ?) < ∞} (3.1)

X∞ is a pseudo-metric space with pseudo-distance d∞. After we identify elements

with distance zero, we obtain the metric space that we call the asymptotic cone of

X:

Coneω X =
X∞

∼
Notice that if we start with a metric space, the asymptotic cone depends on the

ultrafilter ω, the infinite number λ and the base point ?. The basic question is how

Coneω X changes when these inputs change. It is well known that in some cases,

changing these inputs yields asymptotic cones that are not isometric [29].
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3.2 Basic properties of Coneω X

Here we outline some basic properties of the asymptotic cone. For the most

part, these are easy to prove and can be found in [15] or [17].

Proposition 3.1. 1. Coneω(X × Y ) = Coneω X × Coneω Y .

2. If X is a geodesic space then Coneω X is also a geodesic space.

3. If X is a CAT(0) space, then Coneω X is also a CAT(0) space.

4. If X is a CAT(κ) space for κ < 0, then Coneω X is a CAT(−∞) space (a

metric tree).

5. If X is homogeneous, then Coneω X is homogeneous.

Proposition 3.2. An element f ∈ ∗(Isom X) determines a element of the nonstan-

dard isometry group Isom(∗X). Such an f determines an isometry of Coneω X if

and only if d∞(f(?), ?) < ∞.

Proof: Let f ∈ ∗(Isom X). Then f can be represented by a sequence fi ∈ Isom X.

If [xi], [yi] ∈ ∗X then:

∗d(f([xi]), f([yi])) = [d(fi(xi), fi(yi))] = [d(xi, yi)] = ∗d([xi], [yi])

which shows that f is a nonstandard isometry of ∗X.

Clearly if f determines an isometry of Coneω X then d∞(f(?), ?) < ∞. Suppose

that d∞(f(?), ?) < ∞. Let [xi] ∈ X∞. Then

d∞(f(x), ?) ≤ d∞(f(x), f(?)) + d∞(f(?), ?)

= d∞(x, ?) + d∞(f(?), ?) < ∞

Therefore, f preserves X∞ and must give an isometry of Coneω X.

3.3 Dependence on the base point

Theorem 3.3. If X is a homogeneous space, then the asymptotic cone is indepen-

dent of the choice of base point in ∗X.
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Proof: Let [xi] and [yi] be two different base points in ∗X. Since X is homogeneous,

for each i there exists some gi ∈ Isom X such that gi · xi = yi. By Proposition 3.2,

[gi] defines a nonstandard isometry of ∗X. Therefore [gi] defines an isometry

[gi] : Coneω(X, [xi]) → Coneω(X, [yi])

3.4 Examples

3.4.1 Bounded spaces

Proposition 3.4. If X is a bounded space, then Coneω X is a point.

Proof: We just compute distance. If x = [xi], y = [yi] ∈ X∞ then:

d∞(x, y) = lim
ω

(∗d(xi, yi)

λ

)
≤ lim

ω

(
diam X

λ

)
= 0

3.4.2 Hyperbolic spaces

Hn has strictly negative curvature and is therefore a CAT(κ) space for some

κ < 0. By Proposition 3.1, we see that Coneω Hn is a metric tree. In fact, it is not

too hard to see the following properties [7]:

1. Coneω Hn is a metric tree with uncountable branching at every point.

2. Coneω Hn and Coneω Hm are isometric for all n,m.

3.4.3 Euclidean spaces

The next example is X = R. We start with R, ω and λ. Our first step in

the construction of Coneω R gives us the nonstandard real numbers ∗R and the
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nonstandard distance ∗d on ∗R. Notice that ∗d can be written as ∗d(x, y) = |x− y|.

We also have the (possibly) infinite real distance d∞ on ∗R:

d∞(x, y) = lim
ω

(∗d(x, y)

λ

)
We fix a base point in ∗R. By Theorem 3.3, we are free to choose any base

point. An obvious choice is the point 0 ∈ R ⊆ ∗R. To determine the space

R∞ ⊆ ∗R defined in (3.1), notice that for x ∈ ∗R, ∗d(x, 0) = |x|.

R∞ = {x ∈ ∗R | d∞(x, 0) < ∞}

= {x ∈ ∗R | |x| < nλ for some n ∈ N}

Define a map φ : Coneω R → R. Defined as φ(x) = sign(x)d∞(x, 0), where sign(x) ∈

{−1, 0, 1} is defined as usual. Given x, y ∈ Coneω X

d(φ(x), φ(y)) = |φ(x)− φ(y)|

= |sign(x)d∞(x, 0)− sign(y)d∞(y, 0)|

= lim
ω

(
|x− y|

λ

)
= lim

ω

(∗d(x, y)

λ

)
= d∞(x, y)

which shows that φ is an isometry and Coneω R = R. By combining this result

with Proposition 3.1 we get the following result.

Proposition 3.5. Coneω Rn = Rn.

Remark 3.6. As was briefly mentioned in the introduction, when the spaces (X, 1
λi

d)

converge in the sense of Gromov-Hausdorff, the asymptotic cone is equal to this

limit space. This is the case when X = R. The spaces (R, 1
λi

d) converge to R,

showing another way to prove Proposition 3.5.



CHAPTER 4

SYMMETRIC SPACES

4.1 Basic definitions and properties

The general reference for nearly everything to do with symmetric spaces is

Helgason’s book on symmetric spaces [13]. Another very good reference is Eberlein’s

book on nonpositively curved manifolds [9]. All the results in this chapter that are

not referenced or proved can be found in one of these references. One of the main

points of this chapter is the statement of Theorem 4.6 and the distance formula of

Proposition 4.4.

Definition 4.1. A Riemannian manifold P is a symmetric space if for each p ∈ P ,

there is an involutive isometry with p as an isolated fixed point. This isometry is

called the reflection or symmetry at p.

The easiest examples of symmetric spaces are Euclidean spaces and spheres.

