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ABSTRACT

This dissertation contains two chapters.

In Chapter 1 we discuss a new and effective way of doing intersection theory on

flag manifolds. Namely we do Schubert calculus on flag manifolds and flag bundles

via equivariant cohomology and localization. The basic idea is to locate the flag

manifold as a fixed-point component for a torus action on a larger ambient space,

then apply Atiyah-Bott localization theorem to relate residues on the flag manifold

to residues on some simpler manifold through equivariant maps. From these we get

our Schubert formulas, which are very effective in computation. We will also give

some applications.

In Chapter 2 we discuss Seshadri constants on Jacobian of algebraic curves. We

find the exact values of Seshadri constants of Jacobian of hyperelliptic curves, as

well as of curves with genus three and four. For higher genus curves we conclude

that if the Seshadri constants of their Jacobian are less than 2, then the curves

must be hyperelliptic.

This dissertation was written under the direction of Aaron Bertram, my Ph.D.

thesis advisor.
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CHAPTER 1

SCHUBERT CALCULUS ON FLAG

MANIFOLDS

1.1 Introduction and Preliminaries

1.1.1 Introduction

In this project we discuss a new and effective way of doing intersection theory

on flag manifolds. Namely we do Schubert calculus on flag manifolds and flag

bundles via equivariant cohomology and localization. The basic idea is to locate

the flag manifold as a fixed-point component for a torus action on a larger ambient

space, then apply the Atiyah-Bott localization theorem to relate residues on the

flag manifold to residues on some simpler manifold (projective space in our case)

through equivariant maps.

Let us briefly recall the formula for Fl(1, 2, V ) discussed in Bertram’s paper

([4]), from where our main methods and techniques come.

The basic diagram is:

N̄0,0(P
n, 1) −−−→

u
P(V ⊗W ∗)

xi

xj

Fl(1, 2, V ) −−−→
π

P(V )
y

G(2, V )

Here V and W are complex vector spaces of rank n + 1 and 2. The morphisms

are as follows: First the “graph space”

u : N̄0,0(P
n, 1) → P(V ⊗W ∗)
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is simply the blow-up along the Segre embedding P(V ) × P(W ∗). Then there are

two embeddings:

j : P(V ) := P(V )× {w∗
1} → P(V ⊗W ∗)

where {w∗
1} is a point in W ∗, and

i : Fl(1, 2, V ) → N̄0,0(P
n, 1)

which locates the flag variety Fl(1, 2, V ) as a fixed-point locus under a torus action.

Finally

π : Fl(1, 2, V ) → P(V )

is just the forgetful map, which is also the restriction of u.

Now Let h be the hyperplane class on P(V ), ψ the relative hyperplane class

from the projection π : Fl(1, 2, V ) → P(V ). Let σ(q1, q2) be a cohomology class

pulled back from G(2, V ), represented by a symmetric polynomial in the Chern

roots −qi of the universal subbundle S ⊂ V ⊗OG(2,V ).

The following formula, obtained from applying localization theorem to the

standard C∗ action on W , allows one to compute Schubert calculus on G(2, V )

by reading off the appropriate coefficient:

∫

Fl(1,2,V )

π∗(hb) ∪ ψa ∪ σ(q1, q2) = coeff. of t−a−2 in

∫

P(V )

hb ∪ σ(h, h + t)

(h + t)n+1
.

Also in the relative version it produces the Porteous formula in Segre classes.

The above basic diagram is the special (degree one) case of the diagram Bertram

uses to produce a new computation of one-point Gromov-Witten invariants. In this

project we extend the idea to higher rank cases.

Let dim(W ) = m ≥ 3, and consequently we do Schubert calculus on the partial

flag manifold Fl(1, 2, · · · ,m, V ). The main difference between our cases and the

m = 2 case is that there are more than one (actually m − 1) loci that we need to

blow up sequentially. Consequently in the end there are more than one (actually

(m − 1)!) disjoint fixed-point components, each isomorphic to Fl(1, 2, · · · ,m, V )

but with different equivariant Euler classes, that map to the same P(V ). But



3

our methods work out and lead to the first Schubert formula (see below). More

importantly, after a good approximation outside the boundary divisors it turns out

that an error-term estimation is also in our favor, thus we get our second Schubert

formula in general cases. The relative versions will also be discussed.

For the simplicity of illustration, we initially discuss the situation of m = 3,

then discuss the general formulas in the last section of this chapter. Here we briefly

state our main formulas in the most general cases. (For a detailed explanation see

Theorem 7 and 8 in Section 1.4.)

Let h be the hyperplane class in P(V ), let

π : Fl(1, 2, · · · , m, V ) → P(V ) (i < m)

be the forgetful map and let ψi be the relative hyperplane class for the projection

Fl(1, 2, · · · , i + 1, V ) → Fl(1, 2, · · · , i, V )

pulled back to Fl(1, 2, · · · , m, V ).

Schubert Formula 1:

∑

{I|i1=i}
π∗(

1∏
0≤j<k≤m−1(tik − tij) ·

∏m−1
s=1 (tis+1 − tis − ψs)

) =
1∏

s6=i(h + ts − ti)n+1

The second formula involves cohomology classes pulled back from the Grass-

mannian under the projection

p : Fl(1, 2, · · · ,m, V ) → G(m,V ).

Represent such a cohomology class as a symmetric polynomial τ(q1, · · · , qm) in the

Chern roots −qi of the universal subbundle S ⊂ V ⊗OG(m,V ).

Schubert Formula 2:

∑

{I|i1=i}
π∗(

π∗(hb) ∪ p∗τ(q1, · · · , qm)∏
0≤j<k≤m−1(tik − tij) ·

∏m−1
s=1 (tis+1 − tis − ψs)

)

=
hb ∪ τ(h + t1 − ti, · · · , h + tm − ti)∏

s 6=i(h + ts − ti)n+1
+ irrelevant terms

We also discuss two applications: The first application is about counting planes,

the analogue of one-point Gromov-Witten invariants in degree one case. We will
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look at class of the locus of hypersurfaces which contain projective planes, and find

the number of planes if class has the right dimension. We will also consider the

number of planes satisfying certain linear conditions on certain hypersurfaces. In

the second application we will produce a Porteous-like formula using the relative

version formula, which turns out to be neat in the form of Segre classes.

We organize this chapter in the following order: In the rest of this section we

will go over some basic facts about equivariant cohomology and compute some

useful examples. Also we will fix some notations. Then in Section 1.2 we will

set up our main formulas and associated topics in the case of dim(W ) = m = 3.

This section contains the main techniques and results. In Section 1.3 we will use

our formulas to do a few applications, mainly to illustrate the effectiveness of our

methods. Finally in Section 1.4 we will discuss general cases. We will explain that

all the corresponding results, though they may look complicated, follow the same

principles from those in Section 1.2.

1.1.2 Preliminaries and notations

We will recall some basic facts needed in this paper. Most of them are about

equivariant cohomology. We will also compute some examples which will be used

in next two chapters.

For group action, we always assume the group T = (C∗)k is a complex torus

throughout this paper.

Definition 1 The universal principal T bundle is the T -fibering

ET := (C∞ − {0})k → (CP∞)k =: BT

Here ET is contractable on which T acts freely, and the quotient BG = ET/T

is called the classifying space.

Let X be a compact complex manifold equipped with a T action. Since T acts

on X × ET , we construct the quotient XT := X ×T ET . Note that πX : XT →
ET/T = BT is a T bundle with fiber X.
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Example 1 If T acts trivially on X, then XT = X × BT . On the other hand, if

T acts freely on X, then XT = X/T ×BT .

Definition 2 The T -equivariant cohomology of X is the cohomology of XT :

H∗
T (X,Q) := H∗(XT ,Q).

Example 2 Since T = (C∗)k, we have H∗(BT ) = Q[λ1, λ2, · · · , λk]. Since H∗
T (point)

= H∗(BT ), we see that H∗
T (X) is a H∗(BT )-module by pulling back from a point.

Example 3 If T acts trivially on X, then H∗
T (X) = H∗(X) ⊗ H∗(BT ). On the

other hand if T acts freely on X, then H∗
T (X) = H∗(X/G) with trivial H∗(BT )

module structure.

Definition 3 An equivariant vector bundle on X (with a T action) is a vector

bundle V over X such that the T action on X lifts to an linearized action of V .

Then VT → XT is a vector bundle of same rank. We define the equivariant chern

class cT
k (V ) := ck(VT ) ∈ H∗(XT ).

We will frequently need to compute equivariant chern classes, especially equiv-

ariant Euler classes (the top chern class of an equivariant normal bundle). We

compute several examples below that will be used later in this paper.

Example 4 Let T = (C∗) act on C2 by

t · (a, b) = (a, tb).

Denote by 0 = (1, 0) and ∞ = (0, 1) in P1. They are the only fixed points of the

action. We would like to compute the equivariant Euler class of the normal bundle

cT
top(N{0}/P1) = cT

1 (TP1|{0})

by determining the weight on the tangent line.

By looking at the tautological space of the universal bundle OP1(−1) we see

that (by looking at the action of T on the line in OP1(−1) over 0 and ∞) OP1(−1)
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has weights 0 and 1 at 0 and ∞. Consequently OP1(1) has weights 0 at 0 and −1

at ∞. Now from the Euler sequence (equivariant if one writes in the following way)

0 → OP1 → OP1(1)⊗C2 → TP1 → 0

we can compute the equivariant Euler class of the normal bundle as follows: First

OP1(1)⊗C2 has weight, (0 + 0) and (1 + 0) (weights of coordinates of C2 plus the

weight of OP1(1)) at 0 and weight (0 − 1)and (1 − 1) at ∞. Since the action on

OP1 is trivial, it always cancel the weight 0 part in OP1 ⊗C2. So TP1 has weight 1

at 0 and −1 at ∞. In summary we see the following table:

bundle weight at 0 weight at ∞
OP1(−1) 0 1
OP1(1) 0 −1
TP1 1 −1

From here we see that

cT
top(N{0}/P1) = cT

1 (TP1|{0}) = t.

This example gives a proof from the definition how to compute the weight of certain

equivariant classes. One can also see that TP1|{0} has weight 1 at 0 since it is the

weight on the second coordinate, and weight −1 at ∞ since it is the weight on the

first coordinate by considering the action as t · (a, b) = (t−1a, b) (on P1 the two

actions are the same).

Example 5 In this paper we will mainly consider the case when T = (C∗)m acts

on an m-dimensional vector space W (fix a basis < e1, · · · , em >) as follows

(t1, t2, · · · , tm) · (w1, w2, · · · , wm) = (t−1
1 w0, t

−1
2 w2, · · · , t−1

m wm)

such that the dual action on the dual space W ∗ is

(t1, t2, · · · , tm) · (w′
1, w

′
2, · · · , w

′
m) = (t1w

′
1, t2w

′
2, · · · , tmw

′
m).

The action has m fixed points in P(W ∗) which are e∗i (i = 1, 2, · · · ,m). In view of

the above example, we give the answer of the following computations quickly:
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(1) We want to compute

cT
top(N{0}/P(W ∗)) = cT

top(TP(W ∗)|{0}).

Here 0 := (1, 0, · · · , 0) = e∗1 in P(W ∗). As before we can see that OP(W ∗)(−1) has

weight (1, · · · , 0) at e∗1 and weights (0, · · · , 0, 1, 0, · · · , 0) at e∗i (The nonzero factor

corresponds the weight on ti). Find the corresponding weights on OP(W ∗)(1) and

looking at the Euler sequence:

0 → OP(W ∗) → OP(W ∗)(1)⊗Cm → TP(W ∗) → 0

We see that TP(W ∗) has weight (0, 0, · · · , 0),(−1, 1, 0, · · · , 0), · · · , (−1, · · · , 0, 1) at

0. So consequently

cT
top(N{0}/P(W ∗)) = cT

top(TP(W ∗)|{0}) =
m∏

i=2

(ti − t1).

