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ABSTRACT

This dissertation contains two chapters.

In Chapter 1 we discuss a new and effective way of doing intersection theory on
flag manifolds. Namely we do Schubert calculus on flag manifolds and flag bundles
via equivariant cohomology and localization. The basic idea is to locate the flag
manifold as a fixed-point component for a torus action on a larger ambient space,
then apply Atiyah-Bott localization theorem to relate residues on the flag manifold
to residues on some simpler manifold through equivariant maps. From these we get
our Schubert formulas, which are very effective in computation. We will also give
some applications.

In Chapter 2 we discuss Seshadri constants on Jacobian of algebraic curves. We
find the exact values of Seshadri constants of Jacobian of hyperelliptic curves, as
well as of curves with genus three and four. For higher genus curves we conclude
that if the Seshadri constants of their Jacobian are less than 2, then the curves
must be hyperelliptic.

This dissertation was written under the direction of Aaron Bertram, my Ph.D.

thesis advisor.



To my parents
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CHAPTER 1

SCHUBERT CALCULUS ON FLAG
MANIFOLDS

1.1 Introduction and Preliminaries

1.1.1 Introduction

In this project we discuss a new and effective way of doing intersection theory
on flag manifolds. Namely we do Schubert calculus on flag manifolds and flag
bundles via equivariant cohomology and localization. The basic idea is to locate
the flag manifold as a fixed-point component for a torus action on a larger ambient
space, then apply the Atiyah-Bott localization theorem to relate residues on the
flag manifold to residues on some simpler manifold (projective space in our case)
through equivariant maps.

Let us briefly recall the formula for Fi(1,2,V') discussed in Bertram’s paper
([4]), from where our main methods and techniques come.

The basic diagram is:

Noo(P",1) —— P(V @ W*)

G(2,V)

Here V and W are complex vector spaces of rank n + 1 and 2. The morphisms

are as follows: First the “graph space”

u N()’O(Pn, ]_) — P(V (%9 W*)



is simply the blow-up along the Segre embedding P (V') x P(W*). Then there are

two embeddings:
j:PV)=PV)x{uwi} = PVoW)
where {w]} is a point in W*, and
i Fl(1,2,V) — Noo(P™, 1)

which locates the flag variety Fi(1,2,V) as a fixed-point locus under a torus action.
Finally
T FI(1,2,V) = P(V)

is just the forgetful map, which is also the restriction of w.

Now Let h be the hyperplane class on P(V'), ¢ the relative hyperplane class
from the projection 7 : FI(1,2,V) — P(V). Let o(q1,q2) be a cohomology class
pulled back from G(2,V), represented by a symmetric polynomial in the Chern
roots —g; of the universal subbundle S C V ® Og,v).

The following formula, obtained from applying localization theorem to the
standard C* action on W, allows one to compute Schubert calculus on G(2,V)

by reading off the appropriate coefficient:

hPUo(h,h+1t)
T (hYY Uy Uo(qi, g2) = coeff. of 7972 in / ’
/Fl(l,Z,V) ) (2,92) povy (At t)"H!

Also in the relative version it produces the Porteous formula in Segre classes.

The above basic diagram is the special (degree one) case of the diagram Bertram
uses to produce a new computation of one-point Gromov-Witten invariants. In this
project we extend the idea to higher rank cases.

Let dim(W) = m > 3, and consequently we do Schubert calculus on the partial
flag manifold FI(1,2,--- ,m, V). The main difference between our cases and the
m = 2 case is that there are more than one (actually m — 1) loci that we need to
blow up sequentially. Consequently in the end there are more than one (actually
(m — 1)!) disjoint fixed-point components, each isomorphic to FI(1,2,---,m,V)

but with different equivariant Euler classes, that map to the same P(V). But



our methods work out and lead to the first Schubert formula (see below). More
importantly, after a good approximation outside the boundary divisors it turns out
that an error-term estimation is also in our favor, thus we get our second Schubert
formula in general cases. The relative versions will also be discussed.

For the simplicity of illustration, we initially discuss the situation of m = 3,
then discuss the general formulas in the last section of this chapter. Here we briefly
state our main formulas in the most general cases. (For a detailed explanation see
Theorem 7 and 8 in Section 1.4.)

Let h be the hyperplane class in P(V'), let

T Fl(1,2,--- ., m,V) — P(V) (i <m)
be the forgetful map and let ¢; be the relative hyperplane class for the projection
FI(1,2,--- i+ 1,V)— Fl(1,2,--- ,i,V)

pulled back to Fi(1,2,--- ,m,V).
Schubert Formula 1:

1 1
ﬂ—*( m—1 ) - n
{Ihzl:i} Mocjonam (i —ti,) - TI (i — i, —05)" Tlau(h + 6 = )"
The second formula involves cohomology classes pulled back from the Grass-

mannian under the projection
p: Fl(1,2,--- ,m, V) — G(m,V).

Represent such a cohomology class as a symmetric polynomial 7(g, -+ , ¢ ) in the
Chern roots —g; of the universal subbundle S C V ® Og(m,v)-
Schubert Formula 2:

Z 71'*( ﬂ-*(hb) U p*7'<(]1, T 7qm) )

—1
{I}iy=i} H0§j<k§m—1(tik - tij) ) HZL:I (tis+1 — i, — s)

. thT(h—Ftl—tz, ,h‘i‘tm—tz)

+ irrelevant terms
Hs;éi(h +ts — ti)nﬂ

We also discuss two applications: The first application is about counting planes,

the analogue of one-point Gromov-Witten invariants in degree one case. We will



look at class of the locus of hypersurfaces which contain projective planes, and find
the number of planes if class has the right dimension. We will also consider the
number of planes satisfying certain linear conditions on certain hypersurfaces. In
the second application we will produce a Porteous-like formula using the relative

version formula, which turns out to be neat in the form of Segre classes.

We organize this chapter in the following order: In the rest of this section we
will go over some basic facts about equivariant cohomology and compute some
useful examples. Also we will fix some notations. Then in Section 1.2 we will
set up our main formulas and associated topics in the case of dim(W) = m = 3.
This section contains the main techniques and results. In Section 1.3 we will use
our formulas to do a few applications, mainly to illustrate the effectiveness of our
methods. Finally in Section 1.4 we will discuss general cases. We will explain that
all the corresponding results, though they may look complicated, follow the same

principles from those in Section 1.2.

1.1.2 Preliminaries and notations
We will recall some basic facts needed in this paper. Most of them are about
equivariant cohomology. We will also compute some examples which will be used
in next two chapters.
For group action, we always assume the group T = (C*)* is a complex torus

throughout this paper.

Definition 1 The universal principal 7" bundle is the T-fibering
ET := (C* — {0})F — (CP™)* =: BT

Here ET' is contractable on which T acts freely, and the quotient BG = ET/T

is called the classifying space.

Let X be a compact complex manifold equipped with a T" action. Since T acts
on X X KT, we construct the quotient Xy := X xp ET. Note that 7x : X7 —
ET/T = BT is a T bundle with fiber X.



Example 1 If T acts trivially on X, then X7 = X x BT. On the other hand, if
T acts freely on X, then X7 = X/T x BT.

Definition 2 The T-equivariant cohomology of X is the cohomology of X7:
Hi(X,Q) := H'(Xr,Q).

Example 2 Since T' = (C*)*, we have H*(BT) = Q[A1, A2, - -+ , At]. Since Hz(point)
= H*(BT), we see that H;(X) is a H*(BT)-module by pulling back from a point.

Example 3 If T acts trivially on X, then H;(X) = H*(X) ® H*(BT). On the
other hand if T" acts freely on X, then H;(X) = H*(X/G) with trivial H*(BT)

module structure.

Definition 3 An equivariant vector bundle on X (with a T action) is a vector
bundle V over X such that the T action on X lifts to an linearized action of V.
Then V; — X7 is a vector bundle of same rank. We define the equivariant chern

class cf (V) == ¢.(Vr) € H*(Xr).

We will frequently need to compute equivariant chern classes, especially equiv-
ariant Euler classes (the top chern class of an equivariant normal bundle). We

compute several examples below that will be used later in this paper.
Example 4 Let T = (C*) act on C? by
t-(a,b) = (a,tb).

Denote by 0 = (1,0) and co = (0,1) in P!. They are the only fixed points of the

action. We would like to compute the equivariant Euler class of the normal bundle

Cz;p(N{O}/Pl) = C1T(TP1|{0})

by determining the weight on the tangent line.
By looking at the tautological space of the universal bundle Op:(—1) we see

that (by looking at the action of 7" on the line in Op1(—1) over 0 and oo) Op1(—1)



has weights 0 and 1 at 0 and co. Consequently Op:(1) has weights 0 at 0 and —1

at 0co. Now from the Euler sequence (equivariant if one writes in the following way)
0— Opl — Opl(l) ®C2 —>TP1 — 0

we can compute the equivariant Euler class of the normal bundle as follows: First
Op1(1) ® C? has weight, (0+ 0) and (1 +0) (weights of coordinates of C? plus the
weight of Op1(1)) at 0 and weight (0 — 1)and (1 — 1) at oo. Since the action on
Op: is trivial, it always cancel the weight 0 part in Op1 ® C2. So Tp: has weight 1

at 0 and —1 at co. In summary we see the following table:

bundle weight at 0  weight at oo
Opi(—=1) 0 1

Op1(1) 0 -1

Tp: 1 -1

From here we see that

Cz;p(N{O}/Pl) = C,{(TP1|{O}) =t.

This example gives a proof from the definition how to compute the weight of certain
equivariant classes. One can also see that Tp: |{0} has weight 1 at 0 since it is the
weight on the second coordinate, and weight —1 at oo since it is the weight on the
first coordinate by considering the action as t - (a,b) = (t7'a,b) (on P! the two

actions are the same).

