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ABSTRACT

Assume that (R, m) is a Noetherian local ring. Kurano and Roberts have made
the following conjecture related to the positivity of Serre’s intersection multiplicity.
Assume that R is regular and contains prime ideals p and q such that \/p+q =m

and dim(R/p) + dim(R/q) = dim(R); then
p™ g Cm™t foralln > 1.

We consider this conjecture and the following question, which is a generalization of
the conjecture. Assume that R is quasi-unmixed with prime ideals p and ¢ such that

VP +q=mand e(R,) = e(R). Does the inequality
dim(R/p) + dim(R/q) < dim(R)
hold? We answer this question in the affirmative in the following cases:
1. R is excellent and contains a field.
2. ht (p) = 0.
3. R is Nagata and ht (q) = 0.
4. dim(R/q) = 1.
5. R is Nagata and dim(R/p) = 1.
6. R is Nagata and R/p is regular.

We also verify the original conjecture of Kurano and Roberts in a number of cases

(with no excellence restriction), most notably when

1. R contains a field.



2. p is generated by a regular sequence.
3. q is generated by part of a regular system of parameters.

We also present a number of examples that demonstrate the necessity of each of the

assumptions of the conjectures as well as the limitations of some of our results.
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CHAPTER 1

INTRODUCTION

Throughout this work, all rings are assumed to be commutative and Noetherian
with identity, and all modules are assumed to be unitary.

Let (R, m) be a regular local ring of dimension d, and let M and N be finitely
generated R-modules such that M ®z N is a module of finite length. Serre defined
the intersection multiplicity of M and N to be

X(M,N) = Z(—l)ilength(TorlR(M, N))

1=0

and conjectured that y(M, N) satisfies the following properties:
1. dim(M) + dim(N) < dim(R).
2. (Nonnegativity) x(M, N) > 0.
3. x(M,N) > 0 if and only if dim(M) + dim(N) = dim(R).
or, equivalently,
1. dim(M) + dim(N) < dim(R).
2. (Vanishing) If dim(M) + dim(N) < dim(R), then x (M, N) = 0.
3. (Positivity) If dim(M) + dim(N) = dim(R), then x (M, N) > 0.

Serre was able to verify the first statement for any regular local ring, and to verify
the others in the case when R is unramified. Since x(M,N) has many of the
characteristics we desire from an intersection multiplicity (for example, Bézout’s
Theorem holds), it was not unreasonable to suppose that these further properties

are satisfied for an arbitrary regular local ring. The results were left unproved for



ramified rings, and Serre also asked whether a proof existed in the equicharacteristic
case which did not use reduction to the diagonal.

The vanishing conjecture was proved about ten years ago by Gillet-Soulé [6] and
Roberts [18] using K-theoretic methods. The proof in [6] uses the theory of Adams
operations on Grothendieck groups of complexes, while that in [18] uses the theory of
local Chern characters. O. Gabber proved the nonnegativity conjecture very recently?
using a theorem of de Jong [5]. Kurano and Roberts have proved the following

theorem using methods introduced by Gabber.

Theorem 1.1 ([12] Theorem 3.2) Assume that (R, m) is a regular local ring that
either contains a field or is ramified. Also, assume that p and q are prime ideals in
R such that \/p+q = m and dim(R/p) + dim(R/q) = dim R. If x(R/p,R/q) > 0
then

p™ g Cmntt for alln > 1. (1.1)

(For the definition of symbolic powers of prime ideals, see Definition 2.9.) As a

result, they conjectured that (1.1) should hold for all regular local rings.

Conjecture 1.2 Assume that (R,m) is a regular local ring and that p and q are
prime ideals in R such that /p +q =m and dim(R/p) + dim(R/q) = dim R. Then
p™ NgCm! foralln>1.

Furthermore, Kurano and Roberts asked whether there exists an elementary proof
of the conjecture in the equicharacteristic case.

We study Conjecture 1.2, as a verification of this conjecture could introduce new
tools to apply to the positivity conjecture.

For any local ring (A, n) let e(A) denote the Hilbert-Samuel multiplicity of A with
respect to n. (For the definition of Hilbert-Samuel multiplicity, see Definition 2.5.)

It is a straightforward exercise to verify that, if R is a regular local ring with prime

'T have no direct reference to Gabber’s work as it remains unpublished. However, detailed
treatments of Gabber’s work on this problem can be found in Berthelot [2], Hochster [10] and
Roberts [19].



ideal p and 0 # f € p, then e(R,/(f)) = e if and only if f € p© ~ p+V. Thus,

Conjecture 1.2 may be rephrased as the following.

Conjecture 1.2 Assume that (R, m) is a regular local ring and that p and q are
prime ideals in R such that \/p +q = m. If there exists 0 # f € p N q such that
e(Ry/(f)) =e(R/f), then dim(R/p) + dim(R/q) < dim(R) — 1.

To see that this is a restatement of Conjecture 1.2, we first recall a classical result

on the behavior of symbolic powers of prime ideals in regular local rings.

Theorem 1.3 (Nagata [16] Theorem 38.3) Assume that (R, m) is a regular local ring

with prime ideal p. Then p™ C m™ for all n > 1.

Now, let R, m, p, q be as in Conjecture 1.2 and suppose that p™Ng € m"*!. Then
there exists f € p™ N q such that f & m™*'. By Theorem 1.3, p™® C m™ so that f €
m™. If f € p*V then f € m"*! a contradiction, so that e(R,/(f)) = n = e(R/(f)).
If Conjecture 1.2" holds, then this implies that dim(R/p) + dim(R/q) < dim(R) — 1,
contradicting the assumption that dim(R/p) 4+ dim(R/q) = dim(R).

Conjecture 1.2" motivates the following generalization.

Conjecture 1.4 Assume that (R,m) is a quasi-unmized local ring of dimension d
with prime ideals p and q such that \/p+q =m and e(R,) = e(R). Then dim(R/p)+
dim(R/q) < d.

As we noted above, Serre proved this conjecture in the case where R is regular
where the condition e(R,) = e(R) holds automatically. The following is a famous

conjecture whose statement is very similar to Conjecture 1.4.

Conjecture 1.5 (Peskine and Szpiro [17]) Assume that (R, m) is a local ring with
prime ideals p and q such that p has finite projective dimension and \/p +q = m.
Then dim(R/p) + dim(R/q) < dim(R).

We shall discuss connections between Conjectures 1.4 and 1.5 below.



In the main results of this work we verify Conjectures 1.2 and 1.4 for a number of
cases. Most notably, we verify Conjecture 1.4 for excellent rings containing a field.

In Chapter 2 we prove a generalization of Theorem 1.3, which motivates the
restriction of our attention to a certain class of rings where the Hilbert-Samuel mul-
tiplicity is well-behaved with respect to localization. We then verify Conjecture 1.4
for excellent rings containing a field, certain low dimensional cases and the case
where R/p is regular. In Chapter 3 we establish Conjecture 1.2 for regular local
rings containing a field, certain low-dimensional cases, and the the cases where p is
generated by a regular sequence and where q is generated by part of a regular system
of parameters. In Chapter 4 we present a number of examples that demonstrate the
necessity of each of the assumptions of the conjectures as well as the limitations of

some of our results.



CHAPTER 2

THE DIMENSION INEQUALITY

In this chapter, we establish Conjecture 1.4 in a number of cases, most notably

in the case where R contains a field. We recall the conjecture here.

Conjecture 1.4 Assume that (R, m) is a Cohen-Macaulay local ring of dimension d
with prime ideals p and q such that \/p +q = m and e(R,) = e(R). Then dim(R/p)+
dim(R/q) < d.

Examples 4.1, 4.2 and 4.3 below show that each requirement in this conjecture is
necessary.

We begin by proving a generalization of Theorem 1.3 motivated by a theorem of
Lech. We then verify Conjecture 1.4 in the case where R is excellent and contains a
field. Finally, we verify Conjecture 1.4 in certain low-dimensional cases and the case

where R/p is regular.

2.1 An Inequality for Multiplicities
In order to deal with Conjecture 1.4 effectively, we need to know under what con-
ditions the Hilbert-Samuel multiplicity is “well-behaved” with respect to localization,
that is, when e(R,) < e(R) for all prime ideals p. This condition is a generalization
of the containment p™ C m™ of Theorem 1.3. One class of rings for which this is
true is the class of quasi-unmixed, Nagata rings (see Theorem 2.20 below). We recall

a few definitions and background results here.

Definition 2.1 Let (A, m) be a Noetherian local ring. We say that A is equidimen-
sional if dim(A/p) = dim(A) for all p € min(A). We say that A is quasi-unmized if
its completion A is equidimensional. A (nonlocal) ring R is quasi-unmized if R, is

quasi-unmixed for every maximal ideal n.



The class of quasi-unmixed rings is closed under localization and polynomial

extensions, as the following lemma shows.

Lemma 2.2 (Hermann, Ikeda and Orbanz [8] Theorems 18.13 and 18.17) Let A
be a local ring. Then A is quasi-unmized if and only if A is equidimensional and

universally catenary. If A is quasi-unmized, then
1. A, s quasi-unmized for every prime ideal p of A.
2. The polynomial ring A[X7, ..., X,] is quasi-unmized.

Definition 2.3 A ring A is called Nagata if, for every prime ideal p of A and every
finite field extension L of the quotient field of R/p, the integral closure of A/p in L

is module finite over A/p.!

The class of Nagata rings is closed under algebras essentially of finite type and
contains the class of excellent rings, as the following lemma shows. (For a complete
definition of excellent rings, see [15] Section 32. Classical examples of excellent rings
are complete rings, rings that are of finite type over a field or the ring of integers,

and localizations of excellent rings.)

Lemma 2.4 ([16] (36.1) and (36.5), Matsumura [14] Theorem 78) Let A be a ring.
1. If A is Nagata and B is essentially of finite type over A, then B is Nagata.

2. If A is excellent, then A is Nagata.

Hilbert polynomials and multiplicities shall play a central role in our work. An ex-
cellent reference for the results on generalized Hilbert polynomials and multiplicities

is [8] Chapter 1.

! As is noted in Matsumura [15] p. 264, “Nagata defined and studied the class of pseudo-geometric
rings, which were called “anneaux universellement japonais” by Grothendieck. These are now known

as ‘Nagata rings’.”



Definition 2.5 Assume that (A, m) is a local ring and let M be a finitely generated,
nonzero A-module. Given an ideal a of A such that M/aM has finite length, the
Hilbert polynomial of a on M, denoted H|[a, M](n), is the polynomial in n of degree
r = dim(M) with rational coefficients such that for n > 0

Hla, M](n) = length(M/a™ "' M).

If e, is the leading coefficient of H[a, M](n), then the Samuel multiplicity of a on M is
e(a, M) = rle,.. We denote e(m, M) by e(M). If yq, ...,y is a system of parameters
for M, then for brevity, we let e(y, M) = e((y)A, M). If b C R is any ideal of R and
z1,...,2 is a system of parameters for M/bM, then define the generalized Hilbert
polynomial of z and b on M to be the polynomial H|[z, b, M](n) such that for n > 0

Hz,b, M](n) = e(z, M/6" ' M).

(c.f., [8] (3.4) for the proof that e(z, M /6" M) is a polynomial function.) If the ideal
Ann(M/bM) = p is prime, then the degree of H|z, b, M] is exactly s = dim(M,). If
fs is the leading coefficient of H|[z, b, M| then we define the generalized multiplicity
of z and b on M as e(z,b, M) = s!fs.

We shall find the following Associativity Formula helpful when dealing with the
Hilbert-Samuel multiplicity.

Lemma 2.6 (Bruns and Herzog [4] Corollary 4.7.8) Let (A, m) be a Noetherian local
ring. Then

e(A) = 3 length(Ay)e(A/p)

where the sum is taken over all prime ideals p such that dim(A/p) = dim(A).

The following lemma demonstrates one aspect of the behavior of the Hilbert-

Samuel multiplicity under specialization.

Lemma 2.7 ([15] Theorem 14.9) Let (R, m) be a Cohen-Macaulay local ring of di-
mension d with R-reqular sequence x1, ... ,x; € m. Suppose that x; € m": for each 1.

Then e(R/(x)) > e(R)vy - - - vg.



We make use of generalized multiplicities in exactly one argument (Proposi-
tion 2.19), and they seem crucial for the proof of this result. One particularly

important property is the following.

Lemma 2.8 ([8] Proposition 3.11) With notation as above, assume that p is a prime

ideal of A such that p O Ann(M) and \/p + (2)A =m. Then
e(z,p, M) = e(z, A/p)e(pAy, My).
If, in addition, A is equidimensional, then e(z,p, A) < e(p + (z)A, A).

To motivate the main result of this section, we rephrase Theorem 1.3 in terms of

multiplicities. First, we recall the definition of symbolic powers of prime ideals.