(2) We also want to look at the point ∞ := (0, · · · , 0, 1) ∈ P((W ∗)∗) = P(W ).

In this case we just switch the sign of all weights on OP(W ∗)(−1), and the com-

putation shows that TP(W ) has weight (−1, 0, · · · , 0, 1), · · · , (0, · · · , 0,−1, 1), and

(0, · · · , 0) at ∞. This shows

cT
top(N{∞}/P(W )) = cT

top(TP(W )|{∞}) =
m−1∏
i=1

(tm − ti).

If f : X → Y is a T -equivariant morphism of compact complex manifolds with

T -actions. Then f induces a map (still denoted by) f : XT → YT . We can define

the equivariant pull-back and (in case f is proper) the equivariant push-forward

from the induced map.

Next we want to recall Atiyah-Bott localization theorem, which is essential to

set up our main formulas.

Let T = (C∗)m be a complex torus. Let X be a compact complex manifold

with a T -action. Let F1, · · · , Fn ⊂ X be the (smooth) connected components of the

fixed-point locus. Let ik : Fk → X denote their embeddings. Notice that the normal

bundles NFk/X canonically have induced T -action. Denote by tI := {t1, t2, · · · , tm}.
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Theorem 1 ([2]) With notations as above:

(1) The equivariant Euler class cT
top(NFk/X) is invertible in H∗(Fk,Q)(tI).

(2) If cT ∈ H∗
T (X,Q) is a torsion-free equivariant class, then it uniquely decom-

poses in H∗
T (X,Q)⊗Q(tI) as:

cT =
n∑

k=1

(ik)∗
i∗k(cT )

cT
top(NFk/X)

The localization theorem says we need only know the contributions from the

fixed-point loci. On the other hand, let f : X → Y be an equivariant map of

compact complex manifolds with T -actions. Suppose ik : Fk → X (k = 1, 2, · · · , n)

and j : G → Y are components of the fixed-point loci with the property that Fk’s

are the only fixed-point components that map to G. The following corollary says

we can compute the residues through reduction to Y .

Corollary 1 If cT is an equivariant cohomology class on X, then

n∑

k=1

(f |F )∗(
i∗kcT

cT
top(NFk/X)

) =
j∗f∗cT

cT
top(NG/Y )

Proof. The free part of CT is a push-forward of classes from the fixed-point

loci of X by the localization theorem. Since only Fk’s map to G, only their

contributions are needed when considering j∗f∗cT and i∗cT . So we may assume

that CT =
∑m−1

k=1 (ik)∗(bk)T where (bk)T ∈ H∗(Fk,Q)[tI , t
−1
I ].

Notice that

(bk)T =
i∗k(ik)∗(bk)T

cT
top(NFk/X)

=
i∗kcT

cT
top(NFk/X)

.

Now from the diagram:

X
f−−−→ Yxik

xj

Fk

f |Fk−−−→ G

and the formula for (bk)T the corollary follows since
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j∗f∗cT =
m−1∑

k=1

j∗f∗(ik)∗(bk)T =
m−1∑

k=1

j∗j∗(f |Fk
)∗(bk)T =

m−1∑

k=1

cT
top(NG/Y )(f |Fk

)∗(bk)T

Notations: We will fix some notations throughout this paper:

1. All varieties and vector spaces are over the complex number field C.

2. V is an (n + 1)-dimensional vector space. W is an m-dimensional vector space.

P(V ) and P(W ) are n- and (m− 1)- dimensional projective spaces Pn and Pm−1.

P(W ∗) is the dual projective space.

3. P(V ⊗W ∗) = P(Hom(W,V )) is the projective space of the corresponding

vector space Hom(W,V ). Note that dim(P(V ⊗W ∗)) = m(n + 1)− 1.

4. The Grassmannian space G(k, V ) is the space of all k-dimensional

subspaces in V . Note that dim(G(k, V )) = k(n + 1− k)

5. The flag variety Fl(1, 2, · · · ,m, V ) is the space of all flags

V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ V where dim(Vi) = i.

Note that dim(Fl(1, 2, · · · , m, V )) = m(n + 1)− m(m+1)
2

.

6. In the relative setting:

V is a rank-(n + 1) vector bundle over a smooth projective variety X.

Replace “space” by “bundle” in all above notations.

Also note that all dimensions are relative (over X).

1.2 Schubert Calculus on FL(1, 2, 3, V )

When m = dim(W ) ≥ 3, we need to blow up more than once to desingularize

all lower rank loci. Consequently we will do Schubert calculus on the flag manifold

Fl(1, 2, · · · ,m, V ). In this section we are going to discuss the case m = 3, and

leave the general cases to section 1.4. This section describe the main techniques of

our project.

The basic diagram for m = 3 will be:
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N2 −−−→
u

P(V ⊗W ∗)
xi

xj

FL(1, 2, 3, V ) −−−→
π

P(V )
y

G(3, V )

Briefly speaking, we want to do intersection theory on the partial flag variety

Fl(1, 2, 3, V ), especially consider classes which are pull-back from Grassmannian

G(3, V ). To make effective ways of computation in view of our methods, we first

locate the flag variety as a fixed-point component of the standard torus action

in the ambient space N2, which is obtained by two blow-ups from the mapping

space P(V ⊗ W ∗). Then we observe the flag variety Fl(1, 2, 3, V ) maps to some

fixed-point component and the whole diagram is compatible with the group action.

Therefore we need to express the computation in the form of some residues, and use

the Localization theorem to relate the residues on flag varieties to those on simpler

spaces (in our case, projective spaces).

To discuss this more carefully, we need to give a more detailed Main Diagram.

1.2.1 Main diagram and explanation

We explain in detail all the necessary steps then give the Main Diagram. Basi-

cally we look at the low-rank loci in the mapping space

P(V )×P(W ∗) = P(Hom(W,V )).

In first step we blow-up the rank one locus (the Segre embedding), which makes

the proper transform of the rank two locus smooth. Then in second step we blow-

up this proper transform to get the ambient space N2. We find that the needed

flag manifolds are inside the intersection of two exceptional divisors and, after

considering the “standard” torus action, are exactly the fixed loci.

Fix a basis of W as < w1, w2, w3 > with the dual basis < w∗
1, w

∗
2, w

∗
3 >.

We get the Main Diagram through the following steps:
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Step 0: First we have two vector spaces V and W with dimensions n+1 and 3.

Denote by P(V ) := P(V )× (w∗
1). Consider the following which is the right column

of the diagram

P(V ) → M1 → M2 → P(V ⊗W ∗).

Here M2 = {φ ∈ Hom(W,V )|dim(Imφ) ≤ 2} is the rank two locus (with codimen-

sion n− 1), and the rank one locus M1 = {φ ∈ Hom(W,V )|dim(Imφ) ≤ 1} is the

Segre embedding P(V )×P(W ∗). Note that M2 is singular along M1.

Step 1: Now we blow up the rank one part P(V ) × P(W ∗) to get u1 : N1 →
P(V ⊗W ∗). Note that the exceptional divisor E1 is a projective bundle P(V/l⊗K∗)

over P(V )×P(W ∗), where l and K are image and kernel of the corresponding map

in V ⊗ W ∗. Let M
′
2 be the proper transform of M2. It is a projective bundle

P(pV ⊗ Q∗) where pV and Q are image and quotient (in W ) of the corresponding

map in V ⊗W ∗, so in particular it is smooth. The above description of two bundles

(fiber-wise) shows that every element of the intersection of E1 and M
′
2 consists a

pair of flags: (l ⊂ pV ) in Fl(1, 2, V ) and Q∗ ⋂
K∗ ⊂ K∗ in Fl(1, 2,W ∗). From these

it is easy to check that

M
′
2

⋂
E1 = Fl(1, 2, V )× Fl(1, 2,W ∗).

Also one component of preimage of P(V ) is Fl(1, 2, V ). (See below.) So we have

the middle column

Fl(1, 2, V ) → Fl(1, 2, V )× Fl(1, 2, W ∗) → M
′
2 → N1.

Step 2: We have to blow up again (along M
′
2). This time we get u2 : N2 →

N1. We denote the exceptional divisor as D2 and also the preimage of E1 as D1.

Note that as in step 1, the intersection of D1 and D2 consists of pairs of flags in

Fl(1, 2, 3, V ) (dimension of images increases) and Fl(1, 2,W ∗) (dimension of kernels

decreases). So we check that

D1

⋂
D2 = Fl(1, 2, 3, V )× Fl(1, 2,W ∗),

which has same image under u2 as D1. Inside D1

⋂
D2 we find two flag varieties:

iF1 : F1 = Fl(1, 2, 3, V ) × {0} → N2 and iF2 : F2 = Fl(1, 2, 3, V ) × {∞} → N2.
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Here {0} corresponds the point {(∗, 0, 0) ⊂ (∗, ∗, 0) ⊂ W ∗} in FL(1, 2,W ∗), and

{∞} corresponds the point {(∗, 0, 0) ⊂ (∗, 0, ∗) ⊂ W ∗} in FL(1, 2,W ∗). Note that

this means there are also two Fl(1, 2, V ) in the second column that map to P(V ).

Thus we have the left column

Fi → Fl(1, 2, 3, V )× Fl(1, 2,W ∗) → Dj → N2. (i, j = 1, 2).

With a little bit of abuse of notation, we will denote by π the forgetful map, from

both F1 and F2 to P(V ).

Finally we provide the Main Diagram in the rank 3 case:

Main Diagram:

N2 −−−→
u2

N1 −−−→
u1

P(V ⊗W ∗)
xi3

xk3

xj3

D2 −−−→ M
′
2 −−−→ M2xi2

xk2

xj2

D1 ∩D2 −−−→ M
′
2

⋂
E1 −−−→ P (V )× P (W ∗)xi1

xk1

xj1

Fl(1, 2, 3, V ) −−−→ Fl(1, 2, V ) −−−→ P(V )

Note that all vertical maps are embeddings.

We denote i = i3◦i2◦i1, j = j3◦j2◦j1,k = k3◦k2◦k1, and let u = u1◦u2. Also note

there is a family of surfaces π
′
: N

′
2 → N2 and an evaluation map e : N

′
2 → P(V ).

(See Proposition 3 for details.)

1.2.2 Main formulas

Now consider the linearized action of T = (C∗)2 on W :

(t, u) · (w1, w2, w3) → (w1, t
−1w2, u

−1w3).

This action induces actions through each step of our diagram, such that all maps

in the diagram are T -equivariant.
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Note that (w∗
1) ∈ W ∗ is one of the fixed points of T -action. So P(V ) :=

P(V ) × (w∗
1) is one of the fixed-point components in P(V ⊗W ∗). The important

thing here is that the two flag varieties Fi above are two fixed-point components

of the T action on N2, and are the only such components that map to the P(V )

above. So we can apply the localization theorem to do Schubert calculus on flag

varieties through reduction to the projective space P(V ). We need, however, to

investigate and compute all terms involved (equivariant top chern class on normal

bundles, push forwards, and error terms).

Let h ∈ H2(P(V ),Z) be the hyperplane class. Let H := e∗(h) and define the

equivariant chern class hT := cT
1 (OP(V⊗W ∗)(1)). The following proposition will

compute some important terms that are needed in the main formulas.

Proposition 1 From the above setting:

(1) P(V ) ⊂ P(V ⊗W ∗) is a component of the fixed-point locus.