Example 5 In this paper we will mainly consider the case when 7" = (C*)™ acts

on an m-dimensional vector space W (fix a basis < e, -+ , e, >) as follows
~1 —1 ~1
<t15t27"' >tm>'(wlaw27"' awm):(tl wOatQ wa, - - 7tm wm)

such that the dual action on the dual space W* is

’ /

(tl>t27“ : 7tm) : (w1>w27 e ,U);n) = (tlwllath;f te 7tmw;n)

The action has m fixed points in P(W*) which are e (i =1,2,---,m). In view of

the above example, we give the answer of the following computations quickly:



(1) We want to compute

Cz;p(N{O}/P(W*)) = CZ;;;(TP(W*) 0})-

Here 0 := (1,0,---,0) = e} in P(W*). As before we can see that Opgy+)(—1) has
weight (1,---,0) at e} and weights (0,---,0,1,0,---,0) at e (The nonzero factor
corresponds the weight on ¢;). Find the corresponding weights on Opy+)(1) and

looking at the Euler sequence:
0 = Opw+) — Opw= (1) @ C™ — Tpw-) — 0

We see that Tpw+) has weight (0,0,---,0),(-1,1,0,---,0), ---, (=1,---,0,1) at
0. So consequently

m

cgap(N{O}/P(W*)) = Cz;p(TP(W*)’{O}) = H(ti —t1).

=2

(2) We also want to look at the point co := (0,---,0,1) € P(W*)*) = P(W).

In this case we just switch the sign of all weights on Opw+)(—1), and the com-

putation shows that Tpy) has weight (-1,0,---,0,1), ---, (0,---,0,—1,1), and
(0,---,0) at co. This shows

m—1

Cop(Noc} [PW) = e (Tow) (o) = [ ] (tm — 10).

i=1
If f: X — Y is a T-equivariant morphism of compact complex manifolds with
T-actions. Then f induces a map (still denoted by) f : X7 — Yr. We can define
the equivariant pull-back and (in case f is proper) the equivariant push-forward
from the induced map.
Next we want to recall Atiyah-Bott localization theorem, which is essential to
set up our main formulas.
Let T = (C*)™ be a complex torus. Let X be a compact complex manifold
with a T-action. Let Fy,--- | F,, C X be the (smooth) connected components of the
fixed-point locus. Let iy : F, — X denote their embeddings. Notice that the normal

bundles Np, /x canonically have induced T-action. Denote by t; := {ti, %2, -+ ,t;}.



Theorem 1 ([2]) With notations as above:

(1) The equivariant Euler class ¢/, (Np,/x) is invertible in H*(Fy, Q)(t;).

(2) If er € H3(X, Q) is a torsion-free equivariant class, then it uniquely decom-
poses in H5 (X, Q) ® Q(t;) as:

n

op = Z(ik)*ﬂ

= clop(Npyx)

The localization theorem says we need only know the contributions from the
fixed-point loci. On the other hand, let f : X — Y be an equivariant map of
compact complex manifolds with T-actions. Suppose iy, : Fy — X (k=1,2,--- ,n)
and j : G — Y are components of the fixed-point loci with the property that F}’s
are the only fixed-point components that map to G. The following corollary says

we can compute the residues through reduction to Y.

Corollary 1 If ¢y is an equivariant cohomology class on X, then

n

Sl ity = T

k=1 Clop(NE/x)" lop(Nayy)

Proof. The free part of Cr is a push-forward of classes from the fixed-point
loci of X by the localization theorem. Since only Fji’s map to G, only their
contributions are needed when considering j* f.cy and 7*cy. So we may assume
that Cr = S (i)« (br)r where (by)r € H*(Fy, Q)[tr,t7}].

Notice that
(by)y — iplin)«(be)r _ dger
op(NEyx)  clop(NE/x)

Now from the diagram:
x 1.y

o

flr,

Fk—>

and the formula for (bx)7 the corollary follows since



Ffeer =5 Fuin)o (O =D 55 (Fle)e(be)r =Y cloy(Nayy ) (f15)«(b)7
k=1 k=1 k=1

|
Notations: We will fix some notations throughout this paper:
1. All varieties and vector spaces are over the complex number field C.
2. Vs an (n+ 1)-dimensional vector space. W is an m-dimensional vector space.

P(V) and P(W) are n- and (m — 1)- dimensional projective spaces P" and P!,
P(WW*) is the dual projective space.

3. PWVeW*)=P(Hom(W,V)) is the projective space of the corresponding
vector space Hom(W, V). Note that dim(P(V ® W*)) =m(n+ 1) — 1.

4. The Grassmannian space G(k, V') is the space of all k-dimensional
subspaces in V. Note that dim(G(k,V)) = k(n+ 1 — k)

5. The flag variety FI(1,2,---,m,V) is the space of all flags
icVoC---CV, €V where dim(V;) = 4.
Note that dim(Fi(1,2,--- ,m,V)) = m(n + 1) — 224,

6.  In the relative setting:
V is a rank-(n + 1) vector bundle over a smooth projective variety X.

Replace “space” by “bundle” in all above notations.

Also note that all dimensions are relative (over X).

1.2 Schubert Calculus on FL(1,2,3,V)

When m = dim(W) > 3, we need to blow up more than once to desingularize
all lower rank loci. Consequently we will do Schubert calculus on the flag manifold
FI(1,2,--- ,m,V). In this section we are going to discuss the case m = 3, and
leave the general cases to section 1.4. This section describe the main techniques of
our project.

The basic diagram for m = 3 will be:
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G(3,V)

Briefly speaking, we want to do intersection theory on the partial flag variety
Fl(1,2,3,V), especially consider classes which are pull-back from Grassmannian
G(3,V). To make effective ways of computation in view of our methods, we first
locate the flag variety as a fixed-point component of the standard torus action
in the ambient space Ny, which is obtained by two blow-ups from the mapping
space P(V ® W*). Then we observe the flag variety FI(1,2,3,V) maps to some
fixed-point component and the whole diagram is compatible with the group action.
Therefore we need to express the computation in the form of some residues, and use
the Localization theorem to relate the residues on flag varieties to those on simpler
spaces (in our case, projective spaces).

To discuss this more carefully, we need to give a more detailed Main Diagram.

1.2.1 Main diagram and explanation

We explain in detail all the necessary steps then give the Main Diagram. Basi-

cally we look at the low-rank loci in the mapping space
P(V)x P(W*)=P(Hom(W,V)).

In first step we blow-up the rank one locus (the Segre embedding), which makes
the proper transform of the rank two locus smooth. Then in second step we blow-
up this proper transform to get the ambient space Ny. We find that the needed
flag manifolds are inside the intersection of two exceptional divisors and, after

considering the “standard” torus action, are exactly the fixed loci.

Fix a basis of W as < wy, wq, w3 > with the dual basis < wj, w;, w3 >.

We get the Main Diagram through the following steps:
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Step 0: First we have two vector spaces V' and W with dimensions n+1 and 3.
Denote by P(V) := P(V) x (w}). Consider the following which is the right column
of the diagram

P(V)— My — My, —P(VeW").

Here My = {¢ € Hom(W,V)|dim(Im¢) < 2} is the rank two locus (with codimen-
sion n — 1), and the rank one locus M; = {¢ € Hom(W,V)|dim(Im¢) < 1} is the
Segre embedding P (V') x P(W*). Note that M, is singular along M.

Step 1: Now we blow up the rank one part P(V) x P(W*) to get u; : Ny —
P(V®W™). Note that the exceptional divisor Fj is a projective bundle P(V/l® K*)
over P(V) x P(W*), where [ and K are image and kernel of the corresponding map
in V ® W*. Let M, be the proper transform of M,. It is a projective bundle
P(py ® Q*) where py and @ are image and quotient (in W) of the corresponding
map in V ® W* so in particular it is smooth. The above description of two bundles
(fiber-wise) shows that every element of the intersection of E; and M, consists a
pair of flags: (I C py)in FI(1,2,V) and Q*(K* C K* in FI(1,2, W*). From these
it is easy to check that

My () Er = FI(1,2,V) x FI(1,2,W").

Also one component of preimage of P(V) is FI(1,2,V). (See below.) So we have

the middle column
FI(1,2,V) — FI(1,2,V) x FI(1,2,W*) — M, — Nj.

Step 2: We have to blow up again (along M,). This time we get u : Ny —
Ni;. We denote the exceptional divisor as Dy and also the preimage of E; as Dy.
Note that as in step 1, the intersection of D; and Dy consists of pairs of flags in
FlI(1,2,3,V) (dimension of images increases) and FI(1,2, W*) (dimension of kernels

decreases). So we check that
Dy (D> = FI(1,2,3,V) x FI(1,2,W*),

which has same image under uy as D;. Inside D; () Dy we find two flag varieties:

mo By = FIU(L,2,3,V) x {0} = N, and ip, : Fo = FI(1,2,3,V) x {00} — No.
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Here {0} corresponds the point {(*,0,0) C (%,%,0) C W*} in FL(1,2,W*), and
{oo} corresponds the point {(*,0,0) C (x,0,*) C W*} in FL(1,2,W*). Note that
this means there are also two FI(1,2,V) in the second column that map to P(V).

Thus we have the left column
F, — Fl(1,2,3,V) x FI(1,2,W*) — D; — N,. (i,j =1,2).

With a little bit of abuse of notation, we will denote by 7 the forgetful map, from
both F; and F» to P(V).

Finally we provide the Main Diagram in the rank 3 case:

Main Diagram:

Ny —— Ny —— PWVaWY
3 k3 Ja

D, — M, —— M,
io ko J2

DiNnDy, —— M,N\E, —— P(V)x P(W¥)

i1 k1 7
FI(1,2,3,V) —— FI(1,2,V) —— P(V)
Note that all vertical maps are embeddings.
We denote i = i30i90141, j = j3072071,k = ksokooky, and let u = ujous. Also note
there is a family of surfaces 7 : N, — N, and an evaluation map e : N, — P(V).