In these cases, the symmetries are the usual reflections through points. Given a

symmetric space P , we can apply the de Rham decomposition and write P as a

product of irreducible symmetric spaces:

P = M0 ×M1 × · · · ×Mk

Each of these manifolds will either be compact, a Euclidean space, or noncompact

and not a Euclidean space. We will be interested in finding the asymptotic cone

of the symmetric space. By Proposition 3.1, to find the asymptotic cone of a

symmetric space, it suffices to consider each irreducible component of P . By

Proposition 3.4 and Proposition 3.5, we already know everything about asymptotic

cones of compact spaces and Euclidean spaces. Therefore, we will be concerned
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only with irreducible symmetric spaces of noncompact type, meaning the irreducible

symmetric space is noncompact and not Euclidean space.

4.2 Symmetric spaces of noncompact type

Let P be a symmetric space of noncompact type. Let G be the connected

component of the identity in the isometry group. Then G is a Lie group and acts

transitively on P . We fix a point p ∈ P and let K ⊆ G be the stabilizer of p. K

is a maximal compact subgroup of G. Let g be the Lie algebra of G and k the Lie

algebra of K.

Let σp : P → P be the reflection at p. Then g 7→ σpgσp defines an involution

σ : G → G. This also gives an involution dσ : g → g, of the Lie algebra. These

involutions have the fixed point sets

Fix(σ) = K

Fix(dσ) = k

Since dσ is an involution, we can find the complement of k in g:

p = {X ∈ g | dσ(X) = −X}

We have g = k⊕ p.

We know that G acts on P transitively which gives us the identification P =

G/K. On the Lie algebra level, the Lie algebra maps onto the tangent space

g → TpP . This map has kernel k, and thus we see we can identify the tangent space

TpP with p.

In g we have the Killing form B : g× g → R given by

B(X, Y ) = tr(ad X ◦ ad Y )

Using the Killing form and the identification TpP = p, we define a positive definite

inner product on TpP .

〈X, Y 〉p = B(X, Y )

Using the transitive group action, we can move this inner product around the

symmetric space to get a Riemannian metric. It is known that with this metric,
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symmetric spaces of noncompact type satisfy the CAT(0) inequality [16, Section

2.1]).

Definition 4.2. Let P be a metric space. A k-flat in P is a complete, totally

geodesic submanifold that is isometric to Rk.

The following theorem can be found in [9, Section 2.10].

Theorem 4.3. 1. Every flat F ⊆ P through the base point p ∈ P is the orbit

of the exponential of an abelian subspace a ⊆ p:

F = exp(a) · p

2. If F1 and F2 are k-flats in P and p1 and p2 are points in F1 and F2, then

there exists g ∈ G such that g · F1 = F2 and g · p1 = p2.

3. If γ is a maximal geodesic of P , then there exists at least one maximal flat

containing γ.

4.3 The symmetric space P (n, R)

The canonical example of a symmetric space of noncompact type is the space

P (n, R). By definition, P (n, R) is the set of positive definite, symmetric n × n

matrices of determinant one with coefficients in R. A natural base point in P (n, R)

is the matrix I. Our goal in this section is to better understand P (n, R) and, in

particular, find a distance formula.

SL(n, R) acts on P (n, R). If g ∈ SL(n, R) and A ∈ P (n, R), we define the

action

g · A = gAgt

It is an elementary fact from linear algebra that this is a transitive action. The

stabilizer of the base point I ∈ P (n, R) is SO(n). The Lie algebra of SL(n, R) is

sl(n, R), the set of all trace zero matrices. The Lie algebra of SO(n) is so(n), the

set of skew symmetric matrices with trace zero. Notice that the exponential map,
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exp : sl(n, R) → SL(n, R), is given by matrix exponentiation. The symmetry at

I ∈ P (n, R) is given by

σI(A) = A−1

It is clear that σI is involutive and has I as an isolated fixed point. Using σI we

obtain involutions σ : SL(n, R) → SL(n, R) and dσ : sl(n, R) → sl(n, R) which are

easily seen to be given by the formulas:

σ(g) = σIgσI = (g−1)t

dσ(X) = −X t

This allows us to decompose the Lie algebra sl(n, R) = so(n)⊕ p(n, R), where

so(n) = {X ∈ sl(n, R) | X t = −X, tr X = 0}

p(n, R) = {X ∈ sl(n, R) | X t = X, tr X = 0}

Given X ∈ sl(n, R), ad X : sl(n, R) → sl(n, R) is given by

ad X(Y ) = [X, Y ] = XY − Y X

One can compute the Killing form and see that B(X, Y ) = 2n tr(XY ). Since

replacing B with B(X, Y ) = tr(XY ) will only change the metric by a fixed scale,

we do this. The metric at I ∈ P (n, R) is therefore:

〈X, Y 〉I = tr(XY )

To find the metric at another point in P (n, R), we use the group action to move

the inner product defined at I around the symmetric space. If g · p = I then the

metric at p is given by

〈dg(X), dg(Y )〉p = 〈X, Y 〉I

This definition ensures that SL(n, R) acts on P (n, R) via isometries. It can also be

shown that σI is an isometry of P (n, R).

We now determine the geodesics of P (n, R). It is well known that the orbits of

one parameter subgroups in the isometry group, which are tangent to P (n, R), give
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geodesics through the base point in a symmetric space. One parameter subgroups

in SL(n, R) are seen in the Lie algebra as lines. Thus, the geodesics through I are

of the form γ(t) = exp(tX) for some X ∈ p(n, R).

To find a formula for length of such a geodesic, let X ∈ p(n, R). Let γ(t) =

exp(tX) be the corresponding geodesic. Notice that γ′(0) = X. To find length of a

curve we use the metric on X and integrate:

d(I, exp(X)) = length(γ) =

∫ 1

0

〈γ′(t), γ′(t)〉γ(t) dt (4.1)

To compute this integral, we use transvections. In particular, for each t, consider

the isometry gt, defined by

gt = σI ◦ σγ(t/2)

One can verify that

gt(γ(u)) = γ(u− t)

and therefore, the family {gt} translate along the geodesic γ. Therefore,

dgt(γ
′(t)) = γ′(0)

〈γ′(t), γ′(t)〉γ(t) = 〈dgt(γ
′(t)), dgt(γ

′(t))〉gt(γ(t))

= 〈γ′(0), γ′(0)〉γ(0)

= 〈X, X〉I = tr(X2)

Thus, the distance in (4.1) becomes

d(I, exp(X)) =

∫ 1

0

〈γ′(t), γ′(t)〉γ(t) dt

=

∫ 1

0

〈X, X〉I dt

= 〈X, X〉I = tr(X2)

To actually compute distances in P (n, R), we notice that log : P (n, R) → p(n, R)

is the inverse of the exponential map and is well-defined because exp : p(n, R) →

P (n, R) is bijective. Therefore

d(A, I) =
√

tr[(log A)2] (4.2)
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Proposition 4.4. Given A, B ∈ P (n, R), d(A, B) =
√

tr[(log AB−1)2].