(2) F1 and F2 are the only fixed-point components in N2 to map to P(V ).

(3) H extends to the equivariant class u∗(hT ).

(4) The equivariant Euler class of F1 in N2 is

tu(u− t)(t− ψ1)(u− t− ψ2).

Similarly the equivariant Euler class of F2 in N2 is

tu(t− u)(u− ψ1)(t− u− ψ2) = tu(u− t)(u− ψ1)(u− t + ψ2).

Here ψ1 and ψ2 are the relative canonical classes c1(ωπ1) and c1(ωπ2),where

π1 : Fl(1, 2, 3, V ) → Fl(2, 3, V ) and π2 : Fl(1, 2, 3, V ) → Fl(1, 3, V ) are forgetful

maps.

(5) The equivariant Euler class of P(V ) in P(V ⊗W ∗) is

(h + t)n+1(h + u)n+1.

Proof. (1)-(3) are straightforward. But notice (2) means the formula we will get

has more than one terms on the left side.
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For (4) We need to understand three terms:

Step1: cT
top(NF1/D1

T
D2) = cT

top(N{0}/F l(1,2,W ∗)) which is tu(u− t).

Let W ∗
1 = (w∗

1, w2)
∗ be the two-dimensional subspace of W ∗. From the embed-

dings

{0} → Fl(1,W ∗
1 ) → Fl(1, 2, W ∗)

We know that

cT
top(N{0}/F l(1,2,W ∗)) = cT

top(N{0}/F l(1,W ∗
1 )) · cT

top(NFl(1,W ∗
1 /F l(1,2,W∗)|{0})

The first term is just cT
1 (N{0}/(P1)∗)) = t by Example 5 in Section 1 (see also Example

4 for detailed proof). For the second term, the restriction NFl(1,W ∗
1 /F l(1,W ∗

1 )|{0} is

just N{(0,0,∗)}/(P2) (think it as ((P2)∗)∗ = P2). Since the T -action on (P2) has the

weight (1,−t,−u), or (u, u− t, 1) as we are looking at {(0, 0, ∗)} (also by Example

5), we know that the equivariant top chern class cT
2 (N{(0,0,∗)}/(P2)∗) = u · (u− t).

Step2: cT
1 (ND1

T
D2/D2|F1) = cT

1 (ND1/N2|F1) which is (t− ψ1).

Since D1 is the pull-back of the divisor E1 on N1 which intersects the blow-up

locus M
′
2 transversely, by Riemman-Hurwitz we have ND1/N2 = u∗2(NE1/N1). Since

E1 ⊂ N1 is the exceptional divisor of the blow-up of P(V ⊗W ∗) along the Segre

embedding M1, we have NE1/N1 = OP(NM1/P(V⊗W∗))(−1). Restrict it to P(V )×{0},
and we see that we need to compute cT

1 (OP(TP(V ))(−1), the first equivariant chern

class of O(−1) on the projectivized tangent bundle. That bundle, however, is just

e1 : Fl(1, 2, V ) → P(V ). So its cT
1 is just t − ψ1. Here t, as shown in Step 1, is

the cT
1 (T{0}/P1) with regarding to (∗, 0, 0) ⊂ (∗, ∗, 0) in Fl(1,W ∗

1 ) = (P1)∗, and ψ is

simply c1(Oe1(1)). It is easy to check that ψ is actually c1(ωπ1) by comparing the

degrees on the fibers of the following two different projections:

Fl(1, 2, V ) −−−→
e1

Fl(1, V )
yπ1

Fl(2, V )

When pulling back to Fl(1, 2, 3, V ), ψ1 is actually the relative canonical class

of the forgetful map Fl(1, 2, 3, V ) → Fl(2, 3, V ) (by adding the three-dimensional

subspace), but we will still denote it by same ψ1.
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Step3: cT
1 (ND2/N2|F1) which is (u− t− ψ2).

Since D2 is the exceptional divisor of the blow-up of N1 along M
′
2, we know

that ND2/N2 = OP(N
M
′
2/N1

)(−1) We see that the restriction of the projective normal

bundle to Fl(1, 2, V ) is just the Pn−2-bundle P(V/pV ) over Fl(1, 2, V ), which is

(naturally) just Fl(1, 2, 3, V ). By looking at the following diagram:

Fl(1, 2, 3, V ) −−−→
e2

Fl(1, 2, V )
yπ2

Fl(1, 3, V )

We see that cT
1 (ND2/N2|F1) = cT

1 (Oe2(−1)) = u − t − ψ2. Here again the

equivariant part u− t as cT
top(NP (W ∗

1 )/P (W ∗)) = cT
1 (TP1|∞) where P1 = P(< e2, e3 >)

and ∞ = (0, 1). Also one can check ψ2 = c1(Oe2(1)) is also relative canonical class

c1(ωπ2).

For (5) We need to use the Euler sequences for the tangent bundles of P(V )

and P(V ⊗W ∗). From the diagram

0 0y
y

OP(V ) OP(V )y
y

0 −−−→ O(1)n+1 −−−→ O(1)n+1 ⊗W ∗|P(V ) −−−→ NP(V )/P(V⊗W ∗) −−−→ 0y
y

0 −−−→ TP(V ) −−−→ TP (V⊗W ∗)|P(V ) −−−→ NP(V )/P(V⊗W ∗) −−−→ 0y
y

0 0

we see that the chern polynomials satisfy

cT (NP(V )/P(V⊗W ∗)) = cT (TP (V⊗W ∗)|P(V ))/c
T (TP(V ))

= cT (O(1)n+1 ⊗W ∗|P(V ))/c
T (O(1)n+1)

= cT (W ∗(1)/O(1))n+1
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So the equivariant Euler class of NP(V )/P(V⊗W ∗) is

[cT
top(W

∗(1)/O(1))]n+1 = [(h + t)(h + u)]n+1 = (h + t)n+1 · (h + u)n+1

where the equivariant part comes by considering (∗, 0, 0) ∈ W ∗.

Now we can write down our basic formula based on the Localization Theorem

(and Corollary 1), Proposition 1 and our Main Diagram:

Theorem 2 (Schubert Formula 1 on Fl(1, 2, 3, V )) For any equivariant class cT

on N2, we have:

π∗(
i∗F1

cT

tu(u− t)(t− ψ1)(u− t− ψ2)
) + π∗(

i∗F2
cT

tu(u− t)(u− ψ1)(u− t + ψ2)
)

=
j∗u∗cT

(h + t)n+1(h + u)n+1

Remark: We can use the formula to do a lot of computations, by choosing different

class cT . Naturally we want i∗F1
cT to be the form Hb ∪ σ ∪ τ where σ(p1, p2)

(resp., τ(q1, q2, q3)) is any chern class pulled back from Grassmannian G(2, V )

(resp. G(3, V )) and expressed as a symmetric polynomial in the chern roots of

the universal sub-bundle. Also, for convenient calculation, we want that i∗F1
cT and

i∗F2
cT have the same form. That means the equivariant class should not remember

the rank two spaces. So we would not consider the σ part for the moment, and

always let i∗F1
cT = i∗F2

cT = Hb ∪ τ .

The simplest case, Hb, is already interesting because our formula encodes all

the information about intersection numbers on the flag manifold. Note that the

Picard number of Flag variety Fl(1, 2, 3, V ) is three for n ≥ 3. Since H, ψ1 and ψ2

are clearly linearly independent, they generate Pic(Fl(1, 2, 3, V ).

Proposition 2 All the products Hb∪ψ1
i∪ψj

2 (b+i+j = 3n−3) can be determined

from the formula by letting i∗F1
cT = Hb.
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Proof. The the integral form of Theorem 2 with Hb being the class is:

∫

F1

Hb

tu(u− t)(t− ψ1)(u− t− ψ2)
+

∫

F2

Hb

tu(u− t)(u− ψ1)(u− t + ψ2)

=

∫

P(V )

hb

(h + t)n+1(h + u)n+1
.

By multiplying suitable power of u−t (in fact (u−t)3n−1−b), and inverting all terms

in the denominator, we can see all the terms Hb ∪ ψ1
i ∪ ψj

2 with fixed b are just

combinations of coefficients of a known power series of t and u (from right hand

side). So we just read off the coefficients one by one. Also note Hb = 0 for all

b > n. So there are only n + 1 cases.

Example 6 Some data for small n.

(1). dim(V ) = n + 1 = 3, then dim(Fl(1, 2, 3, V )) = 3. The intersections are:

H3 = 0 H2ψ1 = 1 H2ψ2 = −2
Hψ2

1 = −3 Hψ1ψ2 = 3 Hψ2
2 = 0

ψ3
1 = 6 ψ1ψ

2
2 = ψ2

1ψ2 = −3 ψ3
2 = 6

In this case ψ2 = −3H − 2ψ1.

(2). dim(V ) = n + 1 = 4, then dim(Fl(1, 2, 3, V )) = 6. Some intersections are:

H3ψ3
1 = 0 H3ψ2

1ψ2 = 1 H3ψψ2
2 = −3

H3ψ3
2 = 6 H2ψ4

1 = 0 H2ψ3
1ψ2 = −4

H2ψ2
1ψ

2
2 = 8 H2ψ1ψ

3
2 = −8 H2ψ4

2 = 0

1.2.3 Dealing with error terms

Note that in the above case, there are no error terms because in this case

cT = (u∗(hT ))b. This is not the case when i∗F1
cT = Hb ∪ τ . But as in the rank 2

case, an approximation outside the boundary divisors D1 and D2 can be made, and

fortunately as in that case, the error terms (there are four) will not contribute to

the computations of key terms.
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Consider the projection

P(V ⊗W ∗)×P(W ) → P(V ⊗W ∗).

Note that there exists a rational map (evaluation map)

α : P(V ⊗W ∗)×P(W )−−− > P(V )

by sending an element in P(W ) to its image through the corresponding element in

V ⊗W ∗. The map α is not defined on any kernel of an element from the lower rank

locus M2.

To resolve it, first blow up the P1-bundle

{(φ, ker(φ)) ⊂ P(V ⊗W ∗)×P(W )|φ ∈ M1}

over the Segre embedding M1, and we get Ñ1. Now in Ñ1 the locus where the

induced rational map is undefined is the section of M
′
2 (since it has rank 2). Blow

up the section again, and we get Ñ2, which has an evaluation morphism (denoted

by e) to P(V ).

As the result we get the following diagram (on top of our Main Diagram):

Ñ2 −−−→
ũ2

Ñ1 −−−→
ũ1

P(V ⊗W ∗)×P(W )
yπ

′
y

y
N2 −−−→

u2

N1 −−−→
u1

P(V ⊗W ∗)

Proposition 3 There is a natural equivariant map:

Φ : π
′
∗e
∗OP(V )(1) → W ∗ ⊗ u∗(OP(V⊗W ∗)(1))

which is an isomorphism away from D1 ∪D2 ⊂ N2.

Proof. Since we have

e∗OP(V )(1) = ũ∗(OP(V⊗W ∗)×P(W )(1, 1))(−E
′
1 − E

′
2)

where ũ = ũ1 ◦ ũ2 and E
′
i are two exceptional divisors on Ñ2. So there is a natural

map Φ. Note that these two bundles are the same on where the original rational
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map α is defined. So Φ is not an isomorphism only on the loci that are pull-back

of those low rank loci — the full preimage of M2, which is exactly D1 ∪D2.

Corollary 2 If i∗F1
cT = τ(q1, q2, q3), then u∗(cT + c

′
T ) = τ(h, h + t, h + u). Here c

′
T

is push-forward of an equivariant class on D1 ∪D2.

Proof. This follows from above proposition since

1). The equivariant chern roots of W ∗ ⊗OP(V⊗W ∗)(1) are h, h + t and h + u.