(See Proposition 3 for details.)

1.2.2 Main formulas

Now consider the linearized action of T' = (C*)? on W
(tﬂ u) ’ (w17 Wa, w3) - <w17 t_l'LUQ, U’_lw3)'

This action induces actions through each step of our diagram, such that all maps

in the diagram are T-equivariant.
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Note that (wj) € W* is one of the fixed points of T-action. So P(V) :=
P(V) x (w}) is one of the fixed-point components in P(V ® W*). The important
thing here is that the two flag varieties F; above are two fixed-point components
of the T action on Ns, and are the only such components that map to the P(V)
above. So we can apply the localization theorem to do Schubert calculus on flag
varieties through reduction to the projective space P(V)). We need, however, to
investigate and compute all terms involved (equivariant top chern class on normal

bundles, push forwards, and error terms).

Let h € H*(P(V),Z) be the hyperplane class. Let H := e*(h) and define the
equivariant chern class A" := ¢f (Opgw+(1)). The following proposition will

compute some important terms that are needed in the main formulas.

Proposition 1 From the above setting:

(1) P(V) Cc P(V® W*) is a component of the fixed-point locus.

(2) Fy and F are the only fixed-point components in Ny to map to P(V).
(3) H extends to the equivariant class u*(h).
(4)

4) The equivariant Euler class of F} in Ny is

tu(u — t)(t — 1) (u —t — 1hy).

Similarly the equivariant Euler class of Fy in Ny is

tu(t —w)(u — 1) (t —u =) = tu(u — t)(u — 1) (u — t +1ba).

Here 9, and v are the relative canonical classes ¢i(w,,) and c¢;(wy,),where
m o FI(1,2,3,V) — Fl(2,3,V) and my : FI(1,2,3,V) — FI(1,3,V) are forgetful
maps.

(5) The equivariant Euler class of P(V) in P(V @ W*) is

(h+ )" (h +u)™*.

Proof. (1)-(3) are straightforward. But notice (2) means the formula we will get

has more than one terms on the left side.
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For (4) We need to understand three terms:
Stepl: ¢, (Nrp, " p,) = ¢ty (Nioy/ri(1,2,w+)) which is tu(u —t).
Let W} = (w},ws)* be the two-dimensional subspace of W*. From the embed-
dings
{0} — FI(1,W]) — FI(1,2,W")

We know that
T T T
Crop(N(0}/F11,2W%)) = Cuop(N(0y/F10,W7)) * Coop (N1 W7 /F1(12, W) 0})

The first term is just ¢{ (Nyoy/p1)+)) = t by Example 5 in Section 1 (see also Example

4 for detailed proof). For the second term, the restriction N FI(L,W; /FILW) | {0} 18
just Ny,0.)/p2) (think it as ((P?)*)* = P?). Since the T-action on (P?) has the
weight (1, —t, —u), or (u,u —t,1) as we are looking at {(0,0,*)} (also by Example

5), we know that the equivariant top chern class ¢ (Nyo,0.3/p2)+) = u - (u —t).

Step2: ¢f (Np, " p,/p,|r) = ¢f (Npyyny |/ ) which is (£ — 97).

Since D, is the pull-back of the divisor F; on N; which intersects the blow-up
locus M, transversely, by Riemman-Hurwitz we have Np, /n, = u3(Ng, /v, ). Since
E; C Nj is the exceptional divisor of the blow-up of P(V ® W*) along the Segre

embedding M, we have Ng, /n, = Op( . Restrict it to P(V') x {0},

Nary rpvown) (1)
and we see that we need to compute ¢f (Oprp(v))(—1), the first equivariant chern
class of O(—1) on the projectivized tangent bundle. That bundle, however, is just
er : FI(1,2,V) — P(V). So its ¢l is just t — ;. Here ¢, as shown in Step 1, is
the ¢f (T{oy/p1) with regarding to (x,0,0) C (x,%,0) in FI(1, W;) = (P')*, and ¢ is
simply ¢1(O,, (1)). It is easy to check that v is actually ¢;(wx,) by comparing the

degrees on the fibers of the following two different projections:

FI(1,2,V) —— FI(1,V)

€1
-
Fl1(2,V)
When pulling back to Fi(1,2,3,V), 1 is actually the relative canonical class

of the forgetful map FI(1,2,3,V) — FI(2,3,V) (by adding the three-dimensional

subspace), but we will still denote it by same ).
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Step3: ¢ (Np,/n,|r, ) which is (u —t — ).
Since Ds is the exceptional divisor of the blow-up of N; along M,, we know
that NDQ/NQ = OP(N ,

My /Ny

bundle to FI(1,2,V) is just the P"2-bundle P(V/py) over Fi(1,2,V), which is

y(—=1) We see that the restriction of the projective normal

(naturally) just Fi(1,2,3,V). By looking at the following diagram:

FI(1,2,3,V) — FI(1,2,V)
ﬁ
FI(1,3,V)
We see that ¢f (Np,n,|r) = ¢f (O(—1)

) = u —t — 1y. Here again the
I (Tpi|s) where P! = P(< e, €5 >)

equivariant part © —t as Cz;p(Np(Wl*)/P(W*))
and oo = (0,1). Also one can check ¥y = ¢1(O,,(1)) is also relative canonical class
c1(wry)-

For (5) We need to use the Euler sequences for the tangent bundles of P(V)
and P(V ® W*). From the diagram

O —— O(l)n+1 — 0(1)n+1 ®W*|P(V) E— NP(V)/P(V@W*) ma— O

0 — Tpvy ——  Tpwewslpeyy —— Npoypwvews — 0

0 0

we see that the chern polynomials satisfy

CT(NP(V)/P(V®W*)) = CT(TP(V®W*) |P(V))/CT(TP(V))
= (O™ @ W pwy) /e (O(1)™H)

=c' (W (D/o)"*
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So the equivariant Euler class of Np/pvew-) is
[Clop (W (1) /O™ = [(h+ t)(h +w)]"™ = (A 4+ 8)" " - (h+u)™™

where the equivariant part comes by considering (x,0,0) € W*. |

Now we can write down our basic formula based on the Localization Theorem

(and Corollary 1), Proposition 1 and our Main Diagram:

Theorem 2 (Schubert Formula 1 on F(1,2,3,V)) For any equivariant class cr

on Ny, we have:

Y s Ty Yoy VA Co T PR PR )
B 7 user
(bt (b + )t

Remark: We can use the formula to do a lot of computations, by choosing different
class cp. Naturally we want i3, cr to be the form H U o UT where o(p1,ps2)
(resp., 7(q1,q2,q3)) is any chern class pulled back from Grassmannian G(2,V)
(resp. G(3,V)) and expressed as a symmetric polynomial in the chern roots of
the universal sub-bundle. Also, for convenient calculation, we want that i}, cr and
im,cr have the same form. That means the equivariant class should not remember
the rank two spaces. So we would not consider the o part for the moment, and
always let i}, cr = ip,cr = HUT.

The simplest case, H?, is already interesting because our formula encodes all
the information about intersection numbers on the flag manifold. Note that the
Picard number of Flag variety FI(1,2,3,V) is three for n > 3. Since H, 91 and 1)y
are clearly linearly independent, they generate Pic(FI(1,2,3,V).

Proposition 2 All the products H*Uv,* Uy (b+i+j = 3n—3) can be determined

from the formula by letting i cr = H b,
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Proof. The the integral form of Theorem 2 with H® being the class is:

/ Hb +/ Hb
p tu(u =) =) (u—t =) Jg, tu(u — ) (u— 1) (u =t + 1)

hb
/P(V) <h+t>n+1(h_|_u)n+l

3n717b>

By multiplying suitable power of u—t (in fact (u—t) , and inverting all terms
in the denominator, we can see all the terms H® U 1" U Lb% with fixed b are just
combinations of coeflicients of a known power series of ¢t and w (from right hand
side). So we just read off the coefficients one by one. Also note H® = 0 for all

b > n. So there are only n + 1 cases. |

Example 6 Some data for small n.
(1). dim(V) =n+1 =3, then dim(Fi(1,2,3,V)) = 3. The intersections are:
H?=0 H?*yy =1 H?y = —2

Hy} = -3 Hipp =3 Hy3 =0
V=6 i =yltn=-3 Ui=6

In this case ¢y = —3H — 21/4.
(2). dim(V) =n+1=4, then dim(FI(1,2,3,V)) = 6. Some intersections are:

HYW3 =0 HWy =1 H%3 = -3
HYWS =6 Hi=0  H, = —4
H2203 =8 H)y0 = -8 H2)3 =0

1.2.3 Dealing with error terms

Note that in the above case, there are no error terms because in this case
cr = (u(h"))?. This is not the case when i}, cp = H® U 7. But as in the rank 2
case, an approximation outside the boundary divisors D; and D, can be made, and
fortunately as in that case, the error terms (there are four) will not contribute to

the computations of key terms.
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Consider the projection
PVeW") xP(W)—-PVeW.
Note that there exists a rational map (evaluation map)
a:PVW*) xP(W)———>P(V)

by sending an element in P(WW) to its image through the corresponding element in
V@ W*. The map « is not defined on any kernel of an element from the lower rank
locus M.

To resolve it, first blow up the P'-bundle
{(¢,ker(¢)) CcP(V@W?) x P(W)|$ € My}

over the Segre embedding M;, and we get N;. Now in N the locus where the
induced rational map is undefined is the section of M, (since it has rank 2). Blow
up the section again, and we get N, which has an evaluation morphism (denoted
by e) to P(V).