Proof: Using the group action, we find g ∈ SL(n, R) such that g · B = I, or

gBgt = I. Therefore by (4.2),

d(A, B) = d(g · A, g ·B) = d(gAgt, gBgt) = d(gAgt, I)

=
√

tr((log gAgt)2)

Define X = log(gAgt). Then

d(A, B) =
√

tr(X2) (4.3)

Notice that since X = log(gAgt), exp(X) = gAgt. We rearrange this expression.

exp(X) = gAgt = gAB−1Bgt = gAB−1g−1g−1tgt

= gAB−1g−1 (4.4)

Rearranging (4.4) gives

AB−1 = g−1 exp(X)g = exp(g−1Xg)

Therefore,

g−1Xg = log(AB−1)

X = g log(AB−1)g−1 (4.5)

We now put equation (4.5) this into the formula (4.3):

d(A, B) =
√

tr((X)2)

=
√

tr(g(log(AB−1))g−1)2

=
√

tr(g(log(AB−1))2g−1)

=
√

tr(log(AB−1))2

The last equality is because trace is invariant under conjugation.

Notice that in sl(n, R) a maximal abelian subspace is the set of diagonal trace

zero matrices. Theorem 4.3 implies the set of diagonal matrices in P (n, R) is a



38

maximal flat. Because SL(n, R) must act transitively on maximal flats (again,

Theorem 4.3), we see that any element of P (n, R) can be diagonalized using an

element of SL(n, R). This is a well known result of elementary linear algebra.

Proposition 4.5. If A ∈ P (n, R), then there exists some g ∈ SL(n, R) such that

gAgt is diagonal.

4.4 The embedding

Let P be an irreducible symmetric space of noncompact type and let p ∈ P be a

point. Let G be the connected component of the isometry group of P . Let K ⊆ G

be the stabilizer of p ∈ P .

We have the following theorem that can be found in [8, p. 134].

Theorem 4.6. There is some n such that there is a diffeomorphism P → P (n, R)

onto a complete totally geodesic submanifold of P (n, R). It is possible to rescale

the metric on P so that this map is an isometry. The group G embeds in SL(n, R)

and the group K embeds in SO(n), and this group embedding respects the group

action.

Thus, we can assume that every irreducible symmetric space of noncompact type

is a submanifold of P (n, R). To compute distances in P , it is enough to compute

distances in P (n, R). We also have the following.

Proposition 4.7. In the embedding of Theorem 4.6, we can assume that every

element A ∈ P ⊆ P (n, R) is diagonalizable by an element of K.

Proof: Suppose P ⊆ P (n, R) is embedded and F ⊆ P is a maximal flat. Let F be a

maximal flat in P and let p ∈ F be an arbitrary point. Let D be the flat of diagonal

matrices in P (n, R). Then, by Theorem 4.3, there exists some g ∈ SL(n, R) such

that

g · F ⊆ D g · p = I

By using this element g to modify the embedding, we can assume that there is a

maximal flat of P contained in D. Let D′ ⊆ P be a maximal flat such that D′ ⊆ D.
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Now let A ∈ P be arbitrary. Let γ be a geodesic connecting I and A. By Theorem

4.3, there is a group element g ∈ G such that

g · γ ∈ D′ g · I = I

Since g·I = I, we actually have g ∈ K, the compact subgroup. And, since g·A ∈ D′,

g · A is diagonal.



CHAPTER 5

ASYMPTOTIC CONES OF SYMMETRIC

SPACES

We now construct the asymptotic cone of an irreducible symmetric space of

noncompact type P , and prove the main theorem regarding this asymptotic cone.

We will assume that P ⊆ P (n, R) and that this embedding satisfies Theorem 4.6

and Proposition 4.7. We take the base point to be I ∈ P (n, R). We also fix a

nonprincipal ultrafilter ω and an infinite number, λ ∈ ∗R. We let ρ = e−λ, a

positive infinitesimal in ∗R. Recall that this leads to the definitions of M0 (2.5),

M1 (2.6) and the field ρR (2.7).

5.1 P∞

Recall that P∞ is defined in (3.1) as

P∞ = {x ∈ ∗P | d∞(x, ?) < ∞}

where

d∞(x, y) = lim
ω

(∗d(x, y)

λ

)
Also note, as mentioned in Example D.3, that for any ordered field K, P (n, K) is a

semi-algebraic set. We can consider the semi-algebraic sets P (n, ∗R) and P (n, ρR).

Notice that because P ⊆ P (n, R), ∗P ⊆ ∗(P (n, R)). The ultrafilter actually gives

equality:

∗(P (n, R)) = P (n, ∗R)

Proposition 5.1.

P∞ = ∗P ∩ P (n, M0)
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Proof: Take A ∈ ∗P . Let {α1, . . . , αn} be the eigenvalues of A. Because exp :

p → P is onto, there exists some X ∈ ∗p such that exp X = A. By Lemma A.1,

the eigenvalues of X are {log α1, . . . , log αn}. Similarly, the eigenvalues of X2 are

{(log α1)
2, . . . , (log αn)2}. Because the trace of a matrix is the sum of its eigenvalues

and by Proposition 4.4,

d∞(A, I) < ∞ ⇐⇒ lim
ω

(∗d(A, I)

λ

)
= lim

ω

(√
tr((log A)2)

λ

)
< ∞

⇐⇒ ∃C ∈ R, tr((log A)2) < (Cλ)2

⇐⇒ ∃C ∈ R,
∑

(log αi)
2 < (Cλ)2

⇐⇒ ∃C ∈ R,∀i (log αi)
2 < (Cλ)2

⇐⇒ ∃C ∈ R,∀i − Cλ < log αi < Cλ

⇐⇒ ∃C ∈ R,∀i ρC = e−Cλ < αi < eCλ = ρ−C (5.1)

This shows that A is in P∞ if and only if the eigenvalues of A are in M0 − M1.