Definition 2.9 Assume that A is a ring with prime ideal p. For every positive

integer n, the nth symbolic power of p is the ideal
p™ =p"A4, N A

Recall that if p is a prime ideal in a regular local ring R and z is a nonzero element

of p, then e(R,/(z)) = e if and only if x € p(¢)  p+b.
We now give our restatement of Theorem 1.3.

Theorem 1.3" Assume that (R, m) is a regular local ring with prime ideal p. Then

forallz € p, e(Ry/(x)) < e(R/(x)).

To see that this is a restatement of Theorem 1.3, fix R, m,p, x as in the Theo-
rem 1.3'. Our interpretation of multiplicity implies that e(R,/(x)) < e(R/(x)) if and
only if z € p \ p(*V) and z € m® where e = (R, /(z)).

Example 4.4 below shows that the regularity assumption in Theorem 1.3 is nec-
essary.

Before we state and prove the generalization (which is essentially due to Lech),
we need some preliminaries. The following lemma provides a useful description of

maximal ideals in polynomial rings.



Lemma 2.10 Assume that k is a field and that N is a mazimal ideal in the polyno-
mial ring T = k[Xq,...,X,]. Then N can be generated by n (irreducible) elements
fi,.. s fu such that f; € k[Xy,...,X;] and f; is monic in X;. Furthermore, if
k is the residue field of a Noetherian local ring (A,n) and F; is a lift of f; in
S; = A[Xy, ..., X)) CA[Xy,...,X,] =S which is monic in X;, then the extension
A — S/(F)S is flat. Furthermore, F is an S-reqular sequence.

Proof. The existence of the f; is proved in [15] Theorem 5.1. Now, assume that k
is the residue field of a Noetherian local ring (A, n) and F; is a lift of f; in S; which
is monic in X;. (Such lifts always exist.) Then the extension A — A[X;]/(F}) =
S1/(F) is finite and free, as Fj is monic in Xj. in particular, the extension is flat.

Similarly, the extension
AXq]/(F1) — (A[X]/(F))[Xo] /(F2) = So/(Fy, Fy)
is flat. In a similar way, we see that each extension
A— AXql/(F) — - — S/(Fy, ... F,)

is flat. Since the composition of flat maps is flat, the map A — S/(F)S is flat.
To see that the sequence is S-regular, note that since F} € S; is monic in X it
is regular on S; = A[X;]. Therefore, F} is regular on S = Si[Xs, ..., X,]. Also,
S/(F1)S = (AX1]/(F1))[Xa, ..., X, = (A[X4]/(F1))[Xs][ X5, ..., X, so that the
same argument shows that F is regular on S/(F})S, and similarly for F3, ..., F,.H

The following lemma provides useful information regarding the behavior of certain
numerical data under flat, local extensions. For a finitely generated module M over
a local ring (A, m), let p(M) denote the minimal number of generators of M, i.e.,

p(M) = dimg jm (M /mM).

Lemma 2.11 Assume that A — B is a flat local homomorphism of Noetherian local

rings (A, m) and (B,n) and that a is an ideal of A.

1. p(a) = p(aB).
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2. 1If, in addition, mB = n then length,(m"/m"™!) = lengthy(n"/n" ™). In
particular, e(A) = e(B).

3. More generally, if mB is n-primary and M is an A-module of finite length, then
M ®4 B has finite length over B and

lengthz(M ®4 B) = length 4(M)length z(B/mB)

Proof. Part 1 is proved by Herzog [9] Lemma 2.3. Part 2 follows from part 1 by the

following computation
length,, (m” /m" ™) = p(m") = p(m"B) = p(n") = lengthp(n" /n"*)

and the definitions of e(A) and e(B).

To prove part 3, let 0 = My C My C --- C M, = M be a filtration of M such
that each quotient M;/M;_; = A/m where n = length ,(M). Then the fact that B is
flat over A implies that 0 = My ®4 BC My ®, B C---C M, ®4 B=M ®4 B is a
filtration of M ® 4 B with quotients

(M; ®4 B)/(M;_1 ®4 B) 2 (M;/M;_1) ®4 B 2 (A/m) ®4 B = B/mB

so that the only associated prime of M ®4 B is vmB = n. In particular, M ®4 B

has finite length over B. Furthermore,
lengthy (M @4 B) =) " lengthp(M; ©4 B)/(M;—1 ®4 B) =) _lengthgz(B/mB)
= nzlengthB(B/mB) = lengthA(M)lengthBEB/mB)
as desired. |

The following lemma provides useful information regarding the behavior of regular
sequences under (faithfully) flat extensions and the persistence of (faithful) flatness

under the taking of quotients.

Lemma 2.12 Assume that A — B is a (faithfully) flat extension of Noetherian rings
and that A s local with maximal ideal m. Let X = x1,... ,x, € n be an A-reqular

sequence and a C m an ideal. Then
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1. x is a B-reqular sequence.

2. The extension A/a — B/aB is (faithfully) flat.

Proof. Part 1 follows from [4] Proposition 1.1.2. To prove part 2, it suffices to prove
that if A — B is flat, then A/a — B/aB is flat. This is sufficient, as if A — B is a
faithfully flat, then mB # (1)B so that mB/aB # (1)B/aB. Since A/a — B/aB is
flat, faithful flatness follows immediately.

Let M be any A/a-module. Then
B/ClB@A/aMgB@AA/a@A/aMgB®AM

It follows that if M; — My — M3 is an exact sequence of A/a-modules, then applying
— ®a/a B/aB to the sequence yields

My ®a B — My®a B — Mz®a B
which is exact if B is flat over A. Thus, B/aB is flat over A/a. |

Corollary 2.13 Assume that A — B is a flat local homomorphism of local rings
(A,m) and (B,n).

1. If mB is n-primary, then
(a) dim(B) = dim(A).
(b) If A is Cohen-Macaulay, then B is Cohen-Macaulay.
(c) e(mB, B) = e(A)lengthz(B/mB)
(d) e(B) < e(A)lengthz(B/mB)

2. If p is a prime ideal of A and P is a prime ideal of B which is minimal over

pB, then PN A =yp and ht (P) = ht (p).

Proof. 1(a). Let d = dim(A). By flatness, the extension A — B satisfies going-down.

In particular, d < dim(B). Let x = z1,... ,z4 € m be a system of parameters for A
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and let a = (x)A. Then /a = m so that vaB O vmB = n. Thus, aB is n-primary
and generated by d elements, so that d > dim(B).

1(b). The system of parameters x is a regular sequence on A of length d. By
Lemma 2.12; x is a regular sequence on B of length dim(B).

1(c). By Lemma 2.11 part 3,
lengthy(B/m"B) = lengthz((A/m") @4 B) = length 4(A/m")lengthz(B/mB)

As the left-hand side and the right hand side are both polynomials of degree d in n
by part (a), we have the desired equality.
1(d). As mB C n, we have e(B) =e(n, B) < e(mB, B) = e(A)lengthy(B/mB).
2. Suppose that PN A # p. Since PN A is a prime ideal of A properly containing
p, going-down implies that P contains a prime ideal @) that contracts to p. But then
pB C @ C P, contradicting the minimality of P. The fact that ht (P) = ht (p) is
proved in [8] Lemma 18.10. |

Example 4.5 below shows that the inequality in part 1(d) can be strict and that
equality may hold, even for flat, local homomorphisms of regular local rings.
The following lemma gives the first tool we need in order to establish the fact

that the Hilbert-Samuel multiplicity is well-behaved under polynomial extensions.

Lemma 2.14 Let (A,n) be a local ring, S = A[X1,...,X,] a ring of polynomials
and M a mazimal ideal of S such that M N'A = n. Let X be an indeterminate,
A(X) = AX]ax) and Sp(X) = Su[X]myx)- Then, there is a mazimal ideal ideal
N of A(X)[X1,...,X,] such that Sy (X) = A(X)[ X1, ..., XulN.

Proof. To start, we have

SM(X) = A[Xl, e 7Xn]M[X]M[X] = A[Xl, Ce 7Xn7X]M[X]
= AX][Xq, .. Xo]mix-
The prime ideal M[X]| C A[X][X}, ..., X,] avoids the multiplicative subset A[X] ~\

n[X] and therefore corresponds to a prime ideal N in A[X|,x)[X1,... , X,]. Further-

more,
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ht (V) = ht (M[X]) = dim(A) +n = dim(A(X)) +n
= dim(A[Xnx [ X1, ..., X5])

so that N is maximal. Finally,

Su(X) = AX][ Xy, ..., Xoluxy = A X ax [ X0, - Xl ugx
= AX)[Xy,..., XN

which shows that N has the desired properties. [ |

The following lemma gives the first indication that the Hilbert-Samuel multiplicity
is well-behaved under polynomial extensions and provides us with the first tool needed

to prove that e(R,) < e(R) for a large class of rings.

Lemma 2.15 Assume that (R, m) is a local Noetherian ring of dimension d and n is

a positive integer. Let S = R[X1,...,X,]. Let R(X) = Sms. Then e(R) = e(R(X)).
Proof. If J =mS§S then, it is straightforward to verify that
gr1,(81) = gra(R)(Z1, ... , Zn)

where

gra(R)(Z1, ..., Zy) = (m*/m")(Z,, ..., Z,)
— {g | fe(mf/m"N[Z,,... 2,9 € (R/m)[Z,... ,Zn]}

M1 over R/m, then

It follows that, if wy,...,w; € m*/m**l is a basis of m*/m
wy, ... ,w, € mF/mF*1 s a basis of J/J5T over S;/J;. That is, the Hilbert functions

of gry,(Sy) and gra(R) are the same, and the claim follows immediately. |

Corollary 2.21 below gives a surprising generalization of this lemma.
We are interested in proving that e(R,) < e(R) for a large class of rings. Before
we state and prove the result, we need some background information on reductions

of ideals and the analytic spread of an ideal.
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Definition 2.16 Let (A, m) be a Noetherian local ring and let a be an ideal. The
Rees algebra of a is the graded ring

Alat] = @& a"t

which we consider as a subring of A[t]. The associated graded ring of a is the graded

ring
gra(A) = @ ja"/a" = Alat]/aAlat].
The special fibre of the Rees algebra R[at] is the ring
F(a) = R[at] ®g R/m

The Krull dimension of F'(a) is the analytic spread of a and is denoted s(a). An
ideal b contained in a is a reduction of a if there exists a positive integer n such that
a"™! = pa™. In this case, b is a minimal reduction of a if it is minimal among all

reductions of a with respect to inclusion.

We summarize some useful properties of the analytic spread of an ideal and of

reductions of an ideal.

Lemma 2.17 Let (A,m) be a Noetherian local ring of dimension d and let a be an

ideal.
1. ht(a) < s(a) < dim(A).
2. s(a) = dim(gra(A)/mgra(A)).
3. a has a minimal reduction b.

4. if A/m is infinite, then we may choose a minimal reduction of m generated by

d elements which form part of a minimal generating set for m.

5. If A/m is infinite and b is a minimal reduction of a, then the natural map
gre(A)/mgry(A) — gra(A)/mgrq(A) is a graded inclusion and an integral ez-
tension. In particular, s(a) = s(b). Also, u(b) = s(a).
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6. If a is an m-primary ideal and b is a reduction of a, then e(b, A) = e(a, A).

Proof. For 1,235 and 6, see Vasconcelos [22] Section 5.1 and Brodmann and
Sharp [3] Sections 18.1-18.2. Part 4 follows from the construction, which we outline
here. Let F(m) = Ajmt]®4 A/m = gru(A), which is a finitely generated algebra over
A/m. By Noether normalization, there are elements yy, ... ,y4 of F(m) such that the
natural map A/m[Yy,...,Ys] — F(m) is injective and is an integral extension. If
A/m is infinite, then the y; can be chosen in degree 1. The generators of the minimal
reduction of m are exactly lifts of the y; to m, and since the y; have degree 1 these

lifts form part of a minimal set of generators for m. [

The following theorem gives a second indication that the Hilbert-Samuel multi-
plicity is well-behaved under polynomial extensions and provides us with the next

tool needed to prove that e(R,) < e(R) for a large class of rings.

Theorem 2.18 Assume that (A,n, K) is a local ring, and let M be a mazimal ideal
in the polynomial ring S = A[X, ..., X,] such that MNA =n. Thene(A) = e(Sy).

Proof. First, we reduce to the case where K is infinite. Suppose that K is finite.
With the notation of Lemma 2.15 we see that e(A) = e(A(X)) and e(Sy) =
e(Sy(X)). By Lemma 2.14, Sy (X) = A(X)[X, ..., X,]n for some maximal ideal
N of A(X)[X1,...,X,] so that if e(A(X)) = e(Sy (X)) then we are done. Thus, we
may assume that K is infinite.