As the result we get the following diagram (on top of our Main Diagram):

Ny —— N, —— P(V@W?*) x P(W)
U9 ul

Ny Ny P(V © W)
ug ul

Proposition 3 There is a natural equivariant map:

D : W;e*OP(V)(l) — W* @ u" (Opwgw~ (1))

which is an isomorphism away from Dy U Dy C Ns.

Proof. Since we have
' Op)(1) = @ (Opwew)xpm) (1, 1) (- E; — B,)

~ ~ ~ ! . .. "7 .
where @ = 1 o 1y and E; are two exceptional divisors on N,. So there is a natural

map ®. Note that these two bundles are the same on where the original rational
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map « is defined. So ® is not an isomorphism only on the loci that are pull-back

of those low rank loci — the full preimage of My, which is exactly Dy U Ds. |

Corollary 2 If i, cr = 7(q1, g2, ¢3), then w,(cr + ¢) = 7(h, h +t, h + u). Here ¢

is push-forward of an equivariant class on Dy U D,.

Proof. This follows from above proposition since

1). The equivariant chern roots of W* ® Opvgw=)(1) are h, h 4+t and h + u.

2). The restriction of m,e*Opg(1) on FI(1,2,3,V) is the pullback of the dual
universal subbundle S* on G(3,V).

To see 2), first notice that S* = (7 ).7*(Op(vy(1)). Also the projection FI(1,3,V) —
G(3,V) is just the projectivized bundle P (S*). While the projection Na|,—1(py1,2,3,v)) —
Fi(1,2,3,V) is not a P?-bundle (each fiber contains three components — the
original P(W) plus two copies of P? from each blow-up), it has a morphism to
the P2 bundle over FI(1,2,3,V) (the fiber product). Moreover, the evaluation

map e factors through 7 via the following diagram from where our claim follows:

NQ’rl(Fl(Lz,?,,V)) R P(V)

L+ L
Fl(1,2,3,V) xg@yv) FI(1,3,V) —— FI(1,2,3,V) —— P(V)
FI(1,3,V) T, G(3,V)
[

Unlike the rank 2 case, we first put the error terms on the left side of the formula.
The reason is that we can see quickly from their denominators that they will not

contribute to the terms we want to compute.

Lemma 1 The error terms in the formula are of the form:

(1) from Dy: Ery = m (similarly for Er;, on Fy) and

(2) from Dy: Ery = % (similarly for Er, on Fy).

Proof. We just need to see the change of denominators.
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Since Ery supports on Dy, the denominator is
Cz;p(NFl/Dl) = Cz;p(NFl/Dsz) : Cz;p(NDmDQ/Dl)
= ut(u — t)cgjp(NDZ/NQ) = ut(u —t)(u—1t— ).
Similarly since Ery supports on Ds, that denominator is
Cfop(NFl/DQ) = CZ;p(NFl/DlﬁDg) : Cz;p(NDng/DQ)

— ut(u — £l (Np, ) = ub(u — £)(t — ).

Theorem 3 (Schubert Formula 2 on Fi(1,2,3,V))
T (hb)yur
tu(u — t)(t — 1) (u —t — 1hg)

T(h,h+t,h+u) 4 irrelevant ©
= rrelevan €ris
(h 4 )1 (h 4 u)+l

(k) ur

tu(u —t)(u— 1) (u—t + wg))

) + 7

T (

Proof. The theorem says that all the terms H® U ;" U w% U 7T can be determined
by looking at the corresponding term (with same denominator) on the right side of
the formula. That is, error terms do not contribute at all.
To see this, look at the formula
H°UrT H°UrT
(=0 — ot =02 T Gl = 0w — e — 1+ 0)

T(h,h+t,h+ u)
(h+ )"t (h 4 u)nH!

)

T (

/

T (Br) + (B + T (Bs) + ma(Ey) =

It suffices to show all H® U,"U @Dé UT terms come with denominator t*u® where
a > 2 and b > 2, and all error terms have are either O(3) or O(1).

We check these by straightforward computations. For the regular two terms,
their combination cancels all of O(7) and O(+) in the denominators (since there
are more u — t exponents in the denominators, they must form some power of v —t

to cancel that, which leads to the desired form). For the error terms: those from
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D, do not count because of dimension reasons (since they collapse to M), and one
check those from Dj have either O(7) or O(2).
|

We also need to determine which class on Fi(1,2,3,V) will not change the
degree of T after pushing forward to P(V'). That is, which class has degree one on

the fiber of the projection Fi(1,2,3,V) — G(3,V), which is FI(1,2,3).
Lemma 2 Degree of H? U1, is one on the fiber of the projection.

Proof. This can be seen geometrically, since 1, after restricts to a fiber, is just the
relative canonical class ¢;(O(1)) of a P! bundle (¢, restricts to the trivial class).

We can also check this by computations in the following example. |

Example 7 If codim(7) = 3n — 6 (maximum), here are some computations:
b=3: H*U7 =0 (doesn’t dependent on 7)
b=2 H*UyyUT=—2H?>U9Y, U7, and

h*-7r(h,h+t,h+u) - (u—t)?
(h 4 )" (h 4 u)Hl

1
2 - .
6*(H U¢1 UT) = coeff. of m m /I;(V)
In particular, if 7 = o3 2, then H2U¢, Uoy 2 =1, H2 U Uoy ? = 2.

1.2.4 Relative version of F'L(1,2,3,V).

Here is the new setting: Let f : V — X be a rank-(n + 1) vector bundle over a
projective variety. Let P(V) — X be the projective bundle. Still let W be a vector
space of dimension m = 3. We do the same diagram as before, only to remember

everything is on relative base (i.e., over X):
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The first thing changed is the equivariant Euler class of P(V). Let «; be the
chern roots of V' (i =1,2,--- ,n+1).

Proposition 4 The equivariant Euler class of P(V) in P(V @ W*) is

n+1 n+1

[[h+ai+t)-T](h+ i+ w).

i=1 i=1
Proof. Again this comes from computation of the Euler sequences for the tangent

bundles to P(V) and P(V ® W*). Use the same diagram in the proof of Part (5)

of Proposition 1, only to notice its relative setting. That is, ¢;(V') = Zill(l + o).

The following is the basic formula in this relative setting:

Theorem 4 (Relative Version of Schubert Formula 1) Let ¢y be an equiv-

ariant class on Ny, then:

» 3k
ZFl CT

tu(u —t)(t — 1) (u —t — 1)

i*FQ Cr )

e CES CpS Ty

T (

_ j u.er
[T (bt +t) - TI (b + i + )

As in standard case (where V' is a vector space instead of a vector bundle), the
above formula can give us many applications by computing various intersections.
Pushing forward H, U1 U1b} to P(V) then to X, we can compute their intersection
(in the form of chern roots) by inverting the denominator of the right hand side
and looking at the appropriate coefficients. When error terms come, note that the
approximation and error terms are the same as before, and more importantly, error
terms do not contribute when the class involve 7 (pull back from G(3,V)). So we
can also do relative Schubert calculus by pushing forward H, Ut U, UT to P(V)
then to X.

There are many interesting computations when 7 varies among all symmetric

polynomials. We will do a few applications in the next section.
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1.3 Some Applications

We will do two applications by using our formulas from the previous section to
illustrate the effectiveness of our methods. The point is to translate the original
problems into some computations of certain coefficients. That means we need to
know what is the base variety X, the vector bundle V' along with its characteristic

classes, and which class 7 pulled-back from the Grassmannian G(3,V).

1.3.1 Hypersurfaces that contain planes

Let X be the projective space of degree d hypersurfaces in P(V') where dim(V') =
n+1. Then X = P("i")1, Let V(1) = V®Ox(1) be the direct sum of n+1 copies
of Ox(1). Consider the incidence variety I, = {(P%Y) € P(V) x X|P? C Y}.
We would like to compute the class of (ps).«(Z4,) (which we call P;,,) as an element
in A,(X). Here p; is the projection to the i-th factor (i = 1,2). Since A.(X) is
generated by | = ¢;(Ox(1)), we know the answer will be in the form of g4, - (¥
where ¢4, is the degree. So we have to find a suitable 7.

Let S be the universal subbundle in G(3,V). Let f : P(V) — X and 7 :
Fli(1,2,3,V) — P(V) be the projection (see diagram in section 1.2.4).

Proposition 5 P, = f.m.(H?*)17) where T = ¢4, (Sym?(S*)).

Proof. First observe that the incidence variety {(P? P")[P? C P"} is just the
Grassmannian G(3,V’) (planes in P™). For a generic degree d hypersurfaces Y, let
Iy := {P? C Y} be the incidence variety. Then the natural map Iy — G(3,V) is
an embedding.

If S is the tautological rank 3 subbundle on G(3,V), then the fiber Sp over a
plane P is the three-dimensional subspace of V' whose projectivization is P. An
equation of Y gives a section s of the rank r := (df)—bundle Sym4(S*). Then Iy
is just the zero scheme Z(s) of s.

Let CzG be the normal cone of the embedding i : Z(s) — G(3,V). Then

the above construction produces the class s*[CzG] € Agpn_2)—r(ly). A standard
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result ([12]) shows that i,(s*[CzG]) € Azp_2-(G(3,V)) is just the Euler class
Crop(Sym?(S*) N G(3,V)).

Since we want to pull back the appropriate class 7 (in this case c,,(Sym?(S*)))
from Grassmannian G(3,V) to flag variety Fi(1,2,3,V) and then push it forward
to P(V) (with H%; to keep the degree), we are done if the expected codimension
is zero, i.e., 3(n —2) = r. In this case the O(1) simply does not matter, and
p5(Y') = Iy for generic Y. So P, satisfies the proposition.