Lemma A.2 tells us that if αi ∈ M0 − M1 for all i, then the matrix entries of A

satisfy |Aij| < nρ−C < ρ−(C+1). Thus, if A ∈ P∞, then A has entries in M0. Because

A must be symmetric, positive definite and det A = 1, A ∈ P (n, M0).

Similarly, if A ∈ ∗P ∩P (n,M0), then all entries of A satisfy |Aij| < ρ−C for some

C ∈ R. Therefore, since A ∈ SL(n, ∗R), Lemma A.2 implies that the eigenvalues

{α1, . . . , αn}, of A must all satisfy

(n2ρ−C)−(n−1) < |αi| < n2ρ−C

Thus, there is some C ′ ∈ R (we can take C ′ = nC) so that all eigenvalues of A

satisfy

ρC′
< |αi| < ρ−C′

In other words, all the eigenvalues of A are in M0 − M1. Therefore by (5.1),

A ∈ P∞.

5.2 The group action

The action G y P is a transitive isometric action. Therefore, the action GN y

P N defined point wise, must also be transitive. By applying the ultrafilter, we
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get a transitive action ∗G y ∗P . This “nonstandard” action is by nonstandard

isometries. We want to determine the subgroup of ∗G that stabilizes the subset

P∞ ⊆ ∗P .

Proposition 5.2. The stabilizer of P∞ in ∗G is the group G(M0).

Proof: By Proposition 3.2, g stabilizes P∞ if and only if g · I ∈ P∞.

Assume first that g ∈ ∗G stabilizes P∞. Then g · I = ggt ∈ P∞. Proposition 5.1

implies ggt ∈ SL(n, M0). Therefore, for all i, j and for some C ∈ R, |(ggt)ij| < ρ−C .

In particular, this is true when i = j:

ρ−C > |(ggt)ii| =

∣∣∣∣∣
n∑

k=1

gikgik

∣∣∣∣∣ =
n∑

k=1

(gik)2 ≥ |gik|2

Therefore, gik ∈ M0 for all i, k and g ∈ G(M0).

Now assume that g ∈ G(M0). Then gij ∈ M0 for all i, j and

(g · I)ij = (ggt)ij =
n∑

k=1

gikgjk (5.2)

Because M0 is a ring and each gij ∈ M0, the sum (5.2) must be in M0. Thus, by

Proposition 5.1, g · I = ggt ∈ P∞.

5.3 Upgrading to ρR
The previous section says that each A ∈ P∞ is a n× n symmetric matrix with

coefficients in M0 (Proposition 5.1). We can use the quotient map Π : M0 → ρR to

induce a quotient Π : P (n,M0) → P (n, ρR). Let P (ρR) be the image of P∞ under

this quotient map.

Proposition 5.3. The quotient map P∞ → Coneω P , obtained by identifying

distance zero elements, factors through P (ρR)

P∞
Π−−−→ P (ρR)y y

Coneω P
=−−−→ Coneω P
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Proof: We need to show that if A, B ∈ P∞ are such that A − B has entries in

M1, then d(A, B) = 0 (where this is the pseudo-distance on P (M0)). Suppose

A, B ∈ P∞ and A − B has entries in M1. We first simplify the problem using the

group action G(M0) y P∞. There exists some g ∈ G(M0) such that g · B = I.

Then

(g · A)− (g ·B) = gAgt − gBgt = g(A−B)gt

Now, recall that M1 is an ideal of M0. Therefore, A − B has entries in M1 if and

only if g(A − B)gt has entries in M1. Using the transitive action G(M0) y P∞,

we translate the pair (A, B) to (A′, I) such that A′ − I has entries in M1. This

translation is an isometry so d(A, B) = d(A′, I). We want to show that d(A′, I) = 0.

Next, using Proposition 4.7, we diagonalize A′ using an element k ∈ ∗K.

In other words, we need to show that if D is a diagonal matrix such that D− I

has entries in M1 then d(D, I) = 0. Assume that D − I has entries in M1 and D

is diagonal. This means that D is of the form D = diag(1 + α1, . . . , 1 + αn), where

αi ∈ M1. We now compute distance:

d(D, I) = lim
ω

√
tr(log A)2

λ
= lim

ω

√√√√ n∑
k=1

(log(1 + αk))2

(−λ)2

= lim
ω

√√√√ n∑
k=1

(
log(1 + αk)

log ρ

)2

= lim
ω

√√√√ n∑
k=1

(
logρ(1 + αk)

)2
=

√√√√ n∑
k=1

(
lim

ω
logρ(1 + αk)

)2

(5.3)

Since each αi ∈ M1, we can apply Lemma 2.22 and see that

lim
ω

(logρ(1 + αk)) = 0

for all k. Therefore d(D, I) = 0.

The proof of Proposition 5.3 gives formula (5.3) for distance from the base point.

This computation is valid in P (ρR). If we follow the computation through, we see

that if {α1 . . . , αn} are the eigenvalues for A ∈ P (ρR), then
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d(A, I) =

√√√√ n∑
i=1

(
lim

ω
logρ(αi)

)2

=
√∑

(v(αi))
2

Corollary 5.4. If A ∈ P (ρR) has eigenvalues {α1, . . . , αn} then

d(A, I) =
√∑

(v(αi))
2

Corollary 5.5. A ∈ P (ρR) is distance zero to I if and only if all the eigenvalues

of A have zero valuation.

Recall that ∗G y ∗P by nonstandard isometries and therefore G(M0) y P∞

is a nonstandard isometric action as well. Proposition 3.2 says that this action

descends to an action G(M0) y Coneω P .

Lemma 5.6. The action G(M0) y P∞ induces an action G(ρR) y P (ρR). This

action preserves the pseudo-distance on P (ρR).