2). The restriction of π
′
∗e
∗OP(V )(1) on Fl(1, 2, 3, V ) is the pullback of the dual

universal subbundle S∗ on G(3, V ).

To see 2), first notice that S∗ = (π1)∗π∗(OP(V )(1)). Also the projection Fl(1, 3, V ) →
G(3, V ) is just the projectivized bundle P(S∗). While the projection N2|π−1(Fl(1,2,3,V )) →
Fl(1, 2, 3, V ) is not a P2-bundle (each fiber contains three components — the

original P(W ) plus two copies of P2 from each blow-up), it has a morphism to

the P2 bundle over Fl(1, 2, 3, V ) (the fiber product). Moreover, the evaluation

map e factors through π via the following diagram from where our claim follows:

N2|π−1(Fl(1,2,3,V ))
e−−−→ P(V )yπ

′ |
y=

Fl(1, 2, 3, V )×G(3,V ) Fl(1, 3, V ) −−−→ Fl(1, 2, 3, V )
e1−−−→ P(V )y

y
Fl(1, 3, V )

π1−−−→ G(3, V )

Unlike the rank 2 case, we first put the error terms on the left side of the formula.

The reason is that we can see quickly from their denominators that they will not

contribute to the terms we want to compute.

Lemma 1 The error terms in the formula are of the form:

(1) from D1: Er1 =
i∗F1

c
′
T

tu(u−t)(u−t−ψ2)
(similarly for Er

′
1 on F2) and

(2) from D2: Er2 =
i∗F2

c
′
T

tu(u−t)(t−ψ1)
(similarly for Er

′
2 on F2).

Proof. We just need to see the change of denominators.
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Since Er1 supports on D1, the denominator is

cT
top(NF1/D1) = cT

top(NF1/D1∩D2) · cT
top(ND1∩D2/D1)

= ut(u− t)cT
top(ND2/N2) = ut(u− t)(u− t− ψ2).

Similarly since Er2 supports on D2, that denominator is

cT
top(NF1/D2) = cT

top(NF1/D1∩D2) · cT
top(ND1∩D2/D2)

= ut(u− t)cT
top(ND1/N2) = ut(u− t)(t− ψ1).

Theorem 3 (Schubert Formula 2 on Fl(1, 2, 3, V ))

π∗(
π∗(hb) ∪ τ

tu(u− t)(t− ψ1)(u− t− ψ2)
) + π∗(

π∗(hb) ∪ τ

tu(u− t)(u− ψ1)(u− t + ψ2)
)

=
τ(h, h + t, h + u)

(h + t)n+1(h + u)n+1
+ irrelevant terms

Proof. The theorem says that all the terms Hb ∪ ψ1
i ∪ ψj

2 ∪ τ can be determined

by looking at the corresponding term (with same denominator) on the right side of

the formula. That is, error terms do not contribute at all.

To see this, look at the formula

π∗(
Hb ∪ τ

tu(u− t)(t− ψ1)(u− t− ψ2)
) + π∗(

Hb ∪ τ

tu(u− t)(u− ψ1)(u− t + ψ2)
)

+π∗(E1) + π∗(E
′
1) + π∗(E2) + π∗(E

′
2) =

τ(h, h + t, h + u)

(h + t)n+1(h + u)n+1

It suffices to show all Hb∪ψ1
i∪ψj

2∪ τ terms come with denominator taub where

a ≥ 2 and b ≥ 2, and all error terms have are either O(1
t
) or O( 1

u
).

We check these by straightforward computations. For the regular two terms,

their combination cancels all of O(1
t
) and O( 1

u
) in the denominators (since there

are more u− t exponents in the denominators, they must form some power of u− t

to cancel that, which leads to the desired form). For the error terms: those from
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D1 do not count because of dimension reasons (since they collapse to M1), and one

check those from D2 have either O(1
t
) or O( 1

u
).

We also need to determine which class on Fl(1, 2, 3, V ) will not change the

degree of τ after pushing forward to P(V ). That is, which class has degree one on

the fiber of the projection Fl(1, 2, 3, V ) → G(3, V ), which is Fl(1, 2, 3).

Lemma 2 Degree of H2 ∪ ψ1 is one on the fiber of the projection.

Proof. This can be seen geometrically, since ψ1, after restricts to a fiber, is just the

relative canonical class c1(O(1)) of a P1 bundle (ψ2 restricts to the trivial class).

We can also check this by computations in the following example.

Example 7 If codim(τ) = 3n− 6 (maximum), here are some computations:

b = 3: H3 ∪ τ = 0 (doesn’t dependent on τ)

b = 2: H2 ∪ ψ2 ∪ τ = −2H2 ∪ ψ1 ∪ τ , and

e∗(H2 ∪ ψ1 ∪ τ) = coeff. of
1

−2t2u2
in

∫

P(V )

h2 · τ(h, h + t, h + u) · (u− t)2

(h + t)n+1(h + u)n+1
.

In particular, if τ = σn−2
3 , then H2 ∪ ψ1 ∪ σn−2

3 = 1, H2 ∪ ψ2 ∪ σn−2
3 = −2.

1.2.4 Relative version of FL(1, 2, 3, V ).

Here is the new setting: Let f : V → X be a rank-(n + 1) vector bundle over a

projective variety. Let P(V ) → X be the projective bundle. Still let W be a vector

space of dimension m = 3. We do the same diagram as before, only to remember

everything is on relative base (i.e., over X):

N2 −−−→
u

P(V ⊗W ∗)
xi

xj

FL(1, 2, 3, V ) −−−→
π

P(V )
y

yf

G(3, V ) X
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The first thing changed is the equivariant Euler class of P(V ). Let αi be the

chern roots of V (i = 1, 2, · · · , n + 1).

Proposition 4 The equivariant Euler class of P(V ) in P(V ⊗W ∗) is

n+1∏
i=1

(h + αi + t) ·
n+1∏
i=1

(h + αi + u).

Proof. Again this comes from computation of the Euler sequences for the tangent

bundles to P(V ) and P(V ⊗W ∗). Use the same diagram in the proof of Part (5)

of Proposition 1, only to notice its relative setting. That is, ct(V ) =
∏n+1

k=1(1 + αk).

The following is the basic formula in this relative setting:

Theorem 4 (Relative Version of Schubert Formula 1) Let cT be an equiv-

ariant class on N2, then:

π∗(
i∗F1

cT

tu(u− t)(t− ψ1)(u− t− ψ2)
) + π∗(

i∗F2
cT

tu(u− t)(u− ψ1)(u− t + ψ2)
)

=
j∗u∗cT∏n+1

i=1 (h + αi + t) ·∏n+1
i=1 (h + αi + u)

.

As in standard case (where V is a vector space instead of a vector bundle), the

above formula can give us many applications by computing various intersections.

Pushing forward Hb∪ψi
1∪ψj

2 to P(V ) then to X, we can compute their intersection

(in the form of chern roots) by inverting the denominator of the right hand side

and looking at the appropriate coefficients. When error terms come, note that the

approximation and error terms are the same as before, and more importantly, error

terms do not contribute when the class involve τ (pull back from G(3, V )). So we

can also do relative Schubert calculus by pushing forward Hb ∪ψi
1 ∪ψj

2 ∪ τ to P(V )

then to X.

There are many interesting computations when τ varies among all symmetric

polynomials. We will do a few applications in the next section.
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1.3 Some Applications

We will do two applications by using our formulas from the previous section to

illustrate the effectiveness of our methods. The point is to translate the original

problems into some computations of certain coefficients. That means we need to

know what is the base variety X, the vector bundle V along with its characteristic

classes, and which class τ pulled-back from the Grassmannian G(3, V ).

1.3.1 Hypersurfaces that contain planes

Let X be the projective space of degree d hypersurfaces in P(V ) where dim(V ) =

n+1. Then X = P(n+d
d )−1. Let V (1) = V ⊗OX(1) be the direct sum of n+1 copies

of OX(1). Consider the incidence variety Id,n = {(P2, Y ) ∈ P(V ) × X|P2 ⊂ Y }.
We would like to compute the class of (p2)∗(Id,n) (which we call Pd,n) as an element

in A∗(X). Here pi is the projection to the i-th factor (i = 1, 2). Since A∗(X) is

generated by l = c1(OX(1)), we know the answer will be in the form of qd,n · lk
where qd,n is the degree. So we have to find a suitable τ .

Let S be the universal subbundle in G(3, V ). Let f : P(V ) → X and π :

Fl(1, 2, 3, V ) → P(V ) be the projection (see diagram in section 1.2.4).

Proposition 5 Pd,n = f∗π∗(H2ψ1τ) where τ = ctop(Symd(S∗)).

Proof. First observe that the incidence variety {(P2,Pn)|P2 ⊂ Pn} is just the

Grassmannian G(3, V ) (planes in Pn). For a generic degree d hypersurfaces Y , let

IY := {P2 ⊂ Y } be the incidence variety. Then the natural map IY → G(3, V ) is

an embedding.

If S is the tautological rank 3 subbundle on G(3, V ), then the fiber SP over a

plane P is the three-dimensional subspace of V whose projectivization is P . An

equation of Y gives a section s of the rank r :=
(

d+2
2

)
-bundle Symd(S∗). Then IY

is just the zero scheme Z(s) of s.

Let CZG be the normal cone of the embedding i : Z(s) → G(3, V ). Then

the above construction produces the class s∗[CZG] ∈ A3(n−2)−r(IY ). A standard
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result ([12]) shows that i∗(s∗[CZG]) ∈ A3(n−2)−r(G(3, V )) is just the Euler class

ctop(Symd(S∗) ∩G(3, V )).

Since we want to pull back the appropriate class τ (in this case ctop(Symd(S∗)))

from Grassmannian G(3, V ) to flag variety Fl(1, 2, 3, V ) and then push it forward

to P(V ) (with H2ψ1 to keep the degree), we are done if the expected codimension

is zero, i.e., 3(n − 2) = r. In this case the O(1) simply does not matter, and

p∗2(Y ) = IY for generic Y . So Pd,n satisfies the proposition.

In general, if the expected codimension 3(n− 2)− r is positive, then we should

get a class in the form qd,nl3(n−2)−r. Follow the same principle as above, one checks

that the twist O(1) produces the hyperplane section l with the correct codimension.

The following lemma is straightforward.

Lemma 3 Let p1, p2, and p3 be chern roots of S∗, then

ctop(Symd(S∗)) =
∏

i+j+k=d

(ip1 + jp2 + kp3).

Now we can give the formula for our computation:

Theorem 5 All notations as above:

Pd,n = coeff. of
1

−2t2u2
in

∫

P(V )

h2 ·∏i+j+k=d(dh + jt + ku + l) · (u− t)2

(h + t)n+1(h + u)n+1
.

Proof. Similarly as in Example 7, we know that

π∗(H2ψ2τ) = coeff. of
1

t2u2
in

h2 · τ(h, h + t, h + u) · (u− t)2

∏n+1
i=1 (h + αi + t) ·∏n+1

i=1 (h + αi + u)

and

π∗(H2ψ1τ) =
−1

2
π∗(H2ψ2τ)

Note that since V is not a trivial bundle, we use the formula in the relative

version. In fact, since V is just a trivial bundle twisted by a line bundle O(1), we
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can make our computation a little easier by assume V is a trivial bundle and adjust

the term ctop(Symd(S)). Namely, we would add the hyperplane class to each linear

term of ctop(Symd(S∗)), such that

ctop(Symd(S∗)) =
∏

i+j+k=d

(ip1 + jp2 + kp3 + l).