In general, if the expected codimension 3(n — 2) — r is positive, then we should

l3(n—2)

get a class in the form g, ~". Follow the same principle as above, one checks

that the twist O(1) produces the hyperplane section [ with the correct codimension.

The following lemma is straightforward.

Lemma 3 Let py, ps, and p3 be chern roots of S*, then

Crop(Sym?(S*)) = H (ip1 + jp2 + kps).
i+j+k=d

Now we can give the formula for our computation:

Theorem 5 All notations as above:

B2 L. g(dh+ gt + ku+1) - (u—t)?
P;,, = coeff. of ; n / H’L+J+kfd< J ) ( ) '
) —2t2u2 P(V) (h+t)n+1<h+u>n+1

Proof. Similarly as in Example 7, we know that

2. (0 )2
7. (H*)y7) = coeff. of 21 5 in nﬁl T(hh+th ‘*‘n"i)l (u—t)
Fu [T (h+ai+t) L2 (A + o+ u)

and

T (H*7) = _717T*<H2w27')

Note that since V is not a trivial bundle, we use the formula in the relative

version. In fact, since V' is just a trivial bundle twisted by a line bundle O(1), we
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can make our computation a little easier by assume V' is a trivial bundle and adjust
the term ¢y, (Sym?(S)). Namely, we would add the hyperplane class to each linear
term of ¢y, (Sym?(S*)), such that

Crop(Sym?(S*)) = H (ip1 + jp2 + kps +1).
itj+k=d

Now instead dealing with all Segre class of V', we see that there is only one non-zero
Segre class—the trivial class Sy = f*(h"™). So all we need to do is just do integral
on P(V) using the formula from Theorem 1. One can easily check that this way of
computation has the same answer as if one use the relative version throughout the
whole computation.

But now the theorem follows immediately once we simplify the formula at the
beginning of the proof: First by assuming all a; = 0 we get the desired denominator.

Then we substitute 7 with the new formula of ¢;,,(Sym?(S*)) above and notice that
ih+j(h+t)+k(h+u)+1=dh+jt+ku+1
since ¢t + 7 + k = d. [

Remark: Notice that the right side of the formula, as usual, is homogeneous. Since

rank(Sym?(S5)) = (d;Q)a it is easy to see the 7 term come as ((75)—3n=2) term,
i.e., the exponent is rank(Sym?(S)— dim(G(3,V)). So depending on the values of

d and n, there are three cases to consider:

Case 1. (df) =3(n —2).

This is the special case in which the answer is qg, - [°. This means the general
hypersurface in this case contains finitely many projective planes, and the degree,
Qdn, 1s the number of planes. Since there is no [ term appears in the answer, we
can actually forget the Ox (1) part and just let V' be the trivial bundle. We give

some examples below for some d (and n).

Example 8 d = 1. Then n = 3. This is the trivial case P? ¢ P?. Natural,the

formula gives the answer ¢; 3 = 1.
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Example 9 d = 2. Then n = 4. The first nontrivial case turns out to be trivial
(at least from the result). Here we are considering quadric threefolds in P4. But
the following claim says there will not be finitely many planes.

Claim: If a quadric hypersurface in P* contains a plane, then it contains a
one-dimensional family of planes.

In fact, we can always diagonalize the corresponding quadratic form. If the rank
is not maximal, one can easy construct a one-dimensional family of planes. On the
other hand, if it contains a plane, say with equation x3 = x4 = 0, then clearly the

corresponding 5 X 5 matrix can not have maximal rank.

Since the dimension count claims there are only finitely many planes in a general
quadric threefold in P*, the only possible answer is ¢y 4 = 0, which is exactly what

the computation shows.

Example 10 d > 2. Note that d can not be a multiple of 3. Unfortunately for the
next case (d = 4,n = 7) the answer is already very large for a hand computation.

We give some data here:

d=14 n="71 qa7 = 3297280
d=5 n=9 gs5,9 = 420760566875
d=17 n=14 g4 = 279101475496912988004267637

d=38 n =17  gg17 = 1876914105621812001806757234042994688

Case 2. (d;r?) > 3(n —2).
In this case the class P;, has positive codimension (d;ﬂ) —3(n —2). We list

here the following data array.
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Ot = W N
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14
17

(42) = 3(n - 2)

12
18
25

(=}

o O O W

27

Pd,n

1

200
22017
154012
77701
308561*°

0

36750
2933001°
93640751

34021
87547321
254751651712

31886848!°
1697390060527°

3297280
250228886094017°

5573769695835(°
420760566875
279101475496912988004267637

1876914105621812001806757234042994688
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Case 3. (df) < 3(n—2).

In this case the formula gives the answer 0 — for dimension reasons. For each
hypersurface in this case, it contains some positive dimensional families of planes.

This is not the whole story. Since generally each hypersurfaces in this case
contains family of planes. We can ask the opposite question: what is the class
of planes satisfying certain linear conditions, i.e., meeting certain codimension
subspaces. We will be specially interested in when the answer is finite — number
of the planes intersect certain codimension subspaces on a general hypersurface in
such cases.

To be successful, those hypersurfaces can not have a family of planes of dimen-

sion large than n — 2 (e.g., hyperplanes). Another way to look at is: from the right

side of the formula in the Theorem above, the part of all terms containing ¢ or u

d+2>

5 ) —1—2n. To assure it can have a term of ﬁ, we see that its

has degree (
degree is at least —4. So combine the condition in this case we see that d and n

must satisfy the following inequality:
d—+2
2n —3 < ( ;_ ) <3n—6

We simply multiply extra h® to compute the corresponding invariant. Notice a is

d+2)'

actually fixed to assure the answer is a constant. In fact a = 3(n —2) — ( 5

Notice that a < n — 3. The reason is we already have h? in the formula (which
means two-plane intersects codimension two subspaces— actually no condition) and
a term dh (from cf, (Sum?(S))) which means the class of hypersurface it self. So
we could at most multiply A"~ to imply the extra linear conditions.

Now we can compute for suitable situations. For example if the number of

planes passing through a general point on the hypersurface is finite, we must have

(d+2

) ) = 2n — 3 and we will multiply h"~3. Some computations are as follows:

Example 11 Here are some numbers in this case. Notice that similarly as in Case
1, d and n are somewhat related. The codim column means linear condition (meet
which codimension subspaces), the number is simply 3(n — 2) — (d—gg) + 3. We will

specifically mention 2-plane, lines or points.
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n d 3(n—2)— (df) codimension Py,

6 3 2 line 1134

7 4 0 codim 3 3297280

8 4 3 2-plane 5969920

9 4 6 point 258048

9 5 0 codim 3 420760566875

10 D 3 codim 4 1206991940000

11 5) 6 2-plane 216419448000

12 5 9 point 2772576000

12 6 2 codim 5 6304179785228043264

1.3.2 Porteous formula

One simple and very useful case is when 7 is or contains high power of o3, since
it will make the computation of the right side much easier.

The following is the Porteous formula when 7 is a power of ¢3. Similar formula
holds for general cases.

The theorem uses the same set up as in the relative version of Fi(1,2,3,V) case:
Let f: V — X be a rank-(n + 1) vector bundle over a smooth projective variety

X, with chern roots o; (i =1,2,--- ,n+1).
Theorem 6 Let 7 = alg where k > n — 2,then
Sk—n+2 Sk—n+3 Sk—n+4

2
f*e*(H U wl U 7-) = | Sk—n+1 Sk-—n+2 Sk—n+3
Sk—n Sk—n+1  Sk—n+42
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Here s;’s are the Segre classes of V' on X.

Proof. Since error terms do not contribute, by looking at the correct term on the
left side of the formula (H? U T being the numerator) after multiplying (u —t)?, we
see that

L h2-[h-(h+t)- (h+u)lF- (u—t)?
—262u? T b+ o+ 1) - T2 (4 s+ )

e.(H* U U T) = coefficient of

Now denote sq-1)(7*V) =1+ y 1 (7*V) + y 2so(n*V) + - - -, then straight com-

putation shows that

1 _ 8(h+t (7T V) S(h+u (7T V)
Hn+1(h +a;+t)- H"H(h + a; +u) (h + t)nt+1 (h 4 u)"+!

So the right side, after simplifying, is
W2 (=) () " sy (V)] - [+ ) T sy (7))

whose -3 term comes from:
h*+2 . (55 term from A) -(Z; term from B),
hEF2 . (=2ut)- (55 term from A) -(-5 term from B), and
hEH2 42 (5 term from A) -(35 term from B).
Here we denote A := (h+1)*" s,y (7*V) and B := (h+u)"" s )1 (7V).

It turns out to be
RE42 - 12(Skonts — 3Sk—nt2h + 3Sk_ni1h® — sp_nh?)
'(Sk—n+1 - Sk—nh) - 2(Sk—n—l—Q - 25k—n+1h + Sk—nh2)2]-

Push it forward to X and notice that f,(h*) = sz_,, the theorem follows. I

1.4 General Cases: FI(1,2,3,--- ,m,V).

In this section we will discuss general cases when m > 3, consequently we will
do Schubert calculus on Fi(1,2,3,---,m, V) using equivariant cohomology and

localization theorem.
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We will use a similar basic diagram below (as in Section 2), though the detailed

Main Diagram is much more complicated.

Npy —— P(V @ W*)

u

[ [
Fi s P(V) = P(V) x (0])

™

1.4.1 Main diagram and explanation

Fix a basis of W as < wy,wa, - -+ ,w,, >, with dual basis < z1, 22, ,x,, >.

We need to do a series of blow-ups — (m — 1) times, that is. Although the Main
Diagram looks a little complicated, it becomes clear if one notice the following
properties:

1. Let M} denote the proper transform of the rank-k locus My in P(V @ W*)
after [ blow-ups. Recall that codim(M}) = (m—k)(n+1—k). Then notice that M
is singular along Mj,_1, so do M}, along M} , for | < k. Also M}, the exceptional
divisor for k-th blow up, is smooth. After that, all M} just the pull back of the
divisor M,i_l for I > k.