Proof: We first check that this action is well-defined. Let g ∈ G(ρR). By Corollary

2.39, g is in the image of the projection G(M0) → G(ρR). Suppose g1, g2 ∈ G(M0)

both project to g. To show that the action is well-defined, we have to show that if

A ∈ P (ρR) with A ∈ P∞, then

Π(g1 · A) = Π(g2 · A)

where Π : P (n,M0) → P (n, ρR) is the projection. Since g1 and g2 both project to

g, g1 − g2 has entries in M1. Let h = g1 − g2. Since M1 is an ideal of M0, any

matrix with entries in M0, when multiplied by h, will have entries in M1. This

observations yields

(g1 · A)− (g2 · A) = g1Agt
1 − g2Agt

2

= g1Agt
1 − (g1 − h)A(g1 − h)t

= g1Aht + hAgt
1 + hAht (5.4)

where every term in the sum (5.4) must have entries in M1. Therefore g1 · A and

g2 · A must be equal in P (ρR) and the action is well-defined.
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To see that the pseudo-distance is preserved, one only needs to see that the

action G(M0) y P∞ preserves the pseudo-distance and that the pseudo-distance

in P (ρR) is actually computed in P∞.

Thus we get an action G(ρR) y P (ρR) which induces a transitive action of

G(ρR) on Coneω P .

Proposition 5.7. Every matrix in P (ρR) can be diagonalized by an element of

K(ρR) ⊆ G(ρR).

Proof: Notice that if g ∈ K, then every matrix entry of g satisfies |gij| ≤ 1 and

g ∈ G(M0). Therefore, ∗K = K(∗R) = K(M0).

If A ∈ P (ρR) and A ∈ P∞ are such that Π(A) = A, we apply Proposition 4.7.

This gives us k ∈ K(∗R) = K(M0) such that k ·A is diagonal. This clearly implies

that k · A is diagonal in P (ρR).

5.4 The stabilizer of a point

5.4.1 Matrix valuations

Definition 5.8. If g is a matrix with entries in ρR, we define the matrix valuation

of g as:

v(g) = min
i,j
{v(gij)}

Lemma 5.9. Let A, B be matrices with entries in ρR. Then v(AB) ≥ v(A) + v(B)

Proof:

v(AB) = min
ij
{v((AB)ij)} = min

ij

{
v

(∣∣∣∣∣∑
k

AikBkj

∣∣∣∣∣
)}

≥ min
ijk
{v(Aik) + v(Bkj)} ≥ min

ik
{v(Aik)}+ min

jk
{v(Bkj)}

= v(A) + v(B)

Lemma 5.10. If g ∈ O(n, ρR) then v(g) = 0. If g, h ∈ GL(n, ρR) are such that

gh−1 ∈ O(n, ρR) then v(g) = v(h).
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Proof: ggt = I implies that the entries of g satisfy |gij| ≤ 1. Taking valuations

gives v(g) ≥ v(1) = 0.

If gh−1 ∈ O(n, ρR), then v(gh−1) ≥ 0. We now apply Lemma 5.9:

v(g) = v(gh−1h) ≥ v(gh−1) + v(h) ≥ v(h)

By symmetry, v(g) = v(h). Notice that v(I) = 0. Therefore, for all g ∈ O(n, ρR),

v(g) = v(I) = 0.

Lemma 5.11. If g ∈ O(n, ρR) and A ∈ GL(n, ρR), then v(gAgt) = v(A).

Proof: Applying Lemma 5.9:

v(gAgt) ≥ v(g) + v(A) + v(gt) = v(A)

Similarly, since A = gt(gAgt)g,

v(A) = v(gt(gAgt)g) ≥ v(gt) + v(gAgt) + v(g) = v(gAgt)

and therefore v(gAgt) = v(A).

Lemma 5.12. If A ∈ P (ρR) then

(n− 1)v(A) ≤ v(A−1) ≤ v(A)/(n− 1)

Proof: By Proposition 5.7, we first diagonalize A with g ∈ K(ρR) so gAgt = D is

diagonal. Lemma 5.11 implies that v(A) = v(D).

D = diag(α1, . . . , αn)

D−1 = diag(1/α1, . . . , 1/αn)

Computing the valuation of A and A−1:

v(A) = v(D) = min{v(αi)}

v(A−1) = v(D−1) = min{v(1/αi)} = min{−v(αi)} = −max{v(αi)}

Since the determinant of a matrix is the product of its eigenvalues, det A = 1

implies
∏

αi = 1. Taking the valuation of
∏

αi = 1 gives
∑

v(αi) = 0. Let
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m = min{v(αi)} and M = max{v(αi}. Notice v(A) = m and v(A−1) = −M . We

now apply Lemma B.1 which implies

(n− 1)m ≤ −M ≤ m/(n− 1)

and proves the lemma.

Proposition 5.13. Let A ∈ P (ρR) and let {α1, . . . , αn} be the eigenvalues of A.

Then the following are true (where a condition in all the eigenvalues is written as

a condition in just α)

1.

v(α) ≥ m =⇒


m ≤ 0

m ≤ v(α) ≤ −nm

v(A) ≥ m

d(A, I) ≤ −n3/2m

2.

v(α) ≤ M =⇒


M ≥ 0

−nM < v(α) ≤ M

v(A) ≥ −nM

d(A, I) ≤ n3/2M

3.

v(A) ≥ m =⇒


m ≤ 0

m ≤ v(α) ≤ −nm

d(A, I) ≤ −n3/2m

4.

d(A, I) ≤ d =⇒

{
−d ≤ v(α) ≤ d

v(A) ≥ −d

Proof: This is an application of Lemma A.2 and Lemma B.1. Since P = exp(p),

Lemma A.1 implies that all eigenvalues of A are positive. Also by our assumptions,

A is diagonalizable by an orthogonal matrix in SO(n, ρR), and we can therefore

apply Lemma A.2.
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Since det A = 1,
∏

αi = 1. Taking the valuation of the equation
∏

αi = 1 gives

0 = v(1) = v (Παi) =
∑

v(αi)

Recall that by Corollary 5.4,

d(A, I) =
√∑

v(αi)2

We are now set up to use Lemma B.1 with the following definitions:

d = d(A, I) m = min{v(αi)} M = max{v(αi)}

1. Since
∑

v(αi) = 0, the lower bound on v(α) must be nonpositive. Therefore

m ≤ 0. We apply Lemma B.1 and see v(α) ≤ −(n− 1)m < −nm. v(α) ≥ m

gives α < ρ(m−ε) for all ε > 0, ε ∈ R. We now apply Lemma A.2 and see

|Aij| < nρ(m−ε) for all i, j. Taking valuations gives, for all ε > 0,

v(Aij) ≥ v(nρ(m−ε)) = m− ε

and therefore v(Aij) ≥ m.