Let T'= K[Xi,...,X,] = S/mnS and N = M/nS. Then N is a maximal ideal
in T, and has a generating set fi,..., f, as in Lemma 2.10. Let F; € S be a lift of
fi as in Lemma 2.10, so that the extension A — S/(F)S is flat. This implies that
the composition A — S/(F)S — (S/(F)S)y = Su/(F)Sy is flat. Furthermore,
the maximal ideal of Sy, /(F)Syy is exactly My, /(F)Sy = (nSy + (F)Sy)/(F)Sy =
n(Sy/(F)Sy). By Lemma 2.11, e(A) = e(Sy/(F)Swm), so it suffices to show that
e(Sy) = e(Syp/(F)Sy). The fact that K is infinite implies that n has a reduction
ideal a C n, which is generated by dim(A) elements, by Lemma 2.17, part 5. It is
straightforward to verify that the ideal Ly, = aSy + (F)Sy € My =n+ (F)Sy is
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a reduction of My;. Furthermore, L), is generated by dim(A) + n elements, that is,
by a system of parameters. By Lemma 2.10, the F; form a regular sequence on Sj;.

Thus,
e(Sy) = e(Lar, Sm)
(as Ly is a reduction ideal of M)
= e(La/(F)Sum, Su/(F)Sum)
(by repeated application of [15] Theorem 14.11)
= e(Su/(F)Su)
as Ly /(F)Sy is a reduction of My, /(F)Sy. |

Example 4.6 below shows that the condition M N A = n does not automatically
follow from the fact that M is maximal.

The following proposition is the key tool for proving our generalization of The-
orem 1.3. We note that its proof contains the only argument using the generalized

multiplicities introduced in Definition 2.5.

Proposition 2.19 Assume that R is an equidimensional local ring and that p is a

prime ideal of R such that R/p is a reqular local ring. Then e(R,) < e(R).

Proof. By assumption, there is a sequence z1, ...,z in R such that z is a regular

system of parameters for R/p. Then applying Lemma 2.8
e(RP> = e(ppa RP>€(Z7 R/p) = e(z, p, R)
< e((z)R+p, R) = e(m, R) = e(R)

as desired. [ |

The following is a generalization of Theorem 1.3 that is motivated by a theorem
of Lech [13]. Lech’s theorem is stronger in the sense that it gives an inequality
for Hilbert polynomials instead of multiplicities. It is slightly weaker, though, as it

assumes the ring A is excellent instead of quasi-unmixed and Nagata.



17

Theorem 2.20 Assume that (R,m) is a local, quasi-unmized, Nagata ring with

prime ideal p. Then e(R,) < e(R).

Proof. If we can prove the inequality for dim(R/p) = 1, then we will be done, as
follows. Let p = po C p1 C --- C p, = m be a saturated chain of prime ideals in R.
Each Ry, is a local, quasi-unmixed, Nagata ring with prime ideal (p;_;),,. The fact

that dim(Ry,/(pi—1)p,) = 1 and the one-dimensional case imply that
e(RP> = e((Rpl)(lJo)pl) S e(Rm) S e S e(an) == E(R)

as desired.

Assume that dim(R/p) = 1. Since R is Nagata, the integral closure A of R/p is
module-finite over R/p. In particular, dim(A) = dim(R/p) = 1. A is Noetherian and
integrally closed, and therefore is a Dedekind domain. Because A is module finite
over R/p, there is a surjection S = A[X7,...,X,] — B. Let K denote the kernel of
this map so that S/K = A. The commutative diagram

R— R/p

boh
shows that KNR = p. Let vt C A be a maximal ideal. Since the extension R/p — A is
finite, we know that (vN R)/p is maximal in R/p, that is, (tNR)/p = m/p. Let M =
¢~ '(r) which properly contains K and is therefore maximal in S, as dim(S/K) = 1.
Then Sy /Ky = Apa = A, is a discrete valuation ring. Again by the commuting
diagram, M N R = m. By Theorem 2.18 we see that e(R) = e(Sy). Furthermore,
after localizing at p we see that e(R,) = e(Sk) since K corresponds to a maximal
ideal of R,[X1,. .., X,] such that K, N R, = p,. By replacing R with Sy, and p with
Ky, we may assume that R/p is a discrete valuation ring. The result now follows

from Proposition 2.19. [

Example 4.7 below shows that the quasi-unmixedness requirement in Theorem 2.20
is necessary.
The following Corollary is a surprising generalization of Lemma 2.15 and Theo-

rem 2.18.
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Corollary 2.21 Assume that (R, m) is a local, quasi-unmized, Nagata ring and let
S = R[Xy,...,X,] be a polynomial ring over R. Assume that P is a prime ideal of
S and let p = PN R. Then e(R,) = e(Sp).

Proof. The localization R, is a local, equidimensional, Nagata ring and the ideal
PRy[Xy,...,X,] is a prime ideal of R,[X,...,X,]. Thus, we may assume that
p = m. Let M denote a maximal ideal of S such that P C M. Then the rings
Sy and Sp are both local, equidimensional and Nagata so that by Lemma 2.15 and

Theorems 2.20 and 2.18
e(Ry) = e(Sps) < e(Sp) < e(Su) = e(Ry)
giving the desired equality. [

Due to the fact that the proof of Theorem 2.20 depends heavily on the Nagata
condition, one might look for a counterexample to the inequality e(R,) < e(R) among
the classical examples of non-Nagata rings. A number of such examples may be found
in [16] Appendix. Each example is of the form 7' = R]c] where R is a regular local ring
and c is integral over R. In the following proposition and corollary we demonstrate
that, for every prime ideal P and every maximal ideal M containing P in a ring of

this form, we have the inequality e(Tp) < e(Ty).

Proposition 2.22 Assume that R is a reqular local ring and that T is a domain
containing R which is finite as an R-module. Assume also that T = R|c] for some
element c € T'. Then for every maximal ideal M of T and every prime ideal P of T
such that P C M, e(Tp) < e(Thy).

Proof. Consider the surjection R[X] — R[c] = T given by X + c¢. Since T
is module-finite over R, c¢ satisfies a monic polynomial with coefficients in R. Let
f € R[X] be a monic polynomial of minimal degree such that f(c) = 0. If f is
not irreducible, say f = fifo with each f; monic and not a unit in R[X], then
0 = f(c) = fi(c)fa(c) and the fact that T is a domain implies that f;(c) = 0 for

1 =1 or i = 2. Neither f; is a constant and therefore have strictly smaller degree
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than f, contradicting the minimality of the degree of f. Thus, our map R[X] — T
factors through the projection R[X] = R[X]/(f) giving a surjective homomorphism
R[X]/(f) £ T. The rings R[X]/(f) and T are both domains with dimension equal
to dim(R). Thus, the kernel of p must be zero, so that p is an isomorphism.

For any maximal ideal M of T let M; = 7~ *(M), and for any prime ideal P
contained in M let P, = 7= *(P). Then P; is a prime ideal in the regular ring R[X]
which is contained in the maximal ideal M. Furthermore, since R[X]yy, is a regular

local ring, Theorem 1.3" implies that

e(Tp) = e(R[X]p /() = mrix)p, (f)
< mppx,, (f) = e(RX]a /(f)) = e(Tar)

which proves the result. [ |

Corollary 2.23 Assume that R is a regular local ring and that T is any ring (not
necessarily a domain) containing R which is finite as an R-module. Assume also that
T = R|c| for some element ¢ € T'. Then for every maximal ideal M of T and every

prime ideal P of T such that P C M, e(Tp) < e(Ty).

Proof. Let @)y, ... ,Q, be the minimal prime ideals of T'. By the going-up property
for finite extensions, we see that @; N R = (0). Let M be a maximal ideal of T
and let P be any prime ideal contained in M. Assume that Q,...,Q; € P and
that Qji1,...,Qm € P. Then for @ = 1,...,j, R is a subring of 7'/Q;, and
T/Q; is a finite R-module which is generated by the residue of ¢ as an R-algebra.
Thus the inclusion R C T/Q; satisfies the hypotheses of the proposition and so
e(Tp/(Qi)p) < e(Tn/(Qi)n)- By the Associativity Formula

e(Tp) = Z length(Tg,)e(Tp/(Qi)r) < Zlength(TQi)e(TM/(Qi)M)

< Zlength(TQi)e(TM/(Qi)M) =e(Tw)

i=1
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which is the desired result. [ |

The following propositions shows that another case where the Nagata condition
of Theorem 2.20 may be omitted is the case where p is minimal of the “correct”

dimension.

Proposition 2.24 Assume that (R, m) is a Noetherian local ring with minimal prime

ideal p such that dim(R/p) = dim(R). Then e(R,) < e(R).

Proof. The result is a direct consequence of the Associativity Formula which implies

that

e(R) = Zlength(Rt)e(R/t)
> length(R,)e(R/p) > length(R,) = e(R,)

where the sum is taken over all prime ideals v of R such that dim(R/t) = dim(R).l

2.2 Reduction to the Completion
One standard technique in commutative algebra is to reduce a given question to
a question for complete rings. We accomplish this for Conjecture 1.4, assuming that
we start with an excellent ring.
The following theorem allows us to reduce Conjecture 1.4 to the case where the
quotient R/p is a normal domain. This will be the key step in our reduction to the

case where R is complete.

Theorem 2.25 Let (R, m) be a Nagata, Cohen-Macaulay local ring, and suppose that

, for every ring (S, M) which is a localization at a mazimal ideal of a polynomial ring
over R, the following holds: for all prime ideals P and Q) of S such that /P + Q) = M,
e(Sp) = e(S) and S/P is a normal domain,

dim(S/P) + dim(S/Q) < dim(S5).
Then, for all prime ideals p and q of R such that \/p +q =m and e(R,) = e(R),

dim(R/p) + dim(R/q) < dim(R).
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Proof. Fix prime ideals p and q of R such that \/p +q =m and e(R,) = e(R). Let
B be the integral closure of R/p. Since R is Nagata, B is module-finite over R/p.
In particular, dim(B) = dim(A/p). Because B is module finite over A/p, there is a
surjection T = R[Xy,...,X,] — B. Let K denote the kernel of this map so that
T/K = B. The commutative diagram

R R/p

J
T 2. B

shows that KN R = p. Let n C B be a maximal ideal. Since the extension R/p — B
is finite, we know that n N R/p is maximal in R/p, that is, nN R/p = m/p. Also,
there are no primes of B which are properly contained in n and contract to m/p in
R/p. Tt follows that \/qB, = v/(m/p) B, = n,.

Let N = ¢~*(n), so that T/N = B/n. Then, K C N and since m = 7(n) =
RN¢~(n) = RN N, we see that L = qT" C N. We claim that /Ky + Ly = Ny.
Since K + L 2 K = ker(¢) we see that K + L = ¢ (¢(K + L)) = ¢ (qB).
Let ¢ denote the map Ty — By. If # € Ny, then ¢(z) € n so that for some n,
d(x") = ¢(z)" € qB,. Then 2™ € ¢~ 1(qB,) = (K + L)y so that Ny C /Ky + Ly
as desired.

By Theorem 2.18, we see that e(ITn) = e(R) = e(R,) = e(Tk). (The final
equality follows from the fact that & determines a maximal ideal of R,[ X7, ..., X,].)
By construction, Ty /Ky is a normal domain. Furthermore, Tl is a good complete
intersection ring of type k. Thus, if dim(Ty/Ky) + dim(Ty/Ly) < dim(Ty) then
dim(R/p) + dim(R/q) = dim(Ty/Ky) + dim(Ty/Ly) — n < dim(Ty) — n = dim(R)
as desired. [

Note that the same procedure allows us to reduce further to the case where both
R/p and R/q are normal domains.

It is clear from the proof that, in the statement of the theorem, “Cohen-Macaulay”
may be replaced by either “quasi-unmixed,” “Gorenstein” or “complete intersection

(of codimension c¢).”
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Example 4.3 below shows that we must assume that our ring is at least equidi-
mensional, for Conjecture 1.4 to hold.

In the following theorem, “Cohen-Macaulay” may be replaced by either “quasi-
unmixed,” “Gorenstein” or “complete intersection (of codimension ¢).” This is the

result which will allow us to reduce Conjecture 1.4 to the case where R is complete.

Theorem 2.26 Let (R, m) be an excellent, Cohen-Macaulay local ring. Assume the
following for every ring (S, M) which is the localization of a polynomial ring over R at
a mazimal ideal: for all prime ideals p, Q of the completion S such that \/ P+ Q =
M, e(Sp) = e(S) and S/P is a normal domain,

dim(S/P) + dim(S/Q) < dim(S).
Then, for all prime ideals p and q of R such that \/p +q =m and e(R,) = e(R),
dim(R/p) + dim(R/q) < dim(R).

Proof. By Theorem 2.25 it suffices to show that for every ring (S, M) which is a
localization at a maximal ideal of a polynomial ring over R, the following holds: for
all prime ideals P and @ such that VP + Q = M, e(Sp) = ¢(S) and S/P is a normal

domain,
dim(S/P) + dim(S/Q) < dim(S5).