Now instead dealing with all Segre class of V , we see that there is only one non-zero

Segre class—the trivial class S0 = f∗(hn). So all we need to do is just do integral

on P(V ) using the formula from Theorem 1. One can easily check that this way of

computation has the same answer as if one use the relative version throughout the

whole computation.

But now the theorem follows immediately once we simplify the formula at the

beginning of the proof: First by assuming all αi = 0 we get the desired denominator.

Then we substitute τ with the new formula of ctop(Symd(S∗)) above and notice that

ih + j(h + t) + k(h + u) + l = dh + jt + ku + l

since i + j + k = d.

Remark: Notice that the right side of the formula, as usual, is homogeneous. Since

rank(Symd(S)) =
(

d+2
2

)
, it is easy to see the 1

t2u2 term come as l(
d+2
2 )−3(n−2) term,

i.e., the exponent is rank(Symd(S)− dim(G(3, V )). So depending on the values of

d and n, there are three cases to consider:

Case 1.
(

d+2
2

)
= 3(n− 2).

This is the special case in which the answer is qd,n · l0. This means the general

hypersurface in this case contains finitely many projective planes, and the degree,

qd,n, is the number of planes. Since there is no l term appears in the answer, we

can actually forget the OX(1) part and just let V be the trivial bundle. We give

some examples below for some d (and n).

Example 8 d = 1. Then n = 3. This is the trivial case P2 ⊂ P3. Natural,the

formula gives the answer q1,3 = 1.
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Example 9 d = 2. Then n = 4. The first nontrivial case turns out to be trivial

(at least from the result). Here we are considering quadric threefolds in P4. But

the following claim says there will not be finitely many planes.

Claim: If a quadric hypersurface in P4 contains a plane, then it contains a

one-dimensional family of planes.

In fact, we can always diagonalize the corresponding quadratic form. If the rank

is not maximal, one can easy construct a one-dimensional family of planes. On the

other hand, if it contains a plane, say with equation x3 = x4 = 0, then clearly the

corresponding 5× 5 matrix can not have maximal rank.

Since the dimension count claims there are only finitely many planes in a general

quadric threefold in P4, the only possible answer is q2,4 = 0, which is exactly what

the computation shows.

Example 10 d > 2. Note that d can not be a multiple of 3. Unfortunately for the

next case (d = 4, n = 7) the answer is already very large for a hand computation.

We give some data here:

d = 4 n = 7 q4,7 = 3297280

d = 5 n = 9 q5,9 = 420760566875

d = 7 n = 14 q7,14 = 279101475496912988004267637

d = 8 n = 17 q8,17 = 1876914105621812001806757234042994688

Case 2.
(

d+2
2

)
> 3(n− 2).

In this case the class Pd.n has positive codimension
(

d+2
2

) − 3(n − 2). We list

here the following data array.
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d n
(

d+2
2

)− 3(n− 2) Pd,n

1 3 0 1

2 3 3 20l3

3 3 7 220l7

4 3 12 1540l12

5 3 18 7770l18

6 3 25 30856l25

2 4 0 0

3 4 4 3675l4

4 4 9 293300l9

5 4 15 9364075l15

3 5 1 3402l

4 5 6 8754732l6

5 5 12 2547516517l12

4 6 3 31886848l3

5 6 9 169739006052l9

4 7 0 3297280

5 7 6 2502288860940l6

5 8 3 5573769695835l3

5 9 0 420760566875

7 14 0 279101475496912988004267637

8 17 0 1876914105621812001806757234042994688
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Case 3.
(

d+2
2

)
< 3(n− 2).

In this case the formula gives the answer 0 — for dimension reasons. For each

hypersurface in this case, it contains some positive dimensional families of planes.

This is not the whole story. Since generally each hypersurfaces in this case

contains family of planes. We can ask the opposite question: what is the class

of planes satisfying certain linear conditions, i.e., meeting certain codimension

subspaces. We will be specially interested in when the answer is finite — number

of the planes intersect certain codimension subspaces on a general hypersurface in

such cases.

To be successful, those hypersurfaces can not have a family of planes of dimen-

sion large than n− 2 (e.g., hyperplanes). Another way to look at is: from the right

side of the formula in the Theorem above, the part of all terms containing t or u

has degree
(

d+2
2

) − 1 − 2n. To assure it can have a term of 1
t2u2 , we see that its

degree is at least −4. So combine the condition in this case we see that d and n

must satisfy the following inequality:

2n− 3 ≤
(

d + 2

2

)
≤ 3n− 6

We simply multiply extra ha to compute the corresponding invariant. Notice a is

actually fixed to assure the answer is a constant. In fact a = 3(n − 2) − (
d+2
2

)
.

Notice that a ≤ n − 3. The reason is we already have h2 in the formula (which

means two-plane intersects codimension two subspaces— actually no condition) and

a term dh (from cT
top(Sumd(S))) which means the class of hypersurface it self. So

we could at most multiply hn−3 to imply the extra linear conditions.

Now we can compute for suitable situations. For example if the number of

planes passing through a general point on the hypersurface is finite, we must have
(

d+2
2

)
= 2n− 3 and we will multiply hn−3. Some computations are as follows:

Example 11 Here are some numbers in this case. Notice that similarly as in Case

1, d and n are somewhat related. The codim column means linear condition (meet

which codimension subspaces), the number is simply 3(n− 2)− (
d+2
2

)
+ 3. We will

specifically mention 2-plane, lines or points.
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n d 3(n− 2)− (
d+2
2

)
codimension Pd,n

6 3 2 line 1134

7 4 0 codim 3 3297280

8 4 3 2-plane 5969920

9 4 6 point 258048

9 5 0 codim 3 420760566875

10 5 3 codim 4 1206991940000

11 5 6 2-plane 216419448000

12 5 9 point 2772576000

12 6 2 codim 5 6304179785228043264

1.3.2 Porteous formula

One simple and very useful case is when τ is or contains high power of σ3, since

it will make the computation of the right side much easier.

The following is the Porteous formula when τ is a power of σ3. Similar formula

holds for general cases.

The theorem uses the same set up as in the relative version of Fl(1, 2, 3, V ) case:

Let f : V → X be a rank-(n + 1) vector bundle over a smooth projective variety

X, with chern roots αi (i = 1, 2, · · · , n + 1).

Theorem 6 Let τ = σk
3 where k ≥ n− 2,then

f∗e∗(H2 ∪ ψ1 ∪ τ) =

∣∣∣∣∣∣

sk−n+2 sk−n+3 sk−n+4

sk−n+1 sk−n+2 sk−n+3

sk−n sk−n+1 sk−n+2

∣∣∣∣∣∣
.
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Here si’s are the Segre classes of V on X.

Proof. Since error terms do not contribute, by looking at the correct term on the

left side of the formula (H2 ∪ τ being the numerator) after multiplying (u− t)2, we

see that

e∗(H2 ∪ ψ1 ∪ τ) = coefficient of
1

−2t2u2
in

h2 · [h · (h + t) · (h + u)]k · (u− t)2

∏n+1
i=1 (h + αi + t) ·∏n+1

i=1 (h + αi + u)
.

Now denote s(y−1)(π
∗V ) = 1 + y−1s1(π

∗V ) + y−2s2(π
∗V ) + · · · , then straight com-

putation shows that

1∏n+1
i=1 (h + αi + t) ·∏n+1

i=1 (h + αi + u)
=

s(h+t)−1(π∗V )

(h + t)n+1
· s(h+u)−1(π∗V )

(h + u)n+1

So the right side, after simplifying, is

hk+2 · (u− t)2 · [(h + t)k−n−1s(h+t)−1(π∗V )] · [(h + u)k−n−1s(h+u)−1(π∗V )]

whose 1
t2u2 term comes from:

hk+2 · u2· ( 1
t2

term from A) ·( 1
u4 term from B),

hk+2 · (−2ut)· ( 1
t3

term from A) ·( 1
u3 term from B), and

hk+2 · t2· ( 1
t4

term from A) ·( 1
u2 term from B).

Here we denote A := (h+t)k−n−1s(h+t)−1(π∗V ) and B := (h+u)k−n−1s(h+u)−1(π∗V ).

It turns out to be

hk+2 · [2(sk−n+3 − 3sk−n+2h + 3sk−n+1h
2 − sk−nh

3)

·(sk−n+1 − sk−nh)− 2(sk−n+2 − 2sk−n+1h + sk−nh2)2].

Push it forward to X and notice that f∗(hk) = sk−n, the theorem follows.

1.4 General Cases: Fl(1, 2, 3, · · · ,m, V ).

In this section we will discuss general cases when m ≥ 3, consequently we will

do Schubert calculus on Fl(1, 2, 3, · · · ,m, V ) using equivariant cohomology and

localization theorem.
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We will use a similar basic diagram below (as in Section 2), though the detailed

Main Diagram is much more complicated.

Nm−1 −−−→
u

P(V ⊗W ∗)
xi

xj

FI −−−→
π

P(V ) = P(V )× (w∗
i )

1.4.1 Main diagram and explanation

Fix a basis of W as < w1, w2, · · · , wm >, with dual basis < x1, x2, · · · , xm >.

We need to do a series of blow-ups — (m−1) times, that is. Although the Main

Diagram looks a little complicated, it becomes clear if one notice the following

properties:

1. Let M l
k denote the proper transform of the rank-k locus Mk in P(V ⊗W ∗)

after l blow-ups. Recall that codim(Mk) = (m−k)(n+1−k). Then notice that Mk

is singular along Mk−1, so do M l
k along M l

k−1 for l < k. Also Mk
k , the exceptional

divisor for k-th blow up, is smooth. After that, all M l
k just the pull back of the

divisor M l−1
k for l > k.

2. Notice all the squares below the diagonal in the Main Diagram are fiber

squares, and all the squares above the diagonal in the Main Diagram are blow-ups.

This actually uniquely determines the whole diagram.

3. We will be interested, as in m = 3 case, the fixed-points loci in the fi-

nal blow-up, which turn our to be m! components that are all isomorphic to

Fl(1, 2, 3, · · · ,m, V ). They are all contained in the intersection of all Mm−1
k , which

turns out to be Fl(1, 2, 3, · · · ,m, V )× Fl(1, 2, 3, · · · , m− 1,W ∗).

4. For each step (after k-th blow up), all the diagram, formulas and computation

are the same as though m = k. So our formulas and proofs can be seen inductively

through each step.

5. To make our formulas more symmetric, we will use the group action which

is homogeneous on each coordinate.

The following is the Main Diagram in general cases:

Main Diagram:
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Nm−1 · · · −−−→ Nk · · · −−−→ P(V ⊗W ∗)x
x

x
Mm−1

m−1 · · · −−−→ Mk
m−1 · · · −−−→ Mm−1x
x

x
...

...
...x

x
x

⋂m−1
α=k+1 Mm−1

α · · · −−−→ Mk
k+1 · · · −−−→ Mk+1x
x

x
⋂m−1

α=k Mm−1
α · · · −−−→ ⋂k+1

β=k Mk
β · · · −−−→ Mkx

x
x

...
...

...x
x

x
⋂m−1

α=1 Mm−1
α · · · −−−→ ⋂k+1

β=1 Mk
β · · · −−−→ M1x

x
x

Fl(1, 2, · · · ,m, V )· · · −−−→ Fl(1, 2, · · · , k, V )· · · −−−→ P(V )

Notations: Almost all notations and terms are similar when compared to the

Main Diagram in Section 2.

All vertical maps are embeddings.

We still denote u : Nm−1 → P(V ⊗W ∗), iI : Fl(1, 2, · · · ,m, V ) → Nm−1

(see next section for the definition of index I), j : P(V ) → P(V ⊗W ∗), and

π : Fl(1, 2, · · · , m, V ) → P(V ).