2. Notice all the squares below the diagonal in the Main Diagram are fiber
squares, and all the squares above the diagonal in the Main Diagram are blow-ups.
This actually uniquely determines the whole diagram.

3. We will be interested, as in m = 3 case, the fixed-points loci in the fi-
nal blow-up, which turn our to be m! components that are all isomorphic to
FI(1,2,3,--- ,m,V). They are all contained in the intersection of all M;"~', which
turns out to be FI(1,2,3,--- ,m, V) x FI(1,2,3,--- ,m — 1,W*).

4. For each step (after k-th blow up), all the diagram, formulas and computation
are the same as though m = k. So our formulas and proofs can be seen inductively
through each step.

5. To make our formulas more symmetric, we will use the group action which
is homogeneous on each coordinate.

The following is the Main Diagram in general cases:

Main Diagram:
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N1 —_— N, - —— P(Vo W)

M:g:ll N MT]::’L—I R — Mm—l
ﬂ:b:_k1+1 Mén_l T ’ Ml]§+1 B — M1
ﬂ;”z—kl 17— ﬂki}g M[l; RPN M,
Mac M=t —— (LM —— M

FI(1,2,- ,m, V) —— FI(1,2,-+ k, V) ——  P(V)

Notations: Almost all notations and terms are similar when compared to the
Main Diagram in Section 2.

All vertical maps are embeddings.

We still denote v : Ny — P(VQW*), i; : FI(1,2,--- ,m,V) — N,
(see next section for the definition of index I), j : P(V) — P(V® W*), and
T FU(1,2,--- .m, V) — P(V).

Denote by Dy = M ' (k = 1,2,--- ,m — 1), the preimage of exceptional

divisors in all blow-ups.

1.4.2 Main formulas

Now consider the standard (homogeneous) torus action of 7' = (C*)™ on W*:

<t17t27 e 7tm) . (1'1,513'2, T 7xm) - (t1x17t2x27' o 7tmxm)
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This action induces actions through each step of our diagram, such that all maps

in the diagram are T-equivariant.

Notice that

k
mMg:Fl(LQ’... JE+ 1LV x FU(L,2,--- k).

=1

=®

In particular the intersection of the m — 1 exceptional divisors on N,,_; is:
m—1
() DF=FI(1,2,- ,m, V) x FI(1,2,-- ,m = 1,W").
k=1

Let I = {iy,i2, - ,im} be a permutation of m numbers. Let
Ar:= [(xn) - (xi17xi2) c--C (ximxizv T 7Iim) = W*]

be the m! fixed points in the full flag variety FI(1,2,--- ,m — 1, W*). Then the
fixed-point loci for the action of T" in N,,_; are all contained in the intersection
of exceptional divisors and are of the form F; := A; x FI(1,2,---,m,V). It is a
disjoint union of m! components. For each fixed-point locus P(V') = P(V) x (w}) in
P(V @ W*), there are (m — 1)! fixed-point components Fj in N,y (with i; = ¢ for
index I) that map to it. So as in section 2 we can apply the Localization theorem

to relate residues through reduction to the projective space P (V).

Let h € H*(P(V),Z) be the hyperplane class. Let H := e*(h) and define the

equivariant chern class ' := ¢f (Opgw+(1)).

Proposition 6 From the above setting:
(1) P(V) Cc P(V® W*) is a component of the fixed-point locus.
(2) Fy’s are all fixed-point components in N,,_; that map to P(V).
(3) H extends to the equivariant class u*(h').
(4)

4) The equivariant Euler class of F; in N,,_; is

m—1
H (tlk - tij) ’ H (ti5+1 - tis - ws)
1<j<k<m s=1
Here 1), are the relative canonical classes ¢1 (wy, ), where s : FI(1,2,--+ ,m, V) —

FI(1,2,---,8,--- ,m, V) are forgetful maps (1 <s<m—1).
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(5) The equivariant Euler class of P(V) = P(V) x (w}) in P(V @ W*) is
s#i

Proof. (1)-(3) are straightforward.

For simplicity we assume [ = {1,2,--- ,m — 1} in part (4) and (5).

For (4) We need to calculate the following terms:

Step 1:

Ctop(Nry Tt ) = Cuop(N10,3 /P11 2000 amm1.04))

which is

IT &t

1<j<k<m
We prove this by induction. Consider the following (m—1)-dimensional subspace

W1 =<eg, €1, ,€m_o >. Then the embedding
{0} = FI(1,2,--- m—=2W)_|)— FI(1,2,--- ,m—1, W)

shows that

Cz;p<N{0}/Fl(1,2,-~,m—1,W*)) =

Cz;p(N{O}/Fl(l,Zm ,m—2,WT’;L_1)) Ctop(NFl( e m=2,W _)/FI(1,2, ;m—1,W*) {0})

But the first term is

IT -t

0<j<k<m—2
by induction (see Proposition 1 in section 2 for the case m = 3). The second
term is actually cf,,(Ny,.. 0,0}/@m-1)) (think it as (P™71)*)* = P™!). Since the
T-action on P™! has weight (t,_1,tm_1 — t1," * ,tm-1 — tm—2) at (0,--+,0,,%),
we see that the equivariant Euler class

m—2

Ctj;p(N{(O ¥}/ (Pm—1) H 1 —ty)
k=1

Combine these terms gets the desired formula.

Step 2: ¢/,,(Np,/n,,_,|r,) Which is tq — tg — t)s.
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We simply notice Dy is pull back of MF. So working in the (k — 1)-th step
of the Basic Diagram and restricting the normal bundle to one fixed-point locus
FI(1,2,--- ,k+1,V), we can see easily that the normal bundle we need to compute

is just ¢ (O(—1)) of the horizontal part in the following diagram:

FU(1,2,-- k+1,V) —— FI1,2,--- ,k, V)

ek
-
FI(L,2, - k—1,k+1,V)
Define ¢, := ¢f (O, (1)) and check that 1y, = ¢f (wm) we get the nonequivariant

part, the equivariant part come from the proof in Step 1. Pull all the way back to

N,,_1 we have our formula.

Part (5) Use the same diagram as in part (5) of the proof of Proposition 1 in
Chapter 2, we see that the chern polynomials satisfy

CT(NP(V)/P(V®W*)) = CT(TP(V®W*) ’P(V))/CT(TP(V))
= (O @ Wp) /L (O(1)™H)
= (W (1)/01)".

So the equivariant Euler class of Np/pvew-) is

m

(et (W (D /O = T [(h 4t — t1)™.

k=2

Now we can write down our basic formula in general case based on the Local-

ization theorem and Proposition 6:

Theorem 7 (Schubert Formula 1) For an equivariant class ¢z on N,,_;:

> tiycr ——
* m—1 - n
{I|ir=i} Hl§j<k§m<tik - tij) ) Hs:l (tis+1 —ti, — ¢5) HS?éi(h s — ti) i

As usual, we can first use this formula to compute all the intersections on
Pic(FI(1,2,--- ,m,V)), without worrying about error terms. Note that H, ¢y, , 1,1
generate Pic(Fl(1,2,--- ,m,V)).
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Proposition 7 All the products H® U™ U -+ U™ (b4 814+ -+ + Spy =

m—1

m(m—1)

mn — 3

) can be determined from the formula by letting i}, cr = H b,

Proof. The the integral form of the above Theorem with H® being the class is:

> z
{Ifin=i}y 1 H1§j<k§m(tik o tij) ’ Hznzl(tis — iy — VYs)

hb
= /P(V) Hs#i(h +ts — ti)n-‘rl.
By multiplying suitable power of [],.;_;,,(ti, — t;;), and invert all terms in the

denominator,we can see all the terms H® U ;** U--- U™ with fixed b are just
coefficients of a known polynomial (from right hand side). Since H® = 0 for all

b > n, again there are only n + 1 cases. |

Example 12 Some data for small m and n.
dim(W) = m = 4, and dim(V) = n+ 1 = 4, then dim(FI(1,2,3,4,V)) = 6.
Some intersections are (compare with Example 6 in Section 2):
HW3 =0 HWin=1  HW, =2
o3 = =3 Hnhotpy =3 HY11pf =0

H*)3 =6 Hops = =3 Hopipf = =3
H3%3 =6

1.4.3 Dealing with error terms

Note that in above case, there are no error terms because in this case ¢y =

(u«(h™))*. This is not the case when ¢ cr = H° U 7. As in Section 1.2, an
approximation outside the boundary divisors Dy, Dy, --- , D,,_1 can be made, and

the error terms will not contribute to the terms that we want to compute.

Look at the following diagram (on top of Main Diagram):

Np_1--+ —— Np-- —— P(V @ W*) x P(W)

- l l

N, 4+ —— Npoov —s P(V ®W*)



37
There exists a rational map (evaluation map)
a:PVW ) xPW)—-——>P((V)

by sending an element in P(W) to its image through the corresponding map in
V ® W*. « is not defined on any kernel of an element in the lower rank locus
M, 1.
To resolve it, blow up sequentially along the P™~!"k-bundle {(¢, ker(¢)) C
Nk,lw € M,’f’l} for k = 1,2,---,m — 2. Each time the induced rational map
2

is undefined over Mf,, C Nj. Finally blow up the section of M™ 2 to get N,,_,
which has an evaluation morphism (denoted by e) to P(V).

Proposition 8 There is a natural equivariant map:
O 7" Opy(1) — u (W* ® Opwewe (1))
which is an isomorphism away from Dy U Dy U---U D, 1 C Np,_1.