Let S, M, P, @ satisfy these hypotheses. S is excellent, which implies that S/P is
also excellent (c.f., [15] §32). By [15] Theorem 32.2, ST/TD — §/PS is normal. In
particular, P=PSisa prime ideal of S such that S / P is a normal domain. Since
the map S — S is faithfully flat, PNS = P. Thus, by Corollary 2.13, ht (P) = ht (P).
By [8] Theorem 18.13 (d), dim(S/P) = dim(S/P). Let @ be any minimal prime ideal
of QS, for which dim(S/Q) = dim(S/Q) by the same reasoning. Furthermore, the
extension Sp — S p is faithfully flat and PpS b= 15]5 so that, by Lemma 2.11

e(Sp) = ¢(Sp) = e(5) = e(S)
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Thus, by assumption
dim(S/P) + dim(S/Q) = dim(5/P) + dim(5/Q) < dim(S) = dim(S)

as desired. [ |

2.3 The Equicharacteristic Case
In this section, we verify Conjecture 1.4 for excellent rings which contain a field.
The main tool is Theorem 2.28. Before we prove the theorem, we recall some
basic facts in the following lemma that will allow us to apply Theorem 2.28 to

Conjecture 1.4.

Lemma 2.27 ([15] Theorem 29.4, [4] Proposition 2.2.11)

1. Assume that B is a Noetherian complete local ring containing a field. Then
there exists a subring A C B with the following properties: A is a complete reqular
local ring with the same residue field as B, and B is finitely generated as an A-module.

2. Let B be a Noetherian local ring and A a reqular local subring such that B is

a finite A-module. Then B is Cohen-Macaulay if and only if it is a free A-module.

The following theorem is the main tool we need to verify Conjecture 1.4 in the

case of an excellent ring that contains a field.

Theorem 2.28 Assume that B is a Cohen-Macaulay ring and (A, m) a reqular local
subring such that B is a finite free A-module. Assume that P is a prime ideal of B
with PNA = p and e(Bp) = rank(B). Then P is the unique prime ideal of B which
contracts to p in A, and Bp/Pp = A, /p,.

Proof. First, we reduce to the case where p = m. It suffices to show that the
extension A, — B, with P, C B, satisfies the hypotheses of the theorem. Any
localization of a Cohen-Macaulay ring is Cohen-Macaulay, so B, is Cohen-Macaulay.
The ring A, is regular and by the exactness of — ®4 A,, A, is a subring of B,. If
r =rank4(B) then B = A" and so B, = A is finite and free over A,. Furthermore,
P, is a prime ideal of B, which contracts to the maximal ideal of A, and e((By)p) =

e(Bp) = ranky(B) = r = ranky, (By) so all the hypotheses are satisfied.
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By the finiteness of the extension A — B, P is maximal. The ring B/mB is
Artinian because any ideal of B which contains mB must contract to m in A and
therefore must be maximal. In particular, a regular system of parameters of A
passes to a system of parameters of B (and since B is Cohen-Macaulay, a maximal
B-regular sequence). Let K = A/m, L = B/P and P = P/mB. By the finiteness
of the extension A — B, the extension K — L is finite. Since B/mB is a finite-
dimensional vector space over K, B/mB has finite length as an A-module. By the
structure theorem for Artinian rings, B/mB has a finite number of maximal ideals,
P = P,P,..., P, and B/mB = [[;(B/mB)p. In particular, each (B/mB)p
is finitely generated over A and has finite length as an A-module. We compute
| =lengthy (Bp/mBp). Let Bp/mBp = M; D M;_y D --- D My = 0 be a filtration
of Bp/mBp by Bp submodules such that M;/M; ; = B/P = L. Then the additivity
of length implies that

length ,(Bp/mBp) = ZlengthA (M;/M;_y) ZdlmK ) = ldimg (L)

=1

so that
lengthBP(Bp/me) == lengthA(Bp/me)/dlmK(L)

By Lemma 2.7, e(Bp) < e(Bp/mBp), as m is generated by a B-regular sequence.

Our assumptions imply that
> dimg((B/mB)p) = dimg(B/mB) = ranks(B) = e(Bp) < ¢(Bp/mBp)
Z = lengthp (Bp/mBp) = length 4(Bp/mBp)/ dimg (L)
= dimg (Bp/mBp)/ dimg (L) < dimg (Bp/mBp)
< Y dimg((B/mB)p)

so we must have equality. This can happen only if (i) P is the unique prime ideal of

B/mB and (ii) dimg (L) = 1. These are the desired results. |

We are now in the position to verify Conjecture 1.4 in the case of an excellent

ring that contains a field.
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Theorem 2.29 Assume that (R, m) is an excellent local Cohen-Macaulay ring which
contains a field. Also, assume that P and Q) are prime ideals of R such that /P + Q) =
m and e(Rp) = e(R). Then dim(R/P) + dim(R/Q) < dim(R).

Proof. As in the proof of Proposition 2.32, we may pass to the ring R(X) = R[X |m[x]
to assume that R has infinite residue field. By Theorems 2.25 and 2.26 we may pass
to the completion of the localization of a polynomial ring over R at a maximal ideal.
In particular, we may assume that R is a complete local Cohen-Macaulay ring which
contains a field.

Lemma 2.17 shows that we may choose a system of parameters y,... ,y, of R
such that (i) the y; form part of a minimal generating set of m and (ii) the y; generate
a minimal reduction of m. Fix z,...,z, € m such that y1,... ,yn, 21,..., %, form a
minimal generating set for m. Since R is complete, R has a coefficient field K and
the natural map K[Yi,...,Y,] — R given by Y; — y; is injective and R is module
finite over A = K[Y1,...,Y,] (c.f., [15] §29). By Lemma 2.27, the fact that R is local
Cohen-Macaulay implies that R is free over A of finite rank r. By the definition of a
coefficient ring, we know that the residue field of R is K. Furthermore, the natural
map p : K[Yy,...,Y,, Z1,...,Z,] — R given by Y; — y, and Z; — z; is surjective.
Let A" = K[Y1,...,Y,, Z1,...,Z,;] with maximal ideal m" and I = ker(p). The
constructions show that we have a natural commuting diagram

A—¢>A’

w\ ]l%p

Let p = PNA. Since the extension A — R is finite and free (i.e. integral and flat) both
going-up and going-down hold so that ht (p) = ht (P) and dim(A/p) = dim(R/P).
If we can show that y/pA’ + p~1(Q) = m’, then it follows that
dim(R/P) 4+ dim(R/Q) = dim(A/p) + dim(A' /¢~ (Q))
= dim(A'/pA") — ¢ + dim(A'/¢7(Q))
< dim(A") — ¢ =n = dim(R)

as desired.
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For an ideal a of A’, let Z(a) C Spec(A’) denote the closed subscheme determined
by a. In order to show that \/pA’ + p~1(Q) = w', it suffices to show that

Z(pA' +p (@) = Z(p~(P) +p1(Q))

as the facts that /P + @ = m and p is surjective imply that \/p~1(P) + p~1(Q) =
m'. Since pA' + p71(Q) C pH(P) + p~(Q), the containment Z(pA' + p~H(Q)) 2
Z(p~ Y (P)+p~1(Q)) is clear. To demonstrate the other inclusion, we note that, since
ICp(Q),

pA +p Q)= (pA + 1)+ p'(Q)

so that

Z(pA' +p Q) = Z((pA' + 1) + p1(Q)) = Z(pA' + 1) N Z(p~(Q))-

Since Z(p~Y(P) + p~HQ)) = Z(p™ (P)) N Z(p~'(Q)) it then suffices to show that
Z(pA'+1)C Z(p~'(P)). It suffices to show that p~*(P) is the unique minimal prime
ideal of pA’ + I in A’. By our commuting diagram, the (minimal) primes of pA" + [
are in 1-1 correspondence with the (minimal) primes of pR = p(pA’ + I). Thus, it
suffices to show that P is the unique minimal prime of pR. By assumption PNA = p,
and e(Rp) = e(R). So, if we can show that e(R) = rank,(R), then Theorem 2.28
implies that P is the unique prime ideal of R which contracts to p in A. If P’ is any
minimal prime of pR, then Corollary 2.13 implies that P’ N A = p, a contradiction.

To compute e(R), we use the fact that (y)R is a minimal reduction of m so that

e(R) = length(R/(y)R) = dimg(R/(y)R) = dimg (R ®4 A/(Y)A)
=dimg(R®4 K) = dimg (A" ®4 K) = dimg(K") = r = rank4(R).

This completes the proof. [ |

We note here that the excellence assumption is used only in order to reduce to

the completion.
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2.4 The Case When R/p is Regular
In this section, we prove Conjecture 1.4 in the case where R/p is regular. The
proof depends on reductions of ideals, in particular on the notion of equimultiplicity.
Here we give the definition of equimultiple ideals and quote the property that is of

primary interest to us.

Definition 2.30 An ideal a of a local Noetherian ring is said to be equimultiple if

ht (a) = s(a).
The following lemma supplies an explanation for this definition.

Lemma 2.31 ([8] Theorem 20.9) Let A be a quasi-unmized local ring and let p be
a prime ideal of A for which A/p is regular. Then the following conditions are

equivalent.

2. ht (p) = s(p)

Examples 4.8 and 4.9 below show that if R/p is not regular, neither implication
of the lemma holds.

The following proposition is the main result of this section where we prove Con-
jecture 1.4 in the case where R/p is regular. Notice that the Cohen-Macaulayness

assumption is loosened to “quasi-unmixed” here.

Proposition 2.32 Assume that (R,m) is a quasi-unmized local ring with prime
ideals p and q such that \/p+q = m, R/p is regular and e(R,) = e(R). Then
dim(R/p) + dim(R/q) < dim(R).

Proof. If the residue field of R is finite, let R(X) = R[X|nx]. By Lemma 2.2,
R(X) is quasi-unmixed. The prime ideals P = pR(X) and @ = qR(X) satisfy the



28

properties P +Q = mR(X), R(X)/P = R/p(X) is regular and (by Lemma 2.15)
e(R(X)p) = e(R,) = e(R) = e(R(X). Thus, if the proposition holds for R(X') then

dim(R/p) + dim(R/q) = dim(R(X)/P) + dim(R(X)/Q)
< dim(R(X)) = dim(R)

and the proposition holds for R. Thus, we may assume that the residue field of R is
infinite.

By Lemma 2.31, the prime ideal p C R is equimultiple. Since the residue field
of R is infinite, p contains a sequence vy, ... ,y; which generate a minimal reduction
of p where i = ht (p). Since \/p + g = m, we see that q is an ideal of definition for
R/p and therefore q contains a system of parameters z1, ... , z; for R/p. In particular
j = dim(R/p). We claim that y1,...,¥;, 21,...,2; is a system of parameters for R.
Since i + j = ht (p) + dim(R/p) = dim(R), the sequence has the correct length and
we need only check that the sequence generates an m-primary ideal. We compute

V(y,z)R = \/\/(y)R+ V(Z)R = \/p ++/(z)R. The fact that z is a system of

parameters for R/p implies that the only prime ideal of R containing p and z is m,

as desired.

To prove the result, it suffices to show that ¢ > dim(R/q), as this will show that
dim(R) =i+ 7 > dim(R/q) + dim(R/p). In the ring R/q, the images of y generate
an ideal which is primary to m/q since y/(y)R = p. Since dim(R/q) is the least
integer [ such that an ideal primary to the maximal ideal of R/q can be generated

by [ elements, we are done. [

With Proposition 2.32 in mind, one might hope that there is a nice relation
between the conditions “e(R,) = e(R)” and “p has finite projective dimension.”
Examples 4.10 and 4.11 below show that these conditions are mutually exclusive in

a ring which is not regular.

2.4.1 The Use of Regular Alterations
With Gabber’s work on nonnegativity (c.f., [19]) and Proposition 2.32 in mind, it

would make sense to try to use de Jong’s Theorem on regular alterations to reduce
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Conjecture 1.4 to the case where (a global version of ) p has a regular quotient. Details
of the results concerning existence of regular alterations may be found in [5]. The

main result for our purposes is the following.

Theorem 2.33 Let A be a local integral domain that is a localization of a ring of
finite type over a field or a complete discrete valuation ring with algebraically closed

residue field. Then there exists a projective map ¢ : X — Spec(A) such that

1. X 1s an integral reqular scheme.

2. If K is the quotient field of A, then the extension k(X) of K is finite (we say
that X is generically finite over Spec(A).

Such a morphism ¢ will be called an reqular alteration. For us, the result says that,
given such a ring A, there is a natural number n and ideal I € Proj(A[Xo, ..., X,])
such that I N R = (0), the scheme Proj(A[Xo, ..., X,]/I) is regular, and the natural
morphism ¢ : Proj(A[Xo, ..., X,]/I) — Spec(A) is generically finite. It follows auto-
matically, since ¢ is proper (c.f., Hartshorne [7] Theorem I11.4.9) it is closed. Further-
more, the generically finite condition implies that the schemes Proj(A[Xo, ..., X,]/I)
and Spec(A) have the same dimension.