Again, applying Lemma B.1,

d(A, I) ≤ −n3/2m

2. Since det A = 1, we have as before
∑

v(αi) = 0 and therefore M ≥ 0. We now

apply Lemma B.1 and immediately see that v(α) ≥ −(n−1)M and therefore

v(α) > −nM . This gives |α| ≤ ρ(−nM−ε) for all ε > 0. We now apply Lemma

A.2 and get |Aij| ≤ nρ(−nM−ε). Taking valuations gives v(Aij) ≥ −nM − ε

for all ε > 0. Therefore, v(Aij) ≥ −nM .

To compute d(A, I) we apply Lemma B.1:

d(A, I) ≤ n3/2M

3. If v(A) ≥ m, then every entry of A must satisfy v(Aij) ≥ m. This implies

that Aij < ρ(m−ε) for all ε > 0. We now apply Lemma A.2 and see that all
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eigenvalues satisfy |α| ≤ n2ρ(m−ε). Taking valuations gives v(α) ≥ m− ε for

all ε > 0. Therefore we have v(α) ≥ m. We can now apply part 1 of this

lemma and get the desired results.

4. This is easy because

(d(A, I))2 =
∑

v(αi)
2 = d2

Therefore, for all eigenvalues, −d ≤ v(α) ≤ d. We can apply part 1 of this

lemma and see that we must have v(A) ≥ −d.

5.4.2 The stabilizer

We now use the notion of matrix valuation to compute the stabilizer group of

our base point in G(ρR). To begin, we have the following immediate consequence

of Proposition 5.13.

Corollary 5.14. Let A ∈ P (ρR). Then d(A, I) = 0 if and only if v(A) ≥ 0.

Proposition 5.15. For any g ∈ G(ρR), d(ggt, I) = 0 if and only if v(g) = 0.

Proof: Let A = ggt. Assume that v(g) = 0. In this case we have v(ggt) ≥

v(g) + v(gt) = 0 and we apply Corollary 5.14 which implies d(A, I) = 0.

Suppose now that d(A, I) = 0. We diagonalize A using an element a ∈ K(ρR).

So aAat = diag(α1, . . . , αn). Since 0 = d(A, I)2 =
∑

v(αi)
2 we have v(αi) = 0

for each i. We define b = diag(1/
√

α1, . . . , 1/
√

αn). Notice that v(b) = 0 and

baAatbt = I. Therefore, if A = g · I, we have (bag)(bag)t = I which implies

bag ∈ SO(n, ρR). Lemma 5.10 implies that v(g) = v((ba)−1). Since a ∈ SO(n, ρR),

we have v((ba)−1) = v(b−1) = 0. Thus v(g) = 0.

Recall that O ⊆ ρR is the valuation ring (2.1) and G(O) is the set of O-points

of G. We have the following immediate consequence of Proposition 5.15.

Corollary 5.16. Under the action G(ρR) y Coneω(P ),

Stab(I,G(ρR)) = G(O) = {g ∈ G(ρR) | v(g) = 0}
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We have identified the asymptotic cone as the homogeneous space:

Coneω P ∼=
G(ρR)

G(O)
(5.5)

5.5 The isometry

Consider two different ultrafilters ω1, ω2, leading to two (isomorphic) nonstan-

dard real fields ∗R1 and ∗R2. We then pick infinite numbers λ1 ∈ ∗R1 and λ2 ∈ ∗R2

determining infinitesimals ρ1 = e−λ1 and ρ2 = e−λ2 . This leads to two (isomorphic)

valuation fields ρ1R and ρ2R. These valuations fields have valuation rings O1 ⊆ ρ1R

and O2 ⊆ ρ2R. By Theorem 2.34, there is a valuation preserving isomorphism

φ : ρ1R → ρ2R

Since φ is valuation preserving, φ(O1) = O2.

Next, we introduce our irreducible symmetric space of noncompact type, P ∼=

G/K. We now construct asymptotic cones of P using both sets of data and apply

(5.5):

Cone1 P ∼=
G(ρ1R)

G(O1)
Cone2 P ∼=

G(ρ2R)

G(O2)

Using the isomorphism φ : ρ1R → ρ2R, we get a group isomorphism, also denoted

by φ:

φ : G(ρ1R) → G(ρ2R)

Because φ is valuation preserving, φ maps the subgroup G(O1) onto the subgroup

G(O2). We now define φ∗ : Cone1 P → Cone2 P as

φ∗(g · I) = φ(g) · I

To see this is well-defined, suppose g1 · I = g2 · I in Cone1 P . Then g−1
2 g1 ∈ G(O1).

Therefore φ(g−1
2 g1) = φ(g2)

−1φ(g2) ∈ G(O2) (because φ maps G(O1) onto G(O2)).

Therefore φ(g1) · I = φ(g2) · I and φ∗ is well-defined.

Theorem 5.17. φ∗ : Cone1 P → Cone2 P is an isometry.

Proof: First note that because φ(G(O1) = G(O2), φ∗ maps the base point of

Cone1 P to the base point of Cone2 P . Next, we check that φ∗ is an isometry at
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the base point I ∈ Cone1 P . We need to check that d(φ∗(x), φ∗(I)) = d(x, I) for all

x ∈ Cone1 P . Let g ∈ G(ρ1R) be such that x = g · I. By Corollary 5.4:

d(x, I) =
√∑

v((αi))2

where αi are the eigenvalues of the matrix ggt. Notice that if α ∈ ρ1R is an

eigenvalue of ggt, then φ(α) ∈ ρ2R is an eigenvalue of φ(g)φ(g)t. And, because φ is

valuation preserving, v(α) = v(φ(α)). Thus, we must have

d(x, I) =
√∑

v((αi))2 =
√∑

v((φ(αi)))2

= d(φ∗(x), I)

Thus, φ∗ is an isometry at the base point I ∈ Cone1 P .