Proof. This follows directly from the construction above, as the natural map (as
in Proposition 3 in Section 2) is the identity on where the original rational map can

be defined. The whole exceptional locus in N,,_; is exactly DU DyU---UD,,_;. 1
Corollary 3 If i}, cr = 7(q0, q1, - -+ Gm—1), then

us(cr + cr)=7(h,h+ty, - h+ tm—1)-
Here c/T is push-forward of an equivariant class on Dy U Dy U ---U D,, ;.

Proof. This follows from the above proposition since

1). The equivariant chern roots of W*® Opgw=)(1) are h, h+t1,- -+ h+t,_1,

and
2). m,e*Opg(1) is the pull back of the dual tautological bundle S* from
G(m,V). |

Next we show error terms do not contribute.
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Lemma 4 The error terms from D, are of the form:

B — i}‘,—,lc/T
H1§j<l§m(tiz - tij) ’ Hj;ék(tij+1 - tij - wj)

Proof. We just need to see the change of the denominator. The only term missing

from there is t;,,, — t;, — 1, which is ¢/, (Np,/n,,_, |,)- |

Theorem 8 (Schubert Formula 2)

S ™ (R*) UT(qr, -, qm) )

—1
{I]iy=i} H1§j<k§m(tik - tij) ) Hgll (tisﬂ —ti, — ¢5)

CRPUT(h A+t =ty h b, — )

+ irrelevant terms
Hs;éi(h +ts — ti)m_l

Proof. From the formula

HUT
— Jry Hocjenem(ti, = tiy) - TLm (i, — tioy — s)

m—1 hb

DAY

T k=17 Dj, p(v) [ Lagi(h +1s — )"

It suffices to show that all H® U H,:“;f Y™ U T terms come with denominator

m—1
k=1

ty* where ay, > 2 for all k, and all error terms are O( %) for some j. We check
these exactly as in the proof of Theorem 3. |
We also need to determine which class H bUHZL;ll " will not change the degree
of T after pushing forward to P(V'). That is, which class has degree 1 on the fiber
of the projection FI(1,2,--- ,m,V) — G(m,V), which is FI(1,2,--- ;m — 1,m).

Lemma 5 Degree of H™ 1 U H;”:_lz Y™ 1 7* is one on the fiber of the projection.

Proof. This can be seen geometrically, since each 1, after restricts to a fiber, is
just the relative canonical class ¢;(O(1)) of a P™ =% bundle (¢, 1 restricts to the

trivial class). We can also check this by computations in the following example. Il



Example 13 In the case of m = 4, if codim(r) = m(n +1 —m) = 4(n — 3)
(maximum), some computations are as follows:

b=4: H*U7 =0 (doesn’t dependent on 7)

b=3: H* Uy U1y UT = 2 of the constant term of

/ W or(hhA-t h4u) - Tl oeq(t — 15)°
P(V) [Tio(h+t, — ty)n

In particular, if 7 = 02_3, then H3 U w% Uy U 02_3 =1.

1.4.4 Relative version of FL(1,2,---,m,V).

Here is the new setting: Let f : V — X be a rank-(n + 1) vector bundle over a
projective variety. Let P(V) — X be the projective bundle. Still let W be a vector
space of dimension m > 3. We do the same diagram of the relative case in section
2 (i.e., over X).

The only term changed is the equivariant Euler class of P(V'). Let «; be the
chern roots of V' (i = 1,2,--- ;n+1). The following Proposition has same proof as

in Section 1.2.

Proposition 9 The equivariant Euler class of P(V) in P(V ® W*) is
n+1
TTII0+ s+t — 1)

ki j=1

The following is the basic formula in this relative setting:

Theorem 9 Let ¢y be an equivariant class on N,,_1, then:

Z 7T*( tij) ] Hmfl tz 'l/fs))

{I]i1=i} HlSj<k§m(tik o s=1 (tis+1 T Vs

B J user
= — )
Hk;éi Hji_l (h+ o+t — )

As in standard case, pushing forward H,U]] ¥} or H,U[] % Ut to P(V) then to

X, we can compute their intersection with chern roots by inverting the denominator
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of the right hand side and looking at the appropriate coefficients. Again, the error
terms do not contribute to the computation when the class involves 7 (pull-back

from G(m,V)).



CHAPTER 2

SESHADRI CONSTANTS ON JACOBIANS
OF CURVES

2.1 Introduction and Statement of Theorem

Let X be a smooth complex projective variety. Let L be a numerically effective

(nef) line bundle on X.

Definition 4 The Seshadri constant of L at a point p € X is the real number

C-L

L,p) = inf CcX}.
e(L,p) =in {multpclp €CcX}
Here the infimum is taken over all reduced curves C passing through p, and mult,C

is the multiplicity of C' at p.

Let f : Bl,X — X be the blow-up of X at the point p and E = f~*(p) be the
exceptional divisor. It is easy to see that the following is an equivalent definition

of the Seshadri constant.

Definition 5

€(L,p) = sup{e|f*L —€eFE is nef}.
Here the R-divisor f*L—¢E is nef means that f*L-C" > e¢E-C’ for every irreducible
curve C' C Bl,X.

One can also define the global Seshadri constant.

Definition 6
(L) = inf{e(L, p)lp € X}.
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The Seshadri constant indicates how far an ample divisor is from the boundary
of the ample cone near point p, thus measures positivity, or ampleness locally. The
study of Seshadri constants has drawn increasing interests during recent years (see

[9] and [11] for some applications).

We first list some properties of Seshadri constants.

1. Seshadri constants have general upper bounds. Let dim(X) = n. Then
e(L,p) < V/L" (because (f*L — eE)" > 0 as in Definition 5).

2. The first nontrivial property of Seshadri constants is Seshadri’s criterion
([15]), which says that L is ample if and only if €(L) > 0. Also if L is very ample
then obvious €(L) > 1.

3. However, there is no uniform lower bound for Seshadri constants. For
any n > 2 and 0 > 0, there is a smooth n-dimensional projective variety X and an
ample line bundle L on X such that e(L,p) < ¢ for some p € X. ([10])

4. If the Seshadri constant does not achieve its upper bound (property 1),

then it is a d-th root of a rational number for some 1 < d <n — 1. ([20])

Usually it is difficult to compute exact values of Seshadri constants. In many
cases one would rather try to give some specific bounds (especially lower bounds).
For example [11] shows that for any ample line bundle L on a surface, e(L,p) > 1
for very general points p € X. For general dimension n, the similar result (L, p) >
L has been shown in [10]. Another interesting aspect of the study of Seshadri
constants is the rationality problem. For example from property 4 above, one sees
that on a surface, either ¢(L,p) = VL? or it is rational. A noticeable fact is that

there has been no known example of irrational Seshadri constants.

We will focus on abelian varieties (actually special cases of those, i.e., Jacobians
of curves). Let (A,©) be a principally polarized abelian variety of dimension g.
That is, A is a complex torus and © is an ample divisor with h°(A, O4(0)) = 1.
Since abelian varieties are homogeneous spaces, we can define € := €(0,0) = €(O, p)
for any p. We list some important results in this case:

1. [18] shows that € > 1 and the equality holds if and only if A = E x B where

FE is an elliptic curve. So if the abelian variety is indecomposable, then ¢ > 1.
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2. [17] shows that general elements in the moduli space of principally
polarized abelian varieties of dimension ¢ have Seshadri constants very close to
their maximum upper bound. Specifically, ¢ > % - /0.

3. On the other hand there are some special abelian varieties, namely
Jacobian, which have relatively small Seshadri constants. Let C' be a smooth
complex algebraic curves with genus g = ¢(C) > 2. Denote by (J(C),0) its
Jacobian (Recall J(C') = Pic’(C)). The following are known (cf [17]):

(a). 1<e< /g

(b). If C is hyperelliptic then e < %

(¢). In particular if g = 2 (then C is hyperelliptic), € = %.

The problem becomes very interesting even when g = 3. The point here is
to see if the Seshadri constants can be their maximum, i.e. /g, thus most time
irrational, or always less than their maximum — thus more likely rational. While

all the existing examples suggest the later, we investigate this problem in detail,

mainly look at the cases when € < 2.

Our main result is the following theorem:

Theorem 10 Assume the Picard number of J(C) is one. Then

(1) If C' is hyperelliptic, then e = g%.

(2) If g = 3 and C' is not hyperelliptic, then € = 1—72
(3) If g =4 and C is not hyperelliptic, then e = 2.
(4)

4) If g > 5 and C' is not hyperelliptic, then € > 2.

Part (4) of the theorem can be restated as:
Corollary 4 If g > 5 and € < 2, then C' is hyperelliptic.

Remark:
(1) For the ease of calculation on Neron-Severi group of Cy, we need that it is

generated by a fiber and the diagonal, i.e., its Picard number is 2. That is true if
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C is of general moduli. We need this condition throughout this paper. But this
restriction, however, seems not essential.
(2) We can also locate all the special curves that give relatively small ratios in

cases (1)—(3).

2.2 Proof of Theorem: Hyperelliptic Case

The following observation, while straightforward, points out where we want to
find special curves that give the exact values of Seshadri constants.

C'-e
multoC’

divisor D with D = k© and multgD > 2k, we have C' C D.

Lemma 6 If C' is an irreducible curve in J(C') such that

< 2, then for any

If C' is hyperelliptic, then the case of £ = 1 in Lemma 6 reads D = © and

multyD > 2 which we denote as (*), we have:

Proposition 10 Let u: Cy — J(C) be the Abel-Jacobi map. Then

(%)

Proof. Let L be a hyperelliptic line bundle on C'. Let py be a ramification point
of the g3, so L = Oc(2py). We fix a translation of Abel-Jacobi map u : Cy — J(C)
by sending Y € Cy to Y — deg(Y) - po € J(C), and for simplicity we ignore the
po part for representation of points in J(C) in our proof. Also recall ¢ : Cy_3 —
Cy—1,Y — Y + L maps C,_5 birationally and surjectively to Sing(©) in our case.