For our purposes, let (R,m) be a local, equidimensional, Nagata ring which is
of finite type over a field or a complete discrete valuation ring with algebraically
closed residue field. Let p and q be prime ideals of R such that /p +q = m and
e(R,) = e(R). Welet A= R/pandlet I € Proj(R/p[Xo,...,X,]) be anideal coming
from a regular alteration of R/p. Let S = R[Xy, ..., X,] so that I corresponds to an
element P € Proj(S). Let Q = qS. If P and @ were to satisfy the same conditions
satisfied by p and g, at least locally, then we might hope that a counterexample in R
would pass to a counterexample in A. If M is any prime ideal of S that contains P,

then Theorem 2.20 implies that
e(R) = e(Ry) < e(Runr) < e(R)
so that e(R,) = e(Runr). Corollary 2.21 then implies that

e(Sp) = e(Ry) = e(Runr) = e(Su)
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so that the multiplicity condition of Conjecture 1.4 is satisfied. Example 4.15 below
shows that P and ) will not in general satisfy the condition /P + @Q = M, even
after localizing at a maximal ideal M which contains P and Q.

We note that in Gabber’s proof of the Nonnegativity Conjecture, he circumvents
this problem by using the fact that the map Proj(S) — Spec(R) is proper. The essen-
tial point is that, any element of Proj(,S) which contains I and ¢S must contract to the
maximal ideal of R. This tells us that the map Proj(S/(I + q5)) — Spec(R) factors
through the natural map Spec(R/m*) — Spec(R) for some k, so that Proj(S/(I+qS))
is a scheme over R/m*. It may be that this global finiteness condition can replace
the local finiteness condition that R/p ® R/q has finite length, but there is much

work to be done here.

2.5 Low-Dimensional Cases
In this section, we prove Conjecture 1.4 in certain low-dimensional cases. Al-
though the proofs are relatively straightforward, the results are worth mentioning.
In each case, the Cohen-Macaulay assumption of the conjecture may be relaxed to
“equidimensional” with the possible extra assumption “Nagata.”

In the following proposition we verify Conjecture 1.4 when dim(R/p) = dim(R).

Proposition 2.34 Assume that (R,m) is an equidimensional local ring with prime
ideals p and q such that \/p +q = m. Assume that p is a minimal prime of R and
e(R,) = e(R). Then q =m, so that dim(R/p) + dim(R/q) = dim(R).

Proof. Our assumptions imply that
length(R,) = e(R,) = e(R)
and the Associativity Formula implies that
length(R,) = = length(R.)e(R/x)

where the sum is taken over all prime ideals ¢ of R such that dim(R/t) = dim(R).
Since each e(R/t) > 0, it follows that length(R,) = 0 for all v # p with dim(R/¢r) =
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dim(R). Since R is equidimensional, this implies that {p} = min(R). In particular,

q 2 /(0) = p. The fact that q is prime implies that m = \/p+q = \/q = q, as
desired. [}

The proof of Proposition 2.34 shows that, for minimal primes p, the assumption

e(R,) = e(R) is quite strong. In fact, we have the following.

Proposition 2.35 Assume that (R, m) is an equidimensional local ring with minimal

prime ideal p, and consider the following statements.
e(R/p) = 1.
2. e(Ry) =e(R).
3. p is the unique minimal prime of R.

(a) Any two of these conditions imply the third.
(b) If R is quasi-unmized then condition 1 may be replaced by “R/p is reqular”.

Proof. (a) If e(R/p) = 1 and e(R,) = e(R) then the above computation shows that

length(R,) = e(R,) = e Z length(R,)e(R/x)
> length(Rp)e(R/p) = length(R,)

where the sum is taken over all prime ideals ¢ of R such that dim(R/t) = dim(R).
the only term which occurs in the sum is the term corresponding to p. Since R is
equidimensional, this implies that p is the unique minimal prime of R.

If e(R/p) =1 and p is the unique minimal prime of R

= length(R.)e(R/x) = length(R,)e(R/p) = length(R,) = e(R,)

where the sum is taken over all prime ideals v of R such that dim(R/t) = dim(R).
If e(R,) = e(R) and p is the unique minimal prime of R, then a similar computation

shows that e(R/p) = 1.
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(b) If R is quasi-unmixed, then [8] Theorem 6.8 implies that e(R/p) =1 < R/p

is regular. [

Notice the similarity between this and Lemma 2.31.
In the following proposition we verify Conjecture 1.4 in the case where dim(R/q) =
dim(R). Note that the Cohen-Macaulayness condition has been loosened to “quasi-

unmixed,” although we need to assume “Nagata.”

Proposition 2.36 Assume that (R, m) is a quasi-unmized, Nagata local ring with
prime ideals p and q such that \/p+q = m. Assume that e(R) = e(R,) and q is
a minimal prime of R. Then p = m, so that dim(R/p) + dim(R/q) = dim(R/q) =
dim(R).

Proof. The Associativity Formula implies that

Z length(R,)e(R/t) = e(R) = e(R,) Zlength Je(Ry/tp)

tCp

where the first sum is taken over all prime ideals t of R such that dim(R/t) = dim(R)
and the second sum is taken over all prime ideals ¢ of R such that dim(R/t) = dim(R)
and v C p. Since each e(R/t) > e(R,/t,) by Theorem 2.20, the equality implies that
every minimal prime of R is contained in p and each e(R/t) = e(R,/v,). In particular,

q C p. As above, this implies that p = m. |

In the following proposition we verify Conjecture 1.4 in the case where dim(R/q) =
1. Note that the Cohen-Macaulayness condition has been loosened to “equidimen-

sional,”

Proposition 2.37 Assume that (R,m) is an equidimensional local ring with prime
ideals p and q such that \/p + q = m. Assume that e(R,) = e(R) and dim(R/q) = 1.
Then dim(R/p) + dim(R/q) < dim(R). [

Proof. Suppose that dim(R) < dim(R/p)+dim(R/q) = dim(R/p)+1 < dim(R)+1.
Then dim(R/p) + 1 = dim(R) + 1 so that dim(R/p) = dim(R). As R is equidimen-
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sional, this implies that p is a minimal prime of R. By Proposition 2.34, ¢ = m, a

contradiction. [ |

In the following proposition we verify Conjecture 1.4 when dim(R/p) = 1. Note
that the assumption “Cohen-Macaulay” has been loosened to “quasi-unmixed,” al-

though we need to assume “Nagata.”

Proposition 2.38 Assume that (R, m) is a quasi-unmized, Nagata local ring with
prime ideals p and q such that \/p+q = m. Assume that e(R,) = e(R) and
dim(R/p) = 1. Then dim(R/p) + dim(R/q) < dim(R). In particular, if R is
Cohen-Macaulay and Nagata then Conjecture 1.4 holds for R when dim(R/p) = 1.

Proof. The proof is identical to that of Proposition 2.37, using Proposition 2.36
instead of Proposition 2.34. [



CHAPTER 3

THE CONJECTURE OF KURANO AND
ROBERTS

In this chapter, we prove Conjecture 1.2 for a number of cases, most notably when
(1) R contains a field, (2) p is generated by a regular sequence, and (3) R/q is regular.
We note that each of these cases is proved without any excellence assumptions and
therefore the results are not simple consequences of the results of the previous chapter.

We recall the conjecture here.

Conjecture 1.2 Assume that (R,m) is a regular local ring and that p and q are
prime ideals in R such that /p+q =m and dim(R/p) + dim(R/q) = dim R. Then
p™ Ng Cm™! for alln > 0.

Examples 4.16, 4.17 and 4.18 below show that each of the requirements of the

conjecture is necessary.

3.1 The Equicharacteristic Case
The proof of Conjecture 1.2 in the equicharacteristic case differs from the proof
of Theorem 2.29 in only one place: the method of reduction to the completion. The

following lemma is our first tool in making this reduction.

Lemma 3.1 Assume that ¢ : R — S is a homomorphism of rings, P is a prime

ideal in S and p = ¢~ (P). Then p™ C ¢=1(P™), for all n > 0.
Proof. We have a natural commuting diagram

F ]

R— S
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and we are considering the behavior of the ideals p” and P"™ under the appropriate
extensions and contractions. Since pS C P, we see that p"S = (pS)" C P" and
therefore that (p"S)Sp C Pp. Thus,

¢~ (P™) = ¢~ (PENS)

= (7 (Pp)NR
(since the diagram commutes)

2 (¥~ H((p"9)Sk)) N R
= (" (0" Ry)SP)) N R
= (" (pySp)) N R

as desired. [}

The following proposition will allow us to reduce Conjecture 1.2 to the case where

R is complete.

Proposition 3.2 Assume that (R, m) and (S,n) are regular local rings and R — S
1s a faithfully flat extension such that mS = n. If Conjecture 1.2 holds for R, then
Conjecture 1.2 holds for R.

Proof. Let p and g be prime ideals of R such that p+q is m-primary and ht p+ht q =
dim R and fix f € p™ Nq. Let P be a prime of R that is minimal over pf% and let
Q be a prime of R that is minimal over qR. By Corollary 2.13, ht (P) = ht (p) and

N

ht (@) = ht (q), so that ht (P) 4+ ht (Q) = dim(R) = dim(R). By assumption

VP+Q2Vhtak=mR=n
so that P+ @ is n-primary. By Lemma 3.1, f € P™ NQ. Since Conjecture 1.2 holds
for R, f € n"™ N R =m""!, as desired. [ |

In the following theorem, we verify Conjecture 1.2 for regular local rings that

contain a field by showing that it follows from the results of the previous chapter.



36

Theorem 3.3 Assume that (R,m) is a regular local ring that contains a field and
that p and q are prime ideals of R such that /p +q = m and dim(R/p)+dim(R/q) =

dim(R). Then p™ N g C m™*! for all positive integers n.

Proof. Let R denote the m-adic completion of R. Then the extension R — R is
faithfully flat (c.f., [15] Theorem 8.14). Also, R is a regular local ring with maximal
ideal mR (c.f., Atiyah and MacDonald [1] Propositions 10.15, 10.16 and 11.24). By
Proposition 3.2, it suffices to prove that the theorem holds for }A%, SO We may assume
that R is complete.

Suppose that f € p™ Nqand f ¢ m"*'. By Theorem 1.3 f € m”, and f & p(*+1),
Let R = R/(f) and similarly for m’, p" and q’. Then R’ is a complete Cohen-Macaulay
local ring with prime ideals p and q such that \/p"+ ¢ = m’ and e(R},) = n = e(R).
By Theorem 2.29

dim(R) = dim(R/p) + dim(R/q) = dim(R'/p") + dim(R'/q") < dim(R") = dim(R) — 1

a contradiction. This establishes the result. [ |

3.2 A Note on the Mixed-Characteristic Case
The argument of the previous section depends heavily on the assumption that
our rings contain a field. Thus, we can not apply these methods to rings of mixed
characteristic. We can, however, make a reduction in this case to assume that our
rings have algebraically closed residue fields. The following lemma gives the main
tool used for this reduction. Recall that a p-ring is a discrete valuation ring whose

maximal ideal is generated by the prime integer p (that is, the p-fold sum of 1).

Lemma 3.4 Let L be a complete p-ring with residue field k. Let K be the algebraic
closure of k. Then there exists complete p-ring L dominating L with residue field K.

Furthermore, the inclusion L C L is a flat extension.

Proof. By [15] Theorem 29.4, there exists a p-ring L; dominating L with residue
field K. If we let L be the completion of Ly, then L is a complete p-ring dominating
L, (and therefore dominating L) with residue field K by [15] note (4) on p. 63. The
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fact that the extension is flat follows from the fact that a module over a discrete

valuation ring is flat if and only if it is torsionfree. |

The following proposition allows us to reduce Conjecture 1.2 to the case where

the ring has algebraically closed residue field.

Proposition 3.5 Conjecture 1.2 holds for all regular local rings of mized charac-
teristic if and only if it holds for all reqular local rings of mixed characteristic with

algebraically closed residue fields.