Denote by Dk = Mm−1
k (k = 1, 2, · · · ,m − 1), the preimage of exceptional

divisors in all blow-ups.

1.4.2 Main formulas

Now consider the standard (homogeneous) torus action of T = (C∗)m on W ∗:

(t1, t2, · · · , tm) · (x1, x2, · · · , xm) → (t1x1, t2x2, · · · , tmxm).
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This action induces actions through each step of our diagram, such that all maps

in the diagram are T -equivariant.

Notice that

k⋂

β=1

Mk
β = Fl(1, 2, · · · , k + 1, V )× Fl(1, 2, · · · , k,W ∗).

In particular the intersection of the m− 1 exceptional divisors on Nm−1 is:

m−1⋂

k=1

Dk = Fl(1, 2, · · · ,m, V )× Fl(1, 2, · · · ,m− 1, W ∗).

Let I = {i1, i2, · · · , im} be a permutation of m numbers. Let

ΛI := [(xi1) ⊂ (xi1 , xi2) ⊂ · · · ⊂ (xi1 , xi2 , · · · , xim) = W ∗]

be the m! fixed points in the full flag variety Fl(1, 2, · · · , m − 1,W ∗). Then the

fixed-point loci for the action of T in Nm−1 are all contained in the intersection

of exceptional divisors and are of the form FI := ΛI × Fl(1, 2, · · · ,m, V ). It is a

disjoint union of m! components. For each fixed-point locus P(V ) = P(V )×(w∗
i ) in

P(V ⊗W ∗), there are (m− 1)! fixed-point components FI in Nm−1 (with i1 = i for

index I) that map to it. So as in section 2 we can apply the Localization theorem

to relate residues through reduction to the projective space P(V ).

Let h ∈ H∗(P(V ),Z) be the hyperplane class. Let H := e∗(h) and define the

equivariant chern class hT := cT
1 (OP(V⊗W ∗)(1)).

Proposition 6 From the above setting:

(1) P(V ) ⊂ P(V ⊗W ∗) is a component of the fixed-point locus.

(2) FI ’s are all fixed-point components in Nm−1 that map to P(V ).

(3) H extends to the equivariant class u∗(hT ).

(4) The equivariant Euler class of FI in Nm−1 is

∏

1≤j<k≤m

(tik − tij) ·
m−1∏
s=1

(tis+1 − tis − ψs).

Here ψs’ are the relative canonical classes c1(ωπs), where πs : Fl(1, 2, · · · ,m, V ) →
Fl(1, 2, · · · , ŝ, · · · ,m, V ) are forgetful maps (1 ≤ s ≤ m− 1).
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(5) The equivariant Euler class of P(V ) = P(V )× (w∗
i ) in P(V ⊗W ∗) is

∏

s6=i

(h + ts − ti)
n+1.

Proof. (1)-(3) are straightforward.

For simplicity we assume I = {1, 2, · · · ,m− 1} in part (4) and (5).

For (4) We need to calculate the following terms:

Step 1:

cT
top(NFI/

Tm−1
k=1 Dk

) = cT
top(N{0I}/F l(1,2,··· ,m−1,W ∗))

which is ∏

1≤j<k≤m

(tk − tj).

We prove this by induction. Consider the following (m−1)-dimensional subspace

Wm−1 =< e0, e1, · · · , em−2 >. Then the embedding

{0} → Fl(1, 2, · · · ,m− 2,W ∗
m−1) → Fl(1, 2, · · · ,m− 1, W ∗)

shows that

cT
top(N{0}/F l(1,2,··· ,m−1,W ∗)) =

cT
top(N{0}/F l(1,2,··· ,m−2,W ∗

m−1)) · cT
top(NFl(1,2,··· ,m−2,W ∗

m−1)/F l(1,2,··· ,m−1,W ∗)|{0})

But the first term is ∏

0≤j<k≤m−2

(tk − tj)

by induction (see Proposition 1 in section 2 for the case m = 3). The second

term is actually cT
top(N{(0,··· ,0,,∗)}/(Pm−1)) (think it as ((Pm−1)∗)∗ = Pm−1). Since the

T -action on Pm−1 has weight (tm−1, tm−1 − t1, · · · , tm−1 − tm−2) at (0, · · · , 0, , ∗),
we see that the equivariant Euler class

cT
top(N{(0,··· ,0,,∗)}/(Pm−1)) =

m−2∏

k=1

(tm−1 − tk)

Combine these terms gets the desired formula.

Step 2: cT
top(NDs/Nm−1|FI

) which is ts+1 − ts − ψs.
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We simply notice Dk is pull back of Mk
k . So working in the (k − 1)-th step

of the Basic Diagram and restricting the normal bundle to one fixed-point locus

Fl(1, 2, · · · , k+1, V ), we can see easily that the normal bundle we need to compute

is just cT
1 (O(−1)) of the horizontal part in the following diagram:

Fl(1, 2, · · · , k + 1, V ) −−−→
ek

Fl(1, 2, · · · , k, V )
yπk

Fl(1, 2, · · · , k − 1, k + 1, V )

Define ψk := cT
1 (Oek

(1)) and check that ψk = cT
1 (ωπk) we get the nonequivariant

part, the equivariant part come from the proof in Step 1. Pull all the way back to

Nm−1 we have our formula.

Part (5) Use the same diagram as in part (5) of the proof of Proposition 1 in

Chapter 2, we see that the chern polynomials satisfy

cT (NP(V )/P(V⊗W ∗)) = cT (TP (V⊗W ∗)|P(V ))/c
T (TP(V ))

= cT (O(1)n+1 ⊗W ∗|P(V ))/c
T (O(1)n+1)

= cT (W ∗(1)/O(1))n+1.

So the equivariant Euler class of NP(V )/P(V⊗W ∗) is

[cT
top(W

∗(1)/O(1))]n+1 =
m∏

k=2

(h + tk − t1)
n+1.

Now we can write down our basic formula in general case based on the Local-

ization theorem and Proposition 6:

Theorem 7 (Schubert Formula 1) For an equivariant class cT on Nm−1:

∑

{I|i1=i}
π∗(

i∗FI
cT∏

1≤j<k≤m(tik − tij) ·
∏m−1

s=1 (tis+1 − tis − ψs)
) =

j∗u∗cT∏
s6=i(h + ts − ti)n+1

As usual, we can first use this formula to compute all the intersections on

Pic(Fl(1, 2, · · · ,m, V )), without worrying about error terms. Note that H,ψ1, · · · , ψm−1

generate Pic(Fl(1, 2, · · · ,m, V )).
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Proposition 7 All the products Hb ∪ ψ1
s1 ∪ · · · ∪ ψ

sm−1

m−1 (b + s1 + · · · + sm−1 =

mn− m(m−1)
2

) can be determined from the formula by letting i∗FI
cT = Hb.

Proof. The the integral form of the above Theorem with Hb being the class is:

∑

{I|i1=i}

∫

FI

Hb

∏
1≤j<k≤m(tik − tij) ·

∏m
s=1(tis − tis−1 − ψs)

=

∫

P(V )

hb

∏
s 6=i(h + ts − ti)n+1

.

By multiplying suitable power of
∏

1≤j<k≤m(tik − tij), and invert all terms in the

denominator,we can see all the terms Hb ∪ ψ1
s1 ∪ · · · ∪ ψ

sm−1

m−1 with fixed b are just

coefficients of a known polynomial (from right hand side). Since Hb = 0 for all

b > n, again there are only n + 1 cases.

Example 12 Some data for small m and n.

dim(W ) = m = 4, and dim(V ) = n + 1 = 4, then dim(Fl(1, 2, 3, 4, V )) = 6.

Some intersections are (compare with Example 6 in Section 2):

H3ψ3
1 = 0 H3ψ2

1ψ2 = 1 H3ψ2
1ψ3 = −2

H3ψ1ψ
2
2 = −3 H3ψ1ψ2ψ3 = 3 H3ψ1ψ

2
3 = 0

H3ψ3
2 = 6 H3ψ2

2ψ3 = −3 H3ψ2ψ
2
3 = −3

H3ψ3
3 = 6

1.4.3 Dealing with error terms

Note that in above case, there are no error terms because in this case cT =

(u∗(hT ))b. This is not the case when i∗FI
cT = Hb ∪ τ . As in Section 1.2, an

approximation outside the boundary divisors D1, D2, · · · , Dm−1 can be made, and

the error terms will not contribute to the terms that we want to compute.

Look at the following diagram (on top of Main Diagram):

Ñm−1· · · −−−→ Ñk· · · −−−→ P(V ⊗W ∗)×P(W )yπ
′

y
y

Nm−1· · · −−−→ Nk· · · −−−→ P(V ⊗W ∗)
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There exists a rational map (evaluation map)

α : P(V ⊗W ∗)×P(W )−−− > P(V )

by sending an element in P(W ) to its image through the corresponding map in

V ⊗ W ∗. α is not defined on any kernel of an element in the lower rank locus

Mm−1.

To resolve it, blow up sequentially along the Pm−1−k-bundle {(φ, ker(φ)) ⊂
Ñk−1|φ ∈ Mk−1

k } for k = 1, 2, · · · ,m − 2. Each time the induced rational map

is undefined over Mk
k+1 ⊂ Ñk. Finally blow up the section of Mm−2

m−1 to get Ñm−1

which has an evaluation morphism (denoted by e) to P(V ).

Proposition 8 There is a natural equivariant map:

Φ : π
′
∗e
∗OP(V )(1) → u∗(W ∗ ⊗OP(V⊗W ∗)(1))

which is an isomorphism away from D1 ∪D2 ∪ · · · ∪Dm−1 ⊂ Nm−1.

Proof. This follows directly from the construction above, as the natural map (as

in Proposition 3 in Section 2) is the identity on where the original rational map can

be defined. The whole exceptional locus in Nm−1 is exactly D1∪D2∪ · · · ∪Dm−1.

Corollary 3 If i∗F1
cT = τ(q0, q1, · · · , qm−1), then

u∗(cT + c
′
T ) = τ(h, h + t1, · · · , h + tm−1).

Here c
′
T is push-forward of an equivariant class on D1 ∪D2 ∪ · · · ∪Dm−1.

Proof. This follows from the above proposition since

1). The equivariant chern roots of W ∗⊗OP(V⊗W ∗)(1) are h, h+ t1, · · · , h+ tm−1,

and

2). π
′
∗e
∗OP(V )(1) is the pull back of the dual tautological bundle S∗ from

G(m,V ).

Next we show error terms do not contribute.
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Lemma 4 The error terms from Dk are of the form:

Ek =
i∗FI

c
′
T∏

1≤j<l≤m(til − tij) ·
∏

j 6=k(tij+1
− tij − ψj)

Proof. We just need to see the change of the denominator. The only term missing

from there is tik+1
− tik − ψk, which is cT

top(NDk/Nm−1|FI
).

Theorem 8 (Schubert Formula 2)

∑

{I|i1=i}
π∗(

π∗(hb) ∪ τ(q1, · · · , qm)∏
1≤j<k≤m(tik − tij) ·

∏m−1
s=1 (tis+1 − tis − ψs)

)

=
hb ∪ τ(h + t1 − ti, · · · , h + tm − ti)∏

s 6=i(h + ts − ti)n+1
+ irrelevant terms

Proof. From the formula

∑
I

∫

FI

Hb ∪ τ∏
0≤j<k≤m−1(tik − tij) ·

∏m
s=1(tis − tis−1 − ψs)

+
∑

I

m−1∑

k=1

∫

Dik

Eik =

∫

P(V )

hb

∏
s6=i(h + ts − ti)n+1

.