Next, consider two arbitrary points x, y ∈ Cone1 P . Using the isometric group

action G(ρ1R) y Cone1 P , we can translate to the base point:

(x, y)
g
 (g · x, g · y) = (I, z)

Because the action is isometric, d(x, y) = d(I, z). Also notice that because g ·x = I,

φ(g) · φ∗(x) = I, the base point in Cone2 P . Similarly, φ(g) · φ∗(y) = φ∗(g · y).

Therefore, we have

d(φ∗(x), φ∗(y)) = d(φ(g) · φ∗(x), φ(g) · φ∗(y))

= d(I, φ∗(g · y)) = d(I, φ∗(z))

= d(I, z) = d(x, y)

and therefore, φ∗ is an isometry.

Theorem 5.18. Let P be a symmetric space. Then the asymptotic cone of P is

independent of base point, scale factors and ultrafilter.

Proof: Let P be an arbitrary symmetric space. Applying the de Rham decompo-

sition:

P = P1 × · · · × Pk × Rm ×Q
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where each Pi is an irreducible symmetric space of noncompact type, m ∈ N and

Q is compact. By Proposition 3.1,

Coneω P = Coneω P1 × · · · × Coneω Pk × Coneω Rm × Coneω Q

Proposition 3.5 says Coneω Rm = Rm and Proposition 3.4 says that Coneω Q is a

point. We now have

Coneω P = Coneω P1 × · · · × Coneω Pk × Rm (5.6)

Theorem 5.17 and Theorem 3.3 together say that each Coneω Pi is independent

of base point, scale factors and ultrafilter. Combining this with (5.6) gives the

theorem.



CHAPTER 6

OPEN QUESTIONS

Although we have answered the main question in Theorem 5.18, there are many

questions left open. For this section, we will assume that P is a symmetric space

of noncompact type.

1. As mentioned in the introduction, Kleiner and Leeb showed that the asymp-

totic cone of P is a Euclidean building [17]. Bruhat and Tits show how

Euclidean buildings arise from “valued root data” in an algebraic group [4].

Valued root data in an algebraic group can arise from a valuation field. Is the

building Coneω P , the building that arises from the valued root data from the

algebraic group G and the field ρR?

2. The Tits boundary of a Euclidean building is a spherical building. Tits has

shown that spherical buildings correspond to algebraic groups and fields [30].

Is the Tits boundary of Coneω P the spherical building associated to G and

the field ρR?

3. As showed by Roitman, if one assumes the negation of the Continuum Hy-

pothesis, there are infinitely many nonisomorphic nonstandard real fields [26].

Our proof that ρR is independent of ultrafilter and infinitesimal relied on

Theorem 2.5, which relies on the Continuum Hypothesis. If one assumes the

negation of the Continuum Hypothesis, can one obtain nonisomorphic fields,

ρR?

4. If one assumes the negation of the Continuum Hypothesis, can one obtain

nonisometric asymptotic cones, Coneω P?



APPENDIX A

SOME MATRIX RESULTS

Let R be either the field R or ∗R. See Section 2.5 for a discussion on series of

matrices in ∗R.

Lemma A.1. Let A be a n× n matrix with entries in R. If α is an eigenvalue of

A, then eα is an eigenvalue of exp(A). Similarly, if log(A) makes sense and α is an

eigenvalue of A, then log α is an eigenvalue of log(A).

Proof: This is straightforward using the definition of the exponential map. If α is

an eigenvalue with eigenvector v then Av = αv. Then

exp(A)v =

(∑ Ak

k!

)
v =

∑ αkv

k!

=

(∑ αk

k!

)
v = eαv

This computation also makes it clear that log α is an eigenvalue of log(A).

Lemma A.2. Let A be a symmetric with entries in R.

1. If all the eigenvalues of A satisfy |α| ≤ C then all the entries of A satisfy

|Aij| ≤ nC.

2. If the entries of A satisfy |Aij| ≤ C then all the eigenvalues of A satisfy

|α| ≤ n2C

Furthermore, if A ∈ SL(n,R) then we also have

(n2C)−(n−1) ≤ |α| ≤ n2C

and

| log |α|| ≤ (n− 1) log(n2C)
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Proof: Since A is symmetric, there exists some B ∈ SO(n, R) such that BABt = D

is diagonal. Or equivalently, A = BtDB.

1. We write out the entries of the product A = BtDB. Remember that the

norm of the entries of a real orthogonal matrix are bounded by one.

|Aij| =
∣∣(BtDB)ij

∣∣ =

∣∣∣∣∣∑
k

BkiDkkBkj

∣∣∣∣∣
=

∑
k

|Bki||Dkk||Bkj|

≤
∑

k

|Dkk| ≤ nC

2. We have BABt = D is diagonal with the eigenvalues on the diagonal. We

write out the entries of this matrix product:

|αi| = |Dii| =

∣∣∣∣∣∑
k,l

BilAlkBik

∣∣∣∣∣
≤

∑
k,l

|Alk| ≤ n2C

If A ∈ SL(n, R) then 1 = det A = Παi, which implies that

|αi| = (Πj 6=iαj)
−1 ≥ (n2C)−(n−1)

Taking the log of (n2C)−(n−1) ≤ |α| ≤ n2C finishes the lemma.



APPENDIX B

A RESULT ON N-TUPLES

Here, we let R be one of the real closed fields R, ∗R or ρR.