Proof. One implication is trivial. Assume that Conjecture 1.2 holds for all regular
local rings of mixed characteristic with algebraically closed residue fields, and let R
be a regular local rings of mixed characteristic. By Proposition 3.2, we may assume
that R is complete. Let k = R/m. The Cohen Structure Theorem implies that R has
a coefficient ring L which is a complete p-ring and that either R = L[X7,... , X{]
(unramified) or R = L[Xy,...,Xy][X]/(f) where f is an Eisenstein polynomial
(ramified). Let L be as in Lemma 3.4. If R is unramified, then let R = L[ X7, ..., X4].
Otherwise, let R = L[X1, ..., Xg[[X]/(f). In either case, R is a complete, regular
local ring dominating R, which has the same dimension (d+1) as R. Furthermore, the
inclusion R C R is a flat extension of regular local rings. Let @ denote the maximal
ideal of R. Then for all n, m"R = m" and @" N R = m". By Corollary 2.13, if p and
q are prime ideals of R such that dim(R/p) + dim(R/q) = dim R = d + 1, and p and
q are primes of R, which are minimal over pR and qR respectively, then dim(R/p) =
dim(R/p) and dim(R/§) = dim(R/q), so that dim(R/p)+dim(R/q) = d+1 = dim R.
If, additionally, v/p + q = m, then m* C p + q so that m’ = mRCpR+qRCp+4,
which implies that \/F = m. Finally, suppose that p™ N q € m™*'. Then there
exists f € (p™ N q) ~ m"*! and if we consider f as an element of R, then (i)
f€p™ Ngby Lemma 3.1, and (ii) f € m"' by our previous observations. Thus, a
counterexample in R would pass to a counterexample in R, and it suffices to prove

the theorem for R. This is the desired result. [ |

It should be noted that this construction works equally well if R = k[ X7, ..., X4].
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3.3 Low Dimensional Cases
In this section, we prove Conjecture 1.2 in the following cases: (i) dim(R) < 3,
(ii) length(R/(p +q)) = 1, and (iii) n = 1. The motivation for considering such
low-dimensional cases is that they are relatively straightforward and could provide
the beginning of any number of induction arguments. The following lemma gives the

main tool for dealing with the case dim(R) < 3.

Lemma 3.6 Let R be any commutative ring, q a prime ideal of R and a a principal

ideal in R. Then aNq™ = aq™ for every n > 0.

Proof. Let a = aR. Since bc C b N ¢ for any pair of ideals, we need only show that
aRN g™ C aRq™. Fix az € aRNq™. Since a & q we see that a is a unit in R,.
Thus, in Ry, z = a 'az € qq so that x € gy N R = q™, as desired. [

The following proposition supplies a verification of Conjecture 1.2 for regular local

rings of dimension at most 3.

Proposition 3.7 Assume that R is a reqular local ring of Krull dimension d < 3
with mazimal ideal m. Then for all prime ideals p and q of R such that \/p +q=m
and dim(R/p) + dim(R/q) = d, p™ N q™ C m™*", for all m,n > 0. In particular,

Conjecture 1.2 holds for reqular local rings of dimension at most 3.

Proof. The fact that d < 3 implies that either p or g has height 0 or 1, that is, either
p or q is principal. If p is principal, say p = aR, then p(™ = a™R and since a" € q
(otherwise p C q) Lemma 3.6 implies that p(™ N q™ = p(™ g™ C m™+", The proof

is similar if q is principal. [ |

The following proposition supplies a verification of Conjecture 1.2 in the case

where p + q = m, i.e., the case where length(R/(p + q)) = 1.

Proposition 3.8 Assume that R is a reqular local ring of Krull dimension d with
maximal ideal m. Let p and q be prime ideals of R such that p +q = m and
dim(R/p) +dim(R/q) = d. Then for all m,n >0, p™ Nq™ C m™ ™. In particular,
Conjecture 1.2 holds under these hypotheses.
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Proof. We begin by demonstrating that there exists a regular system of parameters
ti,... ,t.u, ... ,us for R such that p is generated by the t; and q is generated by
the u;. Let M = m/m? P = (p+m?)/m? C M and Q = (q + m?)/m? C M.
Then P+ Q = M. Let ty,...,t. € p such that {¢;} C P forms a basis of P over
R/m = k, and similarly for ui,...,us € ¢. Since the #; are linearly independent
over k, the ideal p’ = (t1,...,t,) is prime of height r contained in p. Similarly,
q" = (u1,...,us) is prime of height s contained in q. Since {#;, @;} span M, we see that
r4+s>dim(M) =d. Ifp’ # p, thenr = htp’ < htp so that d < r+s < htp+htq = d,
a contradiction. Thus, p = p’ and similarly ¢ = q’. Then r +s = htp + htq = d,
and since {t;,w;} span M, we see that this is a basis for M. Thus, we have a regular
system of parameters.

Let G = gra(R) = k[T1,...,T,,Uy,... ,U,] where T; and U; are the images of
t; and u;, respectively, in m/m?. With the notation of Definition 2.9 T; = ¢ and
similarly for U;. Let P = (T4,....,7}), @ = (Uy,...,U;) and M = P + Q. Then
p¢ = P, and in fact, (p™)% = P™ for all m since each is generated by the monomials
in the t¥ = T; of degree m. Similarly, (q")¢ = Q" and (m")¢ = M". Also, by
checking monomials, we see that P N Q" = P™Q™ C M™". Now, suppose that
fem™ng®) ~m”™" Then the degree of f is strictly smaller than m + n, so that
f¢ ¢ M™m. But f€ e (p™)¢ N (q")% = PPN Q" C M™*" a contradiction. Since
p and q are generated by regular sequences, p(™ = p™ and q™ = ", proving our

result. [ |

Note the stronger containment p™ N q™ C m™*+" proved in the previous two
propositions. We do not conjecture that this containment should hold in the arbitrary
case, as we have no evidence like Theorem 1.1 to suggest that it should hold in general.
However, at this time, I know of no counterexample.

The following proposition gives a verification of Conjecture 1.2 in the case where

n = 1.

Proposition 3.9 Assume that R is a reqular local ring of Krull dimension d with

maximal ideal m. Let p and q be prime ideals of R such that \/p+q = m and
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dim(R/p) + dim(R/q) = d. Then pNgq C m?.

Proof. If pnq € m? then fix f € (p Nq) ~ m? In particular, f € m \ m?,
so that R = R/fR is a regular local ring of dimension d — 1. If p’, ¢’ and m’
are the images of p, g and m, respectively, in R’, then p’ + ¢’ is m’-primary and
dim(R'/p") +dim(R'/q') = d > dim(R’), which contradicts Serre [21] Theorem V.6.3.
|

3.4 Ideals Generated by Regular Sequences
One particularly well-behaved class of ideals include those which can be generated
by a regular sequence. When p is such an ideal, we prove a slightly stronger version
of Conjecture 1.2 and a similar result when q is generated by part of a regular system
of parameters. The following lemma gives a verification of a version of Conjecture 1.2
for graded rings. We shall use the lemma below to verify Conjecture 1.2 when p is

generated by a regular sequence.

Lemma 3.10 Let (A,n) be a local ring of Krull dimension s, G = A[X1,...,X,] a
polynomial ring, P = (Xy,...,X,), and M = nG + P. Assume that Q) is a proper
homogeneous ideal of G (so that, in particular, Q@ C M) such that htQQ = s. Let
Qo = QN A, and assume that Qy is n-primary. Then Q N P™ C nP™ C M"™* for all

n > 0.

Proof. Let Q' be a minimal prime of ) such that ht ' = ht@Q. Then @’ is
homogeneous and n 2O Q' N A D (y. Since (g is n-primary and @' N A is prime, we
see that Q' N A = n. Furthermore, if we can show that Q' N P™* C nP™ C M"™! then
QNP*C QNP CnP*C M™! and we are done. Thus, we may assume that Q
is prime and that @y = n. Then @ and nG = QoG C @ are both prime of height s
so that ) = nG. Then, any element f of ) N P™ has coefficients in n C M, implying
that Q N P* C nP" C MP™ C M™*!, as desired. [ |

The following is a technical lemma we shall employ in the proof of Conjecture 1.2

in the case where p is generated by a regular sequence.
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Lemma 3.11 Let A be a ring with ideals a and b. Let G = gro(A) and a® C G the
ideal of initial forms of a in G which is the homogeneous ideal a® = @;((a N b*) +
bt /6t and let b’ = bA/a. Then there is a ring isomorphism G/a% = gry(A/a).

Proof. The natural map G — gry(A/a), given in degree i by the projection
b/6" — (b" 4+ a)/(6" +a) = b"/(b' N (B! + a)) = b /(6" + (b' N a))
is a well-defined homomorphism of graded rings that is surjective. The kernel in

degree i is exactly (6°F! + (b N a))/b"! which is exactly the term of a® in degree 1,

so that a© is the kernel. [ |

The following proposition gives the essential argument for Conjecture 1.2 when p is
generated by a regular sequence (Corollary 3.13). We state the proposition separately
here as we shall use it later for symbolic powers of ideals that are not necessarily
prime (Theorem 3.24). Note that the regularity requirement of Conjecture 1.2 has

been loosened here.

Proposition 3.12 Assume that R is a Cohen-Macaulay, local ring of Krull dimen-
sion d with mazimal ideal m. Let I and J be ideals of R such that I is gener-
ated by a regular sequence, /I +J = m and dim(R/I) + dim(R/J) = d. Then
I"nJCmi™Cm" foralln > 0.

Proof. Let xq,...,z, € m be a regular sequence that generates I. In particular,
I has height r. Let A = R/I, n = mA and G = gr;(R). Since the x; form a
regular sequence, G = A[Xy,...,X,] is a polynomial ring, where X; = z¥. Let
s=dim(A) =d—r =ht(J), and let P =19 and Q = J. Then P = (X;,...,X,)
and for n > 0, (p")¢ = P" (to see this we can check generators). Furthermore,
Lemma 3.11 implies that G/Q = G/JY = grp(R/J) so that ht Q = dim(G) —
dim(G/Q) = d — dim(grp(R/J)) = d — dim(R/J) = htJ = s. Finally, Qy =
(J 4+ I)/I which is n-primary since I + J is m-primary. Thus, Lemma 3.10 implies
that Q N P* C nP™ C M+,

Now, suppose that I" NJ € mI™. Then there exists f € (I" N J)~mI". In
particular, f € I" ~ I"™! so that f¢ € G,. By construction, though, f € QN
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P" C nP" so that f € MM = nl"/1"! = (mI™ + ™) /1", This implies that

feml® + "M C m"*t! a contradiction. [ |

Corollary 3.13 Assume that R is a Cohen-Macaulay, local ring of Krull dimension
d with mazximal ideal m. Let p and J be ideals of R such that p is prime, \/p + J =
m and dim(R/p) + dim(R/J) = d. If p is generated by a reqular sequence, then

p™ N J Cm™tt, for alln > 0.

Proof. Since p is generated by a regular sequence, p™ = p”. Now apply Proposi-

tion 3.12. n

We shall see below (Theorem 3.24) that Conjecture 1.2 holds when p is generated
by a regular sequence and is not necessarily prime.
It is natural to consider next the case where p is equimultiple. A theorem of

Huneke [11] tells us that in many cases this follows directly from Corollary 3.13.

Theorem 3.14 Let R be a Noetherian local ring and p a prime ideal such that R,
is reqular. Suppose either R of grr(p) is Cohen-Macaulay. If p is equimultiple then

p 1s generated by an R-sequence.

The following proposition gives another criterion for the containment p” Nq C

m™*! to hold.

Proposition 3.15 Assume that R is a reqular local ring of Krull dimension d with
mazximal ideal m. Let p and q be prime ideals of R such that \/p+q = m and
dim(R/p) + dim(R/q) = d. Let G = gru(R) and let P = p%, Q = q% and M = m¢
be the ideals of initial forms in G. If /P + Q = M, then p" Ngq C m*™L

Proof. First, we observe that P"N@Q C M™*!. Since the localization G is a regular
local ring which contains a field, the theorem holds in this ring. Since Py + Qs is
My-primary and ht Py + ht Qp = ht P4+ htQ = htp + htq = d = dim Gy, we

consider minimal primes of P and @ of the same heights to see that

(PN Q)w = (Pu)"NQur C (My)™™ = (M™)
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and we contract to G to see that
P"nQ C (P" N Q)M NG C (MnJrl)M NG = M(n+1) _ Mt

since M is maximal.
Next, we observe that ((p™)¢),, = (P"),. Notice that once we show this, we are

done. If f € (p" Nq) ~ m"*! then
FEeG () Na® = ((1"))nN (@90 = (P"NQ)w C (M"), =0
which is a contradiction. To prove the desired equality, we observe that
(P")n = (P1)" = (p" + ™) m™ = ((p" N m™) +m"™ ) fm™ = ((p") %)
as desired. [}

Example 4.19 below shows that, in general, \/m # M.

With all this work in mind, one might also ask whether there are reasonable
conditions that guarantee that p™ N q = p™q. Certainly, this equality would imply
Conjecture 1.2 for these ideals. It is always true that p™ N g O p(™q, but equality
does not hold in general: for example if p(™ is contained in q or vice-versa. Under our
usual dimension and spanning restrictions, it seems natural to wonder if this equality
holds for sufficiently “nice” ideals, for example, ideals generated by a regular sequence
or even by part of a regular system of parameters. By Lemma 3.6, if one of the ideals
is principal (i.e., generated by a regular sequence of length 1), the answer is “yes.”
In general, though, the answer is still “no.” To see this, we start with a lemma which

shows that the different between p™ N q and p™q can be computed using Tor.

Lemma 3.16 Assume that R is a local, Noetherian ring with x1,... ,rs € m a

reqular sequence. Let J = (x1,...,x5), and let I be a nontrivial ideal of R. Then
Tori(R/I,R/J) = (INJ)/(I])

Proof. Since J is generated by the regular sequence z1, ... , x; we can use the Koszul

complex to compute the Tor module. We recall the relevant definitions. Let Ky = R,



44

K, = R* and K, = r(). Let a basis of K5 be given as {e;; : 1 <i < j < s}. Then

the differentials are given by the following formulas.

K K, Ky
€;j > Tie; — Tj€;
e —— ;
The module Torf(R/I, R/J) is the homology of this complex after tensoring with
R/I. We construct an isomorphism ¢ from this module to (INJ)/({J). An element
of Torf'(R/I, R/J) is represented by an s-tuple (a;) = (ay,... ,as) € ker(d;) C K, =
R®. Since (a;) is in the kernel of dy, >, @;z; = 0 so that Y, a;x; € I. Since the z; € J,
> aix; € INJ. Thus, we define ¢ : ker(dy) — (INJ)/(1J) as (@;) — >, a;x;. To see
that this is well-defined, the essential step is to show that if @; = 0, then Y, a;a; € I.J.
This is clear, however, as @; = 0 = a; € I. This map factors through the quotient
ker(dy)/Im(dz), as ¢(da(e; ;) = ¢d(ae; — xje;) = T¥; — T;-; = 0. This gives a
well-defined map ¢ : Torf(R/I,R/J) — (I N J)/(IJ). Tt is surjective, as every
element of (1 N J)/(1J) is of the form ), a;x; and is, by definition, in the image of
¢. To see that ¢ is injective, suppose that (@;) — 0. This implies that >, a;z; € I.J
so that >, a;x; = ) . p;x; for some p; € I. Then ) ,(a; — p;)x; = 0, so that in the
original Koszul complex (before tensoring with R/I) the element (a; —p;) € K; is in
the kernel of dy. This complex is exact, so (a; — p;) = da(b) for some b € Ky. Thus,
do(b) = (a; — p;) = (a@;) which implies that (a@;) = 0 in Torf(R/I, R/J), as desired.l

We note that this lemma holds without the assumption that J is generated by a
regular sequence (c.f., Rotman [20] Corollary 11.27).

Now assume that R is a regular local ring with ideals I and .J such that dim(R/I)+
dim(R/J) = dim R, v/I + J = mand J is generated by a regular sequence 1, ... , T, €
m. Then the lemma tells us that I N J = IJ if and only if Torf(R/I,R/J) = 0 if
and only if the z; form a regular sequence on R/I. This condition occurs if and only
if R/I is Cohen-Macaulay. To see this, assume that R/I is Cohen-Macaulay. Then
depth(R/I) = dim(R/I) = s, by assumption, and xy,...,xs generate an ideal of
height s in R/I and therefore form a regular sequence on R/I. Conversely, if R/
is not Cohen-Macaulay then depth(R/I) < dim(R/I) = s and R/I can not have a
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regular sequence of length s. It follows that there are numerous examples where the
containment ™ N .J D 1] is nontrivial.
In the following proposition, we verify Conjecture 1.2 for the case where q is

generated by part of a regular system of parameters.

Proposition 3.17 Assume that (R,m) is a reqular local ring of Krull dimension d.
Let p and q be prime ideals of R such that \/p + ¢ = m and dim(R/p)+dim(R/q) = d.
Assume that q is generated by part of a reqular system of parameters. Then p™ Ngq C

m"q, for alln > 0. In particular, Conjecture 1.2 holds when R/q is reqular.

Proof. First, we note that, if we can prove that p™ N q C m™*!, then the desired
result follows. We prove this by induction on s = ht (q). The case s = 0 is trivial,
and the case s = 1 follows from Lemma 3.6. Fix any u € g~ m? and let R = R/uR,
q = q/uR and so on. By Proposition 3.9, u & p, so that ht (p) = ht (p). Let T be a
minimal prime ideal of p which has the same height as p. By induction, T Ng C m"g
so that p™ N q C m"q+ (u). For f € p™ Nyq, f =3, aiz; + bu where the a; € m™.
If b ¢ m”, then f & m™*! which contradicts the containment p™ N g C m™+!.

Suppose that the residue field of R is finite. As in the proof of Theorem 3.3, let
R(X) = R[X]m[x) which is a faithfully flat extension of R such that mR(X) is the
maximal ideal M of the regular local ring R(X). Furthermore, since q is generated
by part of a regular system of parameters for R, the same is true for the extension
Q = qR(X). Let P be a minimal prime of pR(X) and fix f € p™ Ngq. If Part 1 holds
for R(X), then f € M™™' N R = m™™! by faithful flatness. Thus, we may assume
that R has infinite residue field.

Let z1, ... ,xs be part of a regular system of parameters such that q = (x4, ... , zy).
We prove each result by induction on s. Lemma 3.6 implies the case s = 1 for both
results. Assume that s > 2 and for some u € g~ m?, let R = R/(u), § = qR, and so
on. Then ht (p) = ht (p) so let T be a minimal prime ideal of p which has the same
height as p. Then t and ¢ satisfy the hypotheses of the proposition, so by induction,
t™ Ng C@m"*!. By Lemma 3.1, this implies that p™ N g C m"*! + (u) for all such
u. Suppose that f € p™ N q such that f & m™*!. Since s > 2, we see that for every
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unit v of R, f € m" ™! + (z; + vay). Since f € m™ . m" "L the initial form of f in
G = gra(R) = R/m[X,, ..., X4] is a multiple of X; + v¥X, for every such v. Since
R has infinite residue field, there are an infinite number of distinct elements of G of

this form so that f& has an infinite number of prime factors, a contradiction. [ |

3.4.1 The Use of Regular Alterations

With Gabber’s work on nonnegativity (c.f., [19]) and Propositions 3.12 and 3.17
in mind, it would make sense to try to use Theorem 2.33 to reduce to the case where
a global version of p or q is locally generated by a regular system of parameters.

For our purposes, let (R, m) be a regular local ring that is of finite type over a
field or a complete discrete valuation ring with algebraically closed residue field. Let
p and q be prime ideals of R such that /p +q = m and ht (p) + ht (q) = dim(R).
We let A = R/p and let I € Proj(R/p[Xo,...,X,]) be an ideal coming from a
regular alteration of R/p. Let S = R[Xy,...,X,] so that I corresponds to an
element P € Proj(S). Let @ = qS. If P and ) were to satisfy the same conditions
satisfied by p and ¢, at least locally, then we might hope that a counterexample in
R would pass to a counterexample in A. Unfortunately, P and () will not satisfy
the desired conditions, as noted previously. The same problem occurs if we take a

regular alteration of R/q.

3.5 Ordinary and Symbolic Powers of Ideals
We investigate versions of Conjecture 1.2 where p and q are not necessarily prime
ideals and where the inclusion under consideration is p” N q C m"*!. We also give
some indication as to how this may help in the investigation of the original version
of the conjecture. The following lemma allows us to replace q with any ideal with

the same radical as q in Conjecture 1.2.

Lemma 3.18 Assume that R is a reqular local ring of Krull dimension d with
mazimal ideal m. Let I and J be ideals of R such that /I + J =m and dim(R/I) +
dim(R/J) = d. Let J' be an ideal of R with the same radical as J (e.g., J' is a

reduction of J or the integral closure of J or the radical of J). Then
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1. I"nJ Cm™*! for allm > 1 if and only if I"NJ C m" ™ for all n > 0.

2. If I is unmized, I™ N J" C m™*! for all n > 0 if and only if I™ N J C m"+!

for alln > 0.

Proof. The proof of part 1. is almost identical to that of part 2. so we only prove part
2. The assumption that I is unmixed is only needed for the properties of I which we
require. The result is symmetric in J' and J, as v/J = V.J' = dim(R/J) = dim(R/.J")
and vJ' +1 = m. Assume that I N J C m™*! for all n > 1, and suppose that
f e (I™nJ)~m"tl Then, the degree of f (with respect to m) is exactly n, and
the degree of f! is exactly nt for all positive integers ¢. By assumption, J* C J’ for
some positive integer . Thus, f* € J' N (IM™)* C J' NI C m™*! a contradiction.
[

We consider the containment I™ N J C m"™! for the following reasons: (i) it is
not known, and (ii) if we can verify this containment, then it may lead us closer to
establishing Conjecture 1.2.

The following lemma is the first tool to be used in verifying a version of Conjec-

ture 1.2 for a class of ideals in the unramified, mixed-characteristic case.

Lemma 3.19 Assume that A is a complete reqular local ring, n > 0, and f =
X"+ a; X"+ +a, a polynomial with coefficients in A. If p C A[X] is a prime
ideal, po = p N A and f € p™, then p is the unique prime ideal of A[X] containing

f, which contracts to py in A.

Proof. First, we reduce to the case where py is maximal. Let S = A ~\ po.
Weierstrass Preparation implies that in the commuting diagram (where all the maps
are canonical)
A — AIX] — A[X]/(f)
N !
A[X] — A[X]/(f)

the right-hand vertical map is an isomorphism. The localized diagram
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Apy — Apg [X] — Ap[X]/ ()
N =)
A[X]s — A[X]s/(f)

also has an isomorphism in that spot. The prime ideals of A[X] that contain f and
contract to po in A are in bijection with the primes of A[X]s/(f) = Ay [X]/(f)
which contract to the maximal ideal of the local ring A,,. Furthermore, letting

s = (p N A[X])s we have
fe®p™)snAX]s = ((pNAX])s)" =5

If we can show that s is the unique prime in A, [X] containing f which contracts to
S0 = (Po)p, I Ap,, then p is the unique such prime in A[X]. So we may assume that
we are considering the extension A — A[X] and that p N A is maximal.

The extension A — A[X]/(f) is finite, so p C A[X]/(f) is maximal. Thus, p is
maximal. Since po is maximal, A/po[X]is a PID andsop C A/po[X] = A[X]/po[X] is
principal, generated by f1, which is a prime factor of the image fof f inp C A/po[X].
Since p is maximal, p” is p-primary and f € p™ = p™ so that f € p” = (f7). Thus,
f = f{’ﬂ for some u. Since f1 must have positive degree, we see that f1 must be
linear, and @ must be constant, so that modulo py, f has a unique prime factor.
Thus, any distinct primes of A[X] containing f and contracting to po would pass to
distinct primes of A/po[X] containing f. But the only such prime is ( f1>, so we have

uniqueness. [ |

The following lemma is the main tool to be used in verifying a version of Conjec-

ture 1.2 for a class of ideals in the unramified, mixed-characteristic case.

Lemma 3.20 Assume that A is a complete reqular local ring, n > 0, and f =
X"+ a; X"V + - + a, a polynomial with coefficients in A. Let R = A[X] with
mazimal ideal m and assume that p and q are prime ideals in R such that \/p +q=m

and f € p™ Nq. Ifpo=pN A, then poR + q is also m-primary.

Proof. For an ideal a C R, let Z(a) C Spec(R) denote the closed subscheme

determined by a. Since a is m-primary iff Z(a) C {m}, we need only show that
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Z(poR+q) = Z(p+4q). Since poR+q C p+q, we know that Z(poR+q) 2 Z(p+9q),
so we need only demonstrate the reverse inclusion. The fact that f isin q tells us that
polt+4q = (poR+ fR)+4q, so that Z(poR+q) = Z((poR+ fR) +q) = Z(poR+ fR) N
Z(q). Since Z(p +q) = Z(p) N Z(q), it suffices to show that Z(poR + fR) C Z(p).
Furthermore, it suffices to show that if R = R/(poR + fR), then the image p of p in
R is the unique minimal prime of R, since then any prime of R must also contain p.

Since A/pg is complete and local, and since f is monic we see that the extension
A/po — A/po[X]/(f) = R is finite. Furthermore, R is a free A/po-module, so
both the going-up and going-down theorems hold for this extension. In particular,
htp = ht (1 A/pg) = ht (0) = 0 so that p is a minimal prime of R. Now, let 5 be any
minimal prime of R. By Lemma 3.19, it suffices to show that the contraction of s in
A/pois (0). Since A/py is an integral domain, it suffices to show that ht (sNA/py) = 0.
This follows by going-up and going-down, since ht (s N A/pg) = hts = 0. [

The following proposition gives another class of ideals satisfying the containment

I"NnJ Cm"! foralln>1.

Proposition 3.21 Let L be a complete p-ring with infinite residue field k and let
R = L[Xy,...,X4] with mazimal ideal m. Assume that I and J are ideals of R such
that dim(R/I) + dim(R/J) = d + 1 and /T+ J = m. Let p denote the image of p
in m/m?, and let T = (I +m?)/m?> Cm/m? Ifkp € I, then I"NJ C m™*L for all

n>1.