It suffices to show that all Hb ∪ ∏m−1
k=1 ψk

ik ∪ τ terms come with denominator
∏m−1

k=1 tak
k where ak ≥ 2 for all k, and all error terms are O( 1

tj
) for some j. We check

these exactly as in the proof of Theorem 3.

We also need to determine which class Hb∪∏m−1
k=1 ψk

ik will not change the degree

of τ after pushing forward to P(V ). That is, which class has degree 1 on the fiber

of the projection Fl(1, 2, · · · ,m, V ) → G(m,V ), which is Fl(1, 2, · · · ,m− 1,m).

Lemma 5 Degree of Hm−1 ∪∏m−2
k=1 ψk

m−1−k is one on the fiber of the projection.

Proof. This can be seen geometrically, since each ψk, after restricts to a fiber, is

just the relative canonical class c1(O(1)) of a Pm−1−k bundle (ψm−1 restricts to the

trivial class). We can also check this by computations in the following example.
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Example 13 In the case of m = 4, if codim(τ) = m(n + 1 − m) = 4(n − 3)

(maximum), some computations are as follows:

b = 4: H4 ∪ τ = 0 (doesn’t dependent on τ)

b = 3: H3 ∪ ψ2
1 ∪ ψ2 ∪ τ = 1

6
of the constant term of

∫

P(V )

h3 · τ(h, h + t, h + u) ·∏1≤j<l≤4(tl − tj)
2

∏4
k=2(h + tk − t1)n+1

In particular, if τ = σn−3
4 , then H3 ∪ ψ2

1 ∪ ψ2 ∪ σn−3
4 = 1.

1.4.4 Relative version of FL(1, 2, · · · ,m, V ).

Here is the new setting: Let f : V → X be a rank-(n + 1) vector bundle over a

projective variety. Let P(V ) → X be the projective bundle. Still let W be a vector

space of dimension m ≥ 3. We do the same diagram of the relative case in section

2 (i.e., over X).

The only term changed is the equivariant Euler class of P(V ). Let αi be the

chern roots of V (i = 1, 2, · · · , n + 1). The following Proposition has same proof as

in Section 1.2.

Proposition 9 The equivariant Euler class of P(V ) in P(V ⊗W ∗) is

∏

k 6=i

n+1∏
j=1

(h + αj + tk − ti).

The following is the basic formula in this relative setting:

Theorem 9 Let cT be an equivariant class on Nm−1, then:

∑

{I|i1=i}
π∗(

i∗FI
cT∏

1≤j<k≤m(tik − tij) ·
∏m−1

s=1 (tis+1 − tis − ψs)
)

=
j∗u∗cT∏

k 6=i

∏n+1
j=1 (h + αj + tk − ti)

.

As in standard case, pushing forward Hb∪
∏

ψik
k or Hb∪

∏
ψik

k ∪τ to P(V ) then to

X, we can compute their intersection with chern roots by inverting the denominator
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of the right hand side and looking at the appropriate coefficients. Again, the error

terms do not contribute to the computation when the class involves τ (pull-back

from G(m,V )).



CHAPTER 2

SESHADRI CONSTANTS ON JACOBIANS

OF CURVES

2.1 Introduction and Statement of Theorem

Let X be a smooth complex projective variety. Let L be a numerically effective

(nef) line bundle on X.

Definition 4 The Seshadri constant of L at a point p ∈ X is the real number

ε(L, p) = inf{ C · L
multpC

|p ∈ C ⊂ X}.

Here the infimum is taken over all reduced curves C passing through p, and multpC

is the multiplicity of C at p.

Let f : BlpX → X be the blow-up of X at the point p and E = f−1(p) be the

exceptional divisor. It is easy to see that the following is an equivalent definition

of the Seshadri constant.

Definition 5

ε(L, p) = sup{ε|f ∗L− εE is nef}.

Here the R-divisor f ∗L−εE is nef means that f ∗L·C ′ ≥ εE ·C ′
for every irreducible

curve C
′ ⊂ BlpX.

One can also define the global Seshadri constant.

Definition 6

ε(L) = inf{ε(L, p)|p ∈ X}.
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The Seshadri constant indicates how far an ample divisor is from the boundary

of the ample cone near point p, thus measures positivity, or ampleness locally. The

study of Seshadri constants has drawn increasing interests during recent years (see

[9] and [11] for some applications).

We first list some properties of Seshadri constants.

1. Seshadri constants have general upper bounds. Let dim(X) = n. Then

ε(L, p) ≤ n
√

Ln (because (f ∗L− εE)n ≥ 0 as in Definition 5).

2. The first nontrivial property of Seshadri constants is Seshadri’s criterion

([15]), which says that L is ample if and only if ε(L) > 0. Also if L is very ample

then obvious ε(L) ≥ 1.

3. However, there is no uniform lower bound for Seshadri constants. For

any n ≥ 2 and δ > 0, there is a smooth n-dimensional projective variety X and an

ample line bundle L on X such that ε(L, p) < δ for some p ∈ X. ([10])

4. If the Seshadri constant does not achieve its upper bound (property 1),

then it is a d-th root of a rational number for some 1 ≤ d ≤ n− 1. ([20])

Usually it is difficult to compute exact values of Seshadri constants. In many

cases one would rather try to give some specific bounds (especially lower bounds).

For example [11] shows that for any ample line bundle L on a surface, ε(L, p) ≥ 1

for very general points p ∈ X. For general dimension n, the similar result ε(L, p) ≥
1
n

has been shown in [10]. Another interesting aspect of the study of Seshadri

constants is the rationality problem. For example from property 4 above, one sees

that on a surface, either ε(L, p) =
√

L2 or it is rational. A noticeable fact is that

there has been no known example of irrational Seshadri constants.

We will focus on abelian varieties (actually special cases of those, i.e., Jacobians

of curves). Let (A, Θ) be a principally polarized abelian variety of dimension g.

That is, A is a complex torus and Θ is an ample divisor with h0(A,OA(Θ)) = 1.

Since abelian varieties are homogeneous spaces, we can define ε := ε(Θ, 0) = ε(Θ, p)

for any p. We list some important results in this case:

1. [18] shows that ε ≥ 1 and the equality holds if and only if A = E×B where

E is an elliptic curve. So if the abelian variety is indecomposable, then ε > 1.
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2. [17] shows that general elements in the moduli space of principally

polarized abelian varieties of dimension g have Seshadri constants very close to

their maximum upper bound. Specifically, ε ≥ 2
1
g

4
· g
√

Θg.

3. On the other hand there are some special abelian varieties, namely

Jacobian, which have relatively small Seshadri constants. Let C be a smooth

complex algebraic curves with genus g = g(C) ≥ 2. Denote by (J(C), Θ) its

Jacobian (Recall J(C) = Pic0(C)). The following are known (cf [17]):

(a). 1 < ε ≤ √
g.

(b). If C is hyperelliptic then ε ≤ 2g
g+1

(c). In particular if g = 2 (then C is hyperelliptic), ε = 4
3
.

The problem becomes very interesting even when g = 3. The point here is

to see if the Seshadri constants can be their maximum, i.e.
√

g, thus most time

irrational, or always less than their maximum – thus more likely rational. While

all the existing examples suggest the later, we investigate this problem in detail,

mainly look at the cases when ε ≤ 2.

Our main result is the following theorem:

Theorem 10 Assume the Picard number of J(C) is one. Then

(1) If C is hyperelliptic, then ε = 2g
g+1

.

(2) If g = 3 and C is not hyperelliptic, then ε = 12
7
.

(3) If g = 4 and C is not hyperelliptic, then ε = 2.

(4) If g ≥ 5 and C is not hyperelliptic, then ε ≥ 2.

Part (4) of the theorem can be restated as:

Corollary 4 If g ≥ 5 and ε < 2, then C is hyperelliptic.

Remark:

(1) For the ease of calculation on Neron-Severi group of C2, we need that it is

generated by a fiber and the diagonal, i.e., its Picard number is 2. That is true if
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C is of general moduli. We need this condition throughout this paper. But this

restriction, however, seems not essential.

(2) We can also locate all the special curves that give relatively small ratios in

cases (1)–(3).

2.2 Proof of Theorem: Hyperelliptic Case

The following observation, while straightforward, points out where we want to

find special curves that give the exact values of Seshadri constants.

Lemma 6 If C ′ is an irreducible curve in J(C) such that C′·Θ
mult0C′ ≤ 2, then for any

divisor D with D ≡ kΘ and mult0D ≥ 2k, we have C ′ ⊂ D.

If C is hyperelliptic, then the case of k = 1 in Lemma 6 reads D ≡ Θ and

mult0D ≥ 2 which we denote as (*), we have:

Proposition 10 Let u : Cd → J(C) be the Abel-Jacobi map. Then

⋂

(∗)
D = u(C2).

Proof. Let L be a hyperelliptic line bundle on C. Let p0 be a ramification point

of the g1
2, so L = OC(2p0). We fix a translation of Abel-Jacobi map u : Cd → J(C)

by sending Y ∈ Cd to Y − deg(Y ) · p0 ∈ J(C), and for simplicity we ignore the

p0 part for representation of points in J(C) in our proof. Also recall φ : Cg−3 →
Cg−1, Y → Y + L maps Cg−3 birationally and surjectively to Sing(Θ) in our case.

For any Y ∈ Cg−3, define DY = Θ − Y . If translates Y + 2p0 ∈ Sing(Θ) to

0 ∈ DY . Thus DY ≡ Θ and mult0D ≥ 2. So we need to show
⋂

DY = u(C2).

It is obvious that u(C2) ⊂
⋂

DY since for any point (p, q) ∈ C2 we can rewrite

it as (p + q + Y )− Y ∈ DY for any Y ∈ Cg−3.

On the other side, any points in
⋂

DY can be represented as D − Y for some

D ∈ Cg−1 and Y ∈ Cg−3. Also since it is in the intersection, for any F ∈ Cg−3,there

exists E ∈ Cg−1 such that D − Y = E − F ,i.e., D − Y + F is (equivalent to) an



45

effective divisor for any F . We claim D − Y itself must be effective, and since it

has degree 2, it is in u(C2).

Pick an representation of D − Y such that Y contains no ramification point

of g1
2. First assume D contains no hyperelliptic pair. If D − Y is not effective,

pick p ∈ Y but p /∈ D,and let L = OC(p + p′). Choose F = Y − p + p′. Then

D − Y + F = D − p + p′. On the other hand the linear system |D − p + p′|
is empty since otherwise it must contain multiple of hyperelliptic pairs and base

points, which will leads to p ∈ D.

If D has some hyperelliptic pairs. Cancel as many points in D − Y as possible

until either D − Y is effective or D runs out of hyperelliptic pairs and reduce to a

similar situation in first case.

If C is hyperelliptic, and rk(NS(C2)) = 2, then NS(C2) is generated by a fiber

F and the diagonal ∆. There is a rational curve, call it P1, which consists of

hyperelliptic pairs {(p, q) ∈ C2|OC(p + q) = L}. Also denote u∗(Θ) still as Θ. We

list the numerical properties of NS(C2) below.

Lemma 7 Notation as above, we have:

(1) Θ = (g + 1)F − 1
2
∆ and P1 = 2F − 1

2
∆.

(2) F 2 = 1, F ·∆ = 2, ∆2 = 4− 4g.

The Abel-Jacobi map u : C2 → J(C) contracts P1 and is isomorphic outside

P1. Now let C ′′ be an irreducible curve in C2 not contracted by u and C ′ = u(C ′′).

Then
C ′′ ·Θ
C ′′ ·P1

=
C ′ ·Θ

mult0C ′

So our Theorem in hyperelliptic case follows from the following Proposition:

Proposition 11 Among all irreducible curves in C2 not contracted by u, ∆ is the

only curve with minimum ratio ∆·Θ
∆·P1 = 2g

g+1
.