Lemma B.1. Let a = (a1, . . . , an) ∈ Rn let d > 0, d ∈ R. Let m = min{ai} and

M = max{ai}. Suppose that a satisfies the following conditions

n∑
i=1

ai = 0

n∑
i=1

a2
i = d2

Then

1. m ≤ −d/n3/2

2. M ≥ d/n3/2

3. M ≤ −(n− 1)m

4. m ≥ −(n− 1)M

Proof: Note that for all i, we have m ≤ ai ≤ M . We split the sums into positive

and negative parts:∑
ai≥0

ai +
∑
ai<0

ai = 0 =⇒
∑
ai≥0

ai =
∑
ai<0

−ai

Looking at each of these sums, noting that each sum must contain between 1 and

n− 1 terms:

M ≤
∑
ai≥0

ai ≤ (n− 1)M (B.1)
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and

−m ≤
∑
ai<0

−ai ≤ −(n− 1)m (B.2)

Putting together (B.1) and (B.2):

M ≤ −(n− 1)m

−m ≤ (n− 1)M

We now use d2 =
∑

a2
i

d2 =
∑
ai≥0

a2
i +

∑
ai<0

a2
i

≤ (n− 1)M2 + (n− 1)m2

≤ (n− 1)3m2 + (n− 1)m2

= (n− 1)((n− 1)2 + 1)m2

≤ n3m2

This now gives the first inequality. The other inequality is obtained similarly by

using the n-tuple −a.



APPENDIX C

LINEAR ALGEBRAIC GROUPS

The basic references for this section are [3], [27], and [28]. Fix a field K and a

subfield k ⊆ K. We will assume that the characteristic of K is zero. Let V = Kn.

Let K[T ] = K[T1, . . . , Tn] be the polynomial algebra. Given a set of polynomials

I = {f1, . . . , fk} ⊆ K[T ], we can talk about the zero set of I. Such a set is called

an algebraic set. If I ⊆ k[T ], we say that the algebraic set V is defined over k.

Given two algebraic sets V1 ⊆ Kn and V2 ⊆ Km, a map φ : V1 → V2 is called

a morphism if the coordinate functions are given by polynomials. If the defining

polynomials have coefficients in k, then we say that the morphism is defined over

k.

Definition C.1. A group G, is a linear algebraic group if G is an algebraic set in

Kn for some n, and the map G×G → G defined by (x, y) 7→ xy−1 is a morphism.

If G is defined over k and the morphism is defined over k, then we say that G

is defined over k. If this is the case, then it makes sense to talk about the group of

k-rational points of G, or the k-points of G:

G(k) = G ∩ kn

If H and G are algebraic groups and φ : H → G is a homomorphism that is

also a morphism of algebraic sets, then we say that φ is a group morphism. If a

group morphism is defined over k, then we say that φ is a k-morphism.

Example C.2. 1. K, as an additive group, is defined by the zero polynomial.

2. K∗, the nonzero elements of K, as a multiplicative group can be defined as a

subset of K2 and the polynomial xy − 1.
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3. SL(n, K) ⊆ Kn2
is defined by the polynomial determined by det(A) = 1.

4. SO(n, K) ⊆ Kn2
is defined by the polynomial representing det A = 1 (as

above for SL(n,K)) and polynomials for the relation AAt = I.

5. The diagonal group, D(n, K) ⊆ Kn2+1 is also an algebraic group. It has

polynomials xij = 0 for i 6= j. D(n, K) is an algebraic set in Kn2+1 and

not Kn2
in order to get a polynomial representing the inequality det A 6= 0.

See [3] for the details.

6. φ : D(n,K) → K∗ given by φ(g) = x11 is a morphism.

7. det : GL(n, K) → K∗ is a morphism.

8. The map K∗ → SL(2, K), defined by

t 7→
[

t 0
0 t−1

]
is a morphism.



APPENDIX D

REAL ALGEBRAIC GEOMETRY

This appendix comes from [2] where all proofs can be found. R designates a

real closed field, which for us will be either R, ∗R or ρR. For x = (x1, . . . , xn) ∈ Rn,

we define

|x| =
√

x2
1 + . . . + x2

n (D.1)

Notice that for x ∈ R, |x| is an element of R. We give R (and Rn) the topology

from the ordering on R. As in Appendix C, let T = [T1, . . . , Tn].

Definition D.1. An algebraic set of Rn is a set of the form

{x ∈ Rn | f(x) = 0,∀f ∈ I}

were I ⊆ R[T ] is a finite subset.

Definition D.2. A semi-algebraic set of Rn is a set of the form

{x ∈ Rn | f(x) = 0, g(x) > 0,∀f ∈ I,∀g ∈ J}

where I, J ⊆ R[T ] are finite subsets.

Example D.3. For an ordered field K, let P (n, K) be the set of positive definite

symmetric matrices with determinant one. P (n,K) is a semi-algebraic set with

polynomials representing these conditions. Note that the condition of being a

positive definite matrix is defined by polynomial inequalities.

Definition D.4. Let A ⊆ Rn and B ⊆ Rm be semi-algebraic sets. A map f : A →

B is a semi-algebraic map if its graph in Rn+m is a semi-algebraic set, i.e., if

{(x, y) ∈ Rn ×Rm | y = f(x)}

is a semi-algebraic set.
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The easiest examples of semi-algebraic maps are polynomials and the map (D.1).

Another important example of a semi-algebraic function is the distance function.

Lemma D.5. Let A ⊆ Rn be a nonempty semi-algebraic set.

1. Then for every x ∈ Rn, the distance between x and A

d(x, A) = inf {|x− y|}

is well-defined as an element of R,

2. The function x 7→ d(x, A) from Rn to R is continuous, semi-algebraic, vanishes

on the closure of A and is positive elsewhere.

The main point in the proof is that the function (D.1) is a semi-algebraic

function.

Proposition D.6. Let A ⊆ Rn be a closed semi-algebraic set and f : A → R a

continuous semi-algebraic function. Then there exists c ∈ R, p ∈ N such that for

every x ∈ A,

|f(x)| ≤ c
(
1 + |x|2

)p
Theorem D.7. Let A be a locally closed semi-algebraic set. Let f and g two

continuous semi-algebraic functions from A to R such that f−1(0) ⊆ g−1(0). Then,

there exists an integer N > 0 and a continuous semi-algebraic function h : A → R,

such that gN = hf on A.

For us Theorem D.7, together with Proposition D.6 will be the important keys

for Section 2.6. A nice corollary of Theorem D.7 is  Lojasiewicz’s inequality:

Corollary D.8. Let A be a closed and bounded semi-algebraic set and f and g

two continuous semi-algebraic functions from A to R, such that f−1(0) ⊆ g−1(0).

Then, there exists an integer N > 0 and a constant c ∈ R such that |g|N ≤ c|f | on

A.
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