Proof. If I C m? then I"™ C m? C m"™! for all n > 0. Otherwise, let d(I) =
dimy (1) > 0. For d(I) > 2, the proof of Proposition 3.17 shows that we can reduce
to the case d(I) = 1. (Let H = grn(R), and for z € R, let Z € H denote the initial
form of z in H. Fixing z,y € p ~ m? such that kX # kY, we need to make sure
that there is an infinite number of elements = 4 uy that are relatively prime modulo
m? and such that R/(x + uy)R is unramified of mixed characteristic. That is, the
T + uy must satisfy z +uy € (p) + m?. To see that this is possible, we note that, if
P|(X 4+ UY), then for every nonzero V € k, P{ (X + V(X + UY)).) Similarly, we

may assume that d(J) < 1.
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Fix z € p~m?. Let G = gry(R) and and consider the natural homomorphism of
graded rings ¢ : G — H. Let q“ denote the ideal of initial forms of q in G, and for any
element f of q let f¢ denote the initial form of f in G. To show that p” Nq C m"*!
for all n > 1, it is equivalent to show that ¢(q%) = 0. Since p C (x) +m?, we see that
the image of ¢ is exactly k[X]. Suppose that f € (p"Nq)~m"*1. Then ¢(f¢) = a X"
for some nonzero element a € k, and it follows that f € (z)+m"* If x & (p) + m?,

then we may assume that r = X;, and Lemma 3.20 gives a contradiction. [
For what follows, we need a notion of symbolic powers for arbitrary ideals.

Definition 3.22 Let I be an ideal of a ring A. The nth symbolic power of I is the
ideal

1™ =(I"A, N A)

where the intersection is taken over all minimal prime ideals of A/I. If I is a prime

ideal, then this definition agrees with the previous definition.

The following lemma shows that symbolic powers of ideals generated by regular
sequences are exactly the regular powers. This shall give us the generalization of

Corollary 3.13 which was mentioned above.

Lemma 3.23 Assume that I is generated by a reqular sequence (not necessarily

prime) of height r in a Cohen-Macaulay local ring A. Then I = I" for alln > 1.

Proof. Let ay,...,a, be a regular sequence generating I, and let / =g, N---Ngq;
be an irredundant primary decomposition of I with \/q; = p;. Since I is generated
by a regular sequence and A is Cohen-Macaulay, we know that ht (p;) = r for each 7.
First, we note that IV = I. The correspondence of primary ideals under localization

implies

as desired.
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Now, assume that n > 1 and fix z € I™. By induction on n, we know that
z € I = "1 Suppose that « & I". By the definition of 10, there exists s; €
R~ p; such that s,z € I". Since z € 11 = [*~1 the fact that the q¢; form a quasi-
regular sequence implies that there exists a homogeneous polynomial F(z1, ... ,z,) €
Rlzy, ... ,z,] of degree n — 1 such that F'(ai,...,a,) and the coefficients of I are
not all in /. The polynomial s;F then satisfies s;F'(aq, ... ,a,) = s;xz € I" so that the
coefficients of s;F' are all in I. Because such an s; exists for each p;, it follows that

the coefficients of F are all in /") = I, a contradiction. [ |

Theorem 3.24 Assume that R is a Cohen-Macaulay, local ring of Krull dimension
d with maximal ideal m. Let I and J be ideals of R such that I+ J = m and
dim(R/I) + dim(R/J) = d. If I is generated by a regular sequence, then 1™ N .J C

m/™ Cm™ for alln > 0.

Proof. In light of the proof of Corollary 3.13, the result follows from Lemma 3.23.1

3.6 Nonregular Rings

The nature of induction arguments we might try lead us to take quotients of our
rings. For example, recall the induction argument for Proposition 3.17. However,
without minimal generators of m in our ideals, our quotients will no longer be regular.
One might ask whether we can loosen the restriction of regularity if we require more
from our ideals p and q. For instance, we might require p and q to have finite
projective dimension. As we have shown, we may need to assume that R satisfies some
reasonable hypotheses, for instance, quasi-unmixedness or Cohen-Macaulayness. It
seems clear that we should work within a class of rings which properly contains the
regular local ones and is closed under specialization (i.e., passing to a quotient by a
regular sequence). We desire this in order to be able to take more quotients, since
our ideals will contain plenty of regular elements, even if they contain no minimal
generators of m.

In light of Example 4.16, we see that the assumption that p and g have finite

projective dimension is quite restrictive. In fact, we immediately have the following.
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Lemma 3.25 Assume that (R,m) is a local Noetherian ring with prime ideal p of
finite projective dimension. Then R, is a reqular local ring. In particular, p is locally

generated by a reqular sequence.

Proof. The fact that p has finite projective dimension implies that R/p has finite
projective dimension. Let Fy, — R/p be a free resolution of R/p over R. Because
localization is exact, we see that (R,) ®r Fo — (R,) ®r R/p = k(p) is a finite
free resolution of k(p) over R,. Thus, the residue field of R, has finite projective
dimension over R,. The theorem of Auslander-Buchsbaum-Serre (c.f., [4] Theorem

2.2.7) implies that R, is regular. |

Another indication of the strength of the finite projective dimension condition is

supplied by the following lemma.

Lemma 3.26 Assume that (R, m) is a local Noetherian ring with finitely generated
module M of finite projective dimension. If Ass(R)NSupp(M) # 0, then Supp(M) =
Spec(R).

Proof. Fix p € Ass(R)NSupp(M). The exactness of localization implies that M, # 0
has finite projective dimension over R,. Also, A, has depth 0 since the maximal ideal
of R, is p, € Ass(R,) and therefore p, consists of zerodivisors and we can not start a
regular sequence. By the theorem of Auslander-Buchsbaum (c.f., [4] Theorem 1.3.3)
pdim(M,) < depth(R,) so that pdim(M,) = 0. It follows that M, is projective, and
since R, is local, that M, is free. Let Fy, — M be a finite free resolution of M over
R. For every prime ideal q of R, (F,)q — M, is a finite free resolution of M, over Ry,
and each (F})q has the same rank over R, as F; has over R. Applying this to p = q,
we see that the free module M, # 0 has rank
0 < rank(M,) = > (—1)'rank(F}), = Y _(—1)’rank(F})
If g is a prime of R which is not in Supp(M), then M, = 0 so that

0= Z(—l)irank(ﬂ)q = Z(—l)irank(Fi)

% 7
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a contradiction. Thus, Supp(M) = Spec(R), as desired. [

The following corollary gives another condition under which the regularity re-

quirement of Conjecture 1.4 may be loosened.

Corollary 3.27 Assume that (R, m) is a local Cohen-Macaulay ring of dimension d
with ideals p and J such that p is prime of finite projective dimension, dim(R/p) +
dim(R/J) =d and \/p +J =m. Ifht(p) =0 or ht (J) = 0 then p™ N J C m"*L.
In particular, this containment holds for local Cohen-Macaulay rings of dimension 0

and 1.

Proof. First, assume that ht (J) = 0. Then ht (p) = d so that p = m. Lemma 3.25
implies that R = R, = R, is regular. In particular, R is an integral domain so that
J = 0. The result is now trivial in this case.

Next, assume that ht (p) = 0 so that ht (J) = d, from which it follows that J
is m-primary. Since p € Ass(R) N Supp(R/p), Lemma 3.26 implies that V(p) =
Supp(R/p) = Spec(R). Thus, p is the unique minimal prime of R. It follows that
p = 0 (from which the result is trivial), as follows. Since R, is a zero-dimensional
regular local ring, p, = 0. This implies that there exists s € R\ p such that sp = 0.
If p # 0, then s is a zerodivisor on R. However, the fact that R is Cohen-Macaulay
implies that the set of zerodivisors is exactly the union of the associated primes of

R, ie., it is p. It follows that s € p, a contradiction. [ |

Notice that in the corollary, we do not require J to be prime or to have finite
projective dimension. One thing to consider is that, since R is no longer assumed
to be regular, there is no guarantee that p™ C m”. (See Example 4.16 below.) It
may be, however, that the assumption of finite projective dimension will mend this

deficiency, though this is an important open question in the field.



CHAPTER 4

EXAMPLES

In this chapter we give a number of examples that demonstrate the reasons for
the assumptions we place on our conjectures, as well as the limitations of some of the
results.

The following example shows that the requirement e(R,) = e(R) is necessary for

Conjecture 1.4.

Example 4.1 Let k be a field, R = k[X,Y, Z, W] /(XY — ZW) = k[z,y, z,w] with
p = (z,2)R and q = (y,w)R. Then e(R) = 2 > 1 = e(R,) and dim(R/p) +
dim(R/q) =4 > 3 = dim(R).

The following example shows that the requirement /p + q = m is necessary for

Conjecture 1.4.

Example 4.2 Let k be a field, R = k[X], p = q = (0). Then e(R,) = e(R) = 1 and
dim(R/p) +dim(R/q) =2 > 1 = dim(R).

The following example shows that, in order for Conjecture 1.4 to hold, we must

assume that our ring is at least equidimensional.

Example 4.3 Let k be a field and R = k[ X] xj k[Y, Z]. That is, in the diagram
K[X] x k[Y, Z] — k[ X]

l g

kY. 2] — 2k
R = {(a,b) € k[X] x k[Y,Z] : a(a) = B(b)}. It is straightforward to verify the
following facts: (i) R is a local ring with maximal ideal m = ((X,0), (0,Y), (0, 2));
(i) dim(R) = 2; (iii) e(R) = 1; and if p = ((X,0))R and q = ((0,Y), (0, Z))R then
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p+g=mand e(R,) = e(Ry) = e(R) = 1. However, dim(R/p) + dim(R/q) = 3 >
2 = dim(R). he essential problem is that R has components of different dimension.

We should note, as this pertains to Conjecture 1.5, that both p and g have infinite
projective dimension. We demonstrate this in steps. First, depth(R) = 1 so that,
in particular, R is not Cohen-Macaulay. It is straightforward to verify that the
element (X,Y) is R-regular. The element (X,0) is not in the ideal (X,Y)R: if
(X,0) = (X,Y)(f,9) = (Xf,Yg) then ¢ = 0 and f = 1 contradicting the fact
that (f,g) € K[X] xx K[Y, Z]. Also, every nonunit of R/(X,Y)R annihilates the
(nonzero) image of (X,0): (f,¢)(X,0) = (Xf,0) = (X,Y)(f,0) € (X,Y)R. Thus,
the longest regular sequence in R has length 1, as desired.

Second, we note the following properties of p and q. depthgr(R/p) = 2, as
R/p = K[Y, Z] via the natural map R — K[Y, Z] and the sequence (0,Y), (0, 2) is
a maximal regular sequence on R/p. Similarly, depth(R/q) = 1. Furthermore, R/q
is not free, as dim(R/q) = 1 and dim(R) = 2.

Now, suppose that R/p has finite projective dimension. By the formula of Aus-

lander and Buchsbaum, we have
pdim(R/p) + depth(R/p) = depth(R) =1

But the left-hand side of this equation is pdim(R/p) + 2 > 2, a contradiction. If
R/q had finite projective dimension, then a similar computation would show that

pdim(R/q) = 0 so that R/q is free, a contradiction.

The following example shows that the regularity assumption in Theorem 1.3 is

necessary.

Example 4.4 Let k be a field and let R = k[X,Y, Z]/(X? =Y Z) = k[x,y, 2]. Then
R is a complete intersection of dimension 2, but is not regular. Let p = (x, z) which
is a prime ideal in R. It is straightforward to verify that p® = (z) which is not
contained in m?. Note that p does not have finite projective dimension. This shall

be relevant below when we compare Conjectures 1.4 and 1.5.
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The following example shows that the bound in Corollary 2.13 part 1(d) can be

achieved and can be strict, even for a flat, local homomorphism of regular local rings.

Example 4.5 Let k be a field, A = k[X,Y] and A = k[X,VY]. Then A/nA =
k[X,VY]/(X,Y) has length 2. However,

e(A/(X)) =1<2=e(A/(X))length;(A/nA)
e(A/(Y)) =2 = e(A/(Y))length;(A/nA)

so, the inequality can be strict or not.

The following example shows that the condition M N A = n in Theorem 2.18 does

not automatically follow from the fact that M is maximal.

Example 4.6 Let A be a discrete valuation ring with uniformizing parameter t.

Then the field of fractions of A is
K =A[t™" = A[X]/(1 — tX)

so that the ideal (1 — tX)A[X] is maximal. However, it is straightforward to verify
that (1 —tX)A[X]N A= (0), which is not maximal.

The following example shows that the requirement of equidimensionality in The-

orem 2.20 is necessary.

Example 4.7 Let k be a field, A = k[X], B = k[Y]/(Y™) for some n > 1, and
C = A %y, B. That is