Proof. Since ∆ ·Θ = 4g and ∆ ·P1 = 2g + 2, we have ∆·Θ
∆·P1 = 4g

2g+2
= 2g

g+1
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Let C0 = aF + b∆ ⊂ C2 be an irreducible curve not contracted by u. Then

C0 ·P1 = a + (2g + 2)b ≥ 0 and C0 ·Θ = (a + 4b)g > 0. Then

∆ ·Θ
∆ ·P1

=
(a + 4b)g

a + (2g + 2)b
>

2g

g + 1
⇐⇒ a > 0

But if a ≤ 0, then we must have b > 0 since C0 · Θ = (a + 4b)g > 0. Now we

have C0 ·∆ = 2a + b(4− 4g) < 0. Since both C0 and ∆ are irreducible, C0 = ∆.

Remark: A little more detailed calculation shows ∆ is actually the only curve

whose corresponding ratio is less than two.

2.3 Proof of Theorem: Nonhyperelliptic Case

If C is nonhyperelliptic, then choose the case k = 2 in Lemma 6 which reads

D ≡ 2Θ and mult0D ≥ 4, i.e., the base locus of |2Θ|00. We need the following

result of Welters:

Proposition 12 (Welters [21]) Bs(|2Θ|00) = λ(C × C). Here λ : C × C → J(C),

λ(p, q) = p− q is the difference map.

Remark: Welters’ theorem is true for all curves with g = 3 or g ≥ 5. For g = 4

the base locus has two more isolated points, which will not affect our proof since

we are looking at curves inside the base locus.

In this case we look at the NS group in C × C. It is generated by fibers F1,F2

and the diagonal ∆. We list their numerical properties below.

Lemma 8 Notation as above, then:

(1) λ∗Θ = (g − 1)(F1 + F2) + ∆

(2) F 2
i = 0, F1 · F2 = Fi ·∆ = 1, ∆2 = 2− 2g, i = 1, 2.

Since C is nonhyperelliptic, the difference map λ contracts the diagonal ∆ to

0 ∈ J(C) and is isomorphic outside ∆. So let C ′′ be an irreducible curve in C × C

not contracted by λ and C ′ = u(C ′′). Then

C ′′ · λ∗Θ
C ′′ ·∆ =

C ′ ·Θ
mult0C ′

So our Theorem in nonhyperelliptic case follows from the following Proposition:
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Proposition 13 Notation as above:

(1)If g = 3, the minimum ratio C′′·λ∗Θ
C′′·∆ is 12

7
for curves in C ×C, and is achieved

by one curve.

(2)If g = 4, the minimum ratio C′′·λ∗Θ
C′′·∆ is 2 for curves in C × C, and is achieved

by more than one curves.

(3) If g ≥ 5, then C′′·λ∗Θ
C′′·∆ ≥ 2 for all curves in C × C not contract by λ.

Proof. (1) g = 3: In this case, the canonical system embeds C as an plane quartic.

Let OC(1) be its hyperplane section. Consider the curve C0 = {(p, q)|OC(p + q +

2r) = OC(1) for some r ∈ C} ⊂ C2. Write C0 = aF + b∆. Since C0 · ∆ = 56

(twice the number of bitangent) and C0 ·F = 10 (degree of the ramification divisor

of dual curve’s g1
3), we can solve a and b and get C0 = 16F − 3∆. C0 is irreducible

since it is isomorphic to C via p + q → r. Pull it back to C × C we get a curve

C
′′
0 = 16(F1 + F2) + 6∆. Now

C
′′
0 · λ∗Θ
C
′′
0 ·∆

=
[16(F1 + F2)− 6∆] · [2(F1 + F2) + ∆]

[16(F1 + F2)− 6∆] ·∆ =
96

56
=

12

7

To claim 12
7

is the minimum ratio, let C
′′

= aF1 + bF2 + C∆ be any irreducible

curve in C×C not contracted by λ. If C
′′ 6= C

′′
0 , then C

′′ ·C ′′
0 = 10(a+b)+56c ≥ 0.

So if c ≥ 0,
C
′′ · λ∗Θ
C ′′ ·∆ =

3(a + b)

a + b− 4c
≥ 3 >

12

7
.

If c < 0,
C
′′ · λ∗Θ
C ′′ ·∆ =

3(a + b)

a + b− 4c
≥ 3(a + b)

a + b + 5
7
(a + b)

=
7

4
>

12

7
.

This shows the only curve achieves the minimum ratio 12
7

is C
′′
0 .

(2) g = 4: In this case C has two g1
3’s. Let L be one g1

3. Consider the curve

C0 = {(p, q)||L − p − q| > 0} ⊂ C2. Since C0 · F = 2, and C0 · ∆ = 12 (degree

of ramification divisor of L), we find that C0 = 3F − 1
2
∆. Lift to C × C to get

C
′′
0 = 3(F1 + F2)−∆. Calculation as above shows that

C
′′
0 · λ∗Θ
C
′′
0 ·∆

=
24

12
= 2,

and it is the minimum ratio that can be achieved on C × C.
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Note that in this case there is another curve (from the other g1
3) that give the

minimum ratio. The reason is in this case C2
0 = 0 while in case of g = 3 we have

C2
0 < 0 (thus unique).

(3) g ≥ 5: Assume C has a g1
d (d ≥ 3), call it L. As in (2), consider the curve

C0 = {(p, q)||L− p− q| > 0} ⊂ C2. Then C0 · F = d− 1,and C0 ·∆ = 2d + 2g − 2

(degree of ramification divisor of L). Thus C0 = dF − 1
2
∆. Lift to C × C we get

C
′′
0 = d(F1 + F2)−∆. Now first we have

C
′′
0 · λ∗Θ
C
′′
0 ·∆

=
dg

d + g − 1
> 2.

Secondly for any irreducible C
′′

= aF1 + bF2 + c∆ ⊂ C × C not contracted by λ,

either C
′′ · C ′′

0 < 0, or

C
′′ · λ∗Θ
C ′′ ·∆ ≥ d + g − 1

d
≥ 2 if d ≤ g − 1.

Since the Brill-Noether number for g1
d is non-negative if d ≥ g+2

2
, both ratios above

are at least 2. If the minimum ratio C
′′ ·λ∗Θ
C′′ ·∆ < 2, then all the curves C0 must

be reducible and contain an irreducible component C1 whose lift to C × C gives

small ratio. It is easy to see that C2
1 < 0, thus unique in C2. This is certainly

impossible. (For example, if there is two different g1
d for some d, then to have a

common component for corresponding C0 ⊂ C2, one coordinate has to be a base

point of g1
d, thus it is linear combination of fibers, and since the component is

irreducible, it is a fiber. On the other hand, the corresponding ratio for a fiber is

g > 2.)

Note that the minimum ratio exists and can be achieved if dg
d+g−1

≤ d+g−1
d

, which

is equivalent to dg
d+g−1

≤ √
g, or d ≤ √

g + 1.

2.4 Other Problems of Seshadri Constants

For nonhyperelliptic cases when g ≥ 5, to find the Seshadri constants, the first

step is to look at the curves in C2. It is related to the problem whether the cone

of effective curves of C2 is closed. If it is, the curve from the boundary will give

a better upper bound of ε(Θ) which is less than
√

g. In all special cases we have
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discussed (hyperelliptic, small genus, curves with g1
d for small d), the cone is closed.

For general case there is some indication that the curve from one boundary (the

other one being the diagonal), if closed, will give the ratio gq
p

where (p, q) is the

primitive solution of Pell’s equation x2 − gy2 = 1. The following example gives

some indication that it could be true.

Example 14 If C is a plane quintic (i.e., genus is 6), consider the curve C0 =

{(p, q)||OC(1)− p− q− 2r| > 0} ⊂ C2. Then C0 is irreducible and C0 = 50F − 7∆.

For any curve C
′ ⊂ C2 satisfies C0 ·C ′ ≥ 0, calculation shows on C×C, C

′′ ·λ∗Θ
C′′ ·∆ ≥ 12

5

holds for all irreducible curves (except ∆). Note that the bound 12
5

is what the

conjecture gives. Also note one expects small values for plane curves which are

special in the moduli of curves, so general curves of genus 6 must also satisfy that

bound.

For g ≥ 5, if ε < 2 it follows that C is hyperelliptic. In call cases hyperelliptic

curves gives us the smallest Seshadri constants. From the known result ([16]) of

Bs(|2Θ|00) in dimension 4, it is easy to see that:

If A is an indecomposable principally polarized abelian variety of dimension 4 and

ε(Θ) < 2, then A is the Jacobian of a hyperelliptic curve C of genus 4.

It is very reasonable to ask same question for any genus and seems like it could

be true.



REFERENCES

[1] V. Alexeev, Moduli spaces Mg,n(W ) for surfaces, alg-geom/9410003.

[2] M. Atiyah and R. Bott, The moment map and equivariant cohomology,
Topology, 23 (1984), pp. 1–28.

[3] A. Bertram, Quantum Schubert calculus, Advances in Math., 128 (1997),
pp. 289–305.

[4] , Another way to enumerate rational curves with torus actions, Invent.
Math., 142 (2000), pp. 487–512.

[5] , Some applications of localization to enumerative problems, Michigan
Math. J., 48 (2000), pp. 65–75.

[6] I. Ciocan-Fontanine, Quantum cohomology of flag varieties, Internat.
Math. Res. Notices, (1995), pp. 263–277.

[7] D. Cox and S. Katz, Mirror symmetry and algebraic geometry, vol. 68 of
Mathematical Surveys and Monographs, 1999.

[8] J.-P. Demailly, Singular Hermitian metrics on positive line bundles, Lecture
Notes in Math. 1507, (1992), pp. 84–104.

[9] L. Ein and R. Lazarsfeld, Seshadri constants on smooth surfaces, Aster-
isque, 218 (1993), pp. 177–186.

[10] W. Fulton, Intersection theory, Springer-Verlag, Berlin, 1984.

[11] W. Fulton and R. Pandharipande, Notes on stable maps and quantum
cohomology, Proc. of the Symp. in Pure Math., pp. 45–96.

[12] M. P. G. Bini, C. Deconcini and C. Procesi, On the work of Givental
relative to mirror symmetry, alg-geom/9803026.

[13] J. Harris and L. Tu, Chern numbers of kernel and cokernel bundles, Invent
Math., 75 (1984), pp. 467–475.

[14] R. Hartshorne, Ample subvarieties of algebraic varieties, Lectures Notes in
Math. 156, Sprint-Verlag, Berlin, 1970.

[15] E. Izadi, The geometry structure of A4,the structure of the Prym map, double
solids and Γ00 − divisors, J. Reine Angrew. Mathematik, 462 (1995), pp. 93–
158.



51

[16] O. K. L. Ein and R. Lazarsfeld, Local positivity of ample line bundles, J.
Diff. Geom., 42 (1995), pp. 193–219.

[17] R. Lazarsfeld, Lengths of periods and Seshadri constants of abelian vari-
eties, Math. Res. Letters, (1997), pp. 439–447.

[18] M. Nakamaye, Seshadri constants on abelian varieties, Amer. J. Math., 118
(1996), pp. 621–635.

[19] R. Pandharipande, Rational curves on hypersurfaces (after Givental), alg-
geom/9806133.

[20] A. Steffens, Remarks on Seshadri constants, Math. Z., 227 (1998), pp. 505–
510.

[21] G. Welters, The surfaces C −C on Jacobi varieties and second order theta
functions, Acta Math., 157 (1986), pp. 1–22.