For any Y € C,_3, define Dy = © — Y. If translates Y + 2p, € Sing(©) to
0 € Dy. Thus Dy = © and multyD > 2. So we need to show (| Dy = u(Cs).

It is obvious that u(Cs) C () Dy since for any point (p,q) € Cy we can rewrite
itas (p+q+Y)—Y € Dy forany Y € Cy_s.

On the other side, any points in [ Dy can be represented as D — Y for some
DeCy1andY € C,_3. Also since it is in the intersection, for any F' € C,_3,there
exists £ € C,_y such that D —Y = E — Flie., D —Y + F is (equivalent to) an
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effective divisor for any F. We claim D — Y itself must be effective, and since it
has degree 2, it is in u(Cy).

Pick an representation of D — Y such that Y contains no ramification point
of gi. First assume D contains no hyperelliptic pair. If D — Y is not effective,
pick p € Y but p ¢ D,and let L = Oc(p + p'). Choose FF =Y — p+ p’. Then
D—-—Y +F =D —p+p. On the other hand the linear system |D — p + p/|
is empty since otherwise it must contain multiple of hyperelliptic pairs and base
points, which will leads to p € D.

If D has some hyperelliptic pairs. Cancel as many points in D — Y as possible
until either D — Y is effective or D runs out of hyperelliptic pairs and reduce to a

similar situation in first case. [ |

If C is hyperelliptic, and rk(NS(Cs)) = 2, then NS(Cs) is generated by a fiber
F and the diagonal A. There is a rational curve, call it P!, which consists of
hyperelliptic pairs {(p,q) € C3|Oc(p + q) = L}. Also denote u*(©) still as ©. We
list the numerical properties of N.S(C5) below.

Lemma 7 Notation as above, we have:
(1) © = (g4 1)F — 3A and P! = 2F — A,
(2) F?=1,F-A=2A%=4—4q.

The Abel-Jacobi map u : Cy — J(C) contracts P! and is isomorphic outside
P!. Now let C” be an irreducible curve in Cy not contracted by v and C" = u(C").
Then

c"-e C'-0

C"-Pl  multy,C’

So our Theorem in hyperelliptic case follows from the following Proposition:

Proposition 11 Among all irreducible curves in C5 not contracted by u, A is the

AO _ 2
APT — gy1-

only curve with minimum ratio

Proof. Since A - 0O =4g and A - P! = 2¢ + 2, we have ﬁi(?l = 2;% - g%
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Let Cy = aF + bA C C5 be an irreducible curve not contracted by u. Then
Co-Pl=a+(29+2)b>0and Cy-© = (a+ 4b)g > 0. Then
A-©  (a+4b)yg 2g
APl a+(29+2)b " g+1
But if @ < 0, then we must have b > 0 since Cy - © = (a + 4b)g > 0. Now we
have Cp - A = 2a + b(4 — 4g) < 0. Since both Cy and A are irreducible, Cp = A.R

<— a>0

Remark: A little more detailed calculation shows A is actually the only curve

whose corresponding ratio is less than two.

2.3 Proof of Theorem: Nonhyperelliptic Case
If C' is nonhyperelliptic, then choose the case £ = 2 in Lemma 6 which reads
D = 20 and multyD > 4, i.e., the base locus of |20]p. We need the following
result of Welters:

Proposition 12 (Welters [21]) Bs(|20]p0) = A(C x C). Here A : C x C — J(C),
A(p,q) = p — q is the difference map.

Remark: Welters’ theorem is true for all curves with ¢ =3 or ¢ > 5. For g = 4
the base locus has two more isolated points, which will not affect our proof since

we are looking at curves inside the base locus.

In this case we look at the NS group in C' x C. It is generated by fibers F,F5

and the diagonal A. We list their numerical properties below.

Lemma 8 Notation as above, then:
(HAxe=(@g-nFE+R)+A
(2Q)F?=0,F, - F,=F,-A=1,A>=2—-2g,i=1,2.
i 9

Since C' is nonhyperelliptic, the difference map A contracts the diagonal A to
0 € J(C) and is isomorphic outside A. So let C” be an irreducible curve in C' x C

not contracted by A and C' = u(C”). Then
c"-xe  C'-0

C" A multyC"
So our Theorem in nonhyperelliptic case follows from the following Proposition:
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Proposition 13 Notation as above:
C’A*©

(D)If g = 3, the minimum ratio is % for curves in C' x C', and is achieved

C7A
by one curve.
o . . % . . . .
(2)If g = 4, the minimum ratio <522 is 2 for curves in C' x C, and is achieved

by more than one curves.

(3) If g > 5, then Cé;//};@ > 2 for all curves in C' x C not contract by .

Proof. (1) g = 3: In this case, the canonical system embeds C' as an plane quartic.
Let Oc(1) be its hyperplane section. Consider the curve Cy = {(p, q)|Oc(p + q +
2r) = O¢(1) for some r € C} C Cy. Write Cy = aF + bA. Since Cp - A = 56
(twice the number of bitangent) and Cj - F' = 10 (degree of the ramification divisor
of dual curve’s gi), we can solve a and b and get Cy = 16F — 3A. Cy is irreducible
since it is isomorphic to C' via p + g — r. Pull it back to C' x C' we get a curve

Cy = 16(F, + F,) + 6A. Now
Cy - NO  [16(F) + Fy) —6A] - 2(F + Fy) +A] 96 12

cl-A [16(F; + F») — 6A] - A 56 7

To claim % is the minimum ratio, let ¢ = aF} + bF, + CA be any irreducible

curve in C' x C not contracted by A. If C" # Cy, then C" - Cy = 10(a+b) +56¢ > 0.
So if ¢ > 0,

1

c-Xe 3
) _ (a+0) 23>1_2‘
c” A a+b—4c 7
If c <O, .
C"-X0  3(a+0b) < 3(a+b) _Z>1_2
C"-A  at+b—4c T a+b+2(a+b) 47 T

1

This shows the only curve achieves the minimum ratio 2 is Cj .
(2) g = 4: In this case C has two gi’s. Let L be one gi. Consider the curve
Co = A{(p,q)||L —p—q| >0} C Cy. Since Cy - F = 2, and Cy - A = 12 (degree
of ramification divisor of L), we find that Cy = 3F — LA, Lift to C x C to get
Cy = 3(Fy + Fy) — A. Calculation as above shows that
Co-Xxo_2_,
Cy-A 12 7

and it is the minimum ratio that can be achieved on C x C.
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Note that in this case there is another curve (from the other g3) that give the
minimum ratio. The reason is in this case C§ = 0 while in case of ¢ = 3 we have
C? < 0 (thus unique).

(3) g > 5: Assume C has a g} (d > 3), call it L. As in (2), consider the curve
Co={p,9||IL—p—q| >0} CCy. Then Cy- F =d—1land Cy- A =2d+ 29— 2
(degree of ramification divisor of L). Thus Cy = dF — $A. Lift to C' x C' we get
Cy = d(F) + Fy) — A. Now first we have

Cy - \*O dg

77 — 2.
A drg—1

Secondly for any irreducible C” = aF} + bFy + ¢A C C x C not contracted by A,
either C" - Cy < 0, or

X6 d+g—1

>2ifd<g—1.
oA C g =g

Since the Brill-Noether number for g} is non-negative if d > #, both ratios above

¢’ 2o
C”'A

are at least 2. If the minimum ratio < 2, then all the curves Cy must
be reducible and contain an irreducible component C; whose lift to C' x C' gives
small ratio. It is easy to see that C? < 0, thus unique in Cy. This is certainly
impossible. (For example, if there is two different g} for some d, then to have a
common component for corresponding Cy C Cy, one coordinate has to be a base

point of g}, thus it is linear combination of fibers, and since the component is

irreducible, it is a fiber. On the other hand, the corresponding ratio for a fiber is

g>2.)
Note that the minimum ratio exists and can be achieved if 5 +dgg_1 < d+fl_1, which
is equivalent to d+dg9_1 <Vg,ord<.,/qg+1 [ |

2.4 Other Problems of Seshadri Constants

For nonhyperelliptic cases when g > 5, to find the Seshadri constants, the first
step is to look at the curves in C. It is related to the problem whether the cone
of effective curves of (5 is closed. If it is, the curve from the boundary will give

a better upper bound of ¢(©) which is less than ,/g. In all special cases we have
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discussed (hyperelliptic, small genus, curves with g} for small d), the cone is closed.
For general case there is some indication that the curve from one boundary (the
other one being the diagonal), if closed, will give the ratio 21 where (p,q) is the
primitive solution of Pell’s equation x? — gy? = 1. The following example gives

some indication that it could be true.

Example 14 If C is a plane quintic (i.e., genus is 6), consider the curve Cy =

{(p,)||Oc(1) —p—q—2r| >0} C Cy. Then Cj is irreducible and Cy = 50F — TA.

Z
C A\*O 12
A > 5

holds for all irreducible curves (except A). Note that the bound 2 is what the

For any curve C' C Cs satisfies Cy-C" > 0, calculation shows on C' x C,

conjecture gives. Also note one expects small values for plane curves which are
special in the moduli of curves, so general curves of genus 6 must also satisfy that

bound.

For g > 5, if € < 2 it follows that C' is hyperelliptic. In call cases hyperelliptic
curves gives us the smallest Seshadri constants. From the known result ([16]) of

Bs(|20]g0) in dimension 4, it is easy to see that:

If A is an indecomposable principally polarized abelian variety of dimension 4 and

€(©) < 2, then A is the Jacobian of a hyperelliptic curve C' of genus 4.

It is very reasonable to ask same question for any genus and seems like it could

be true.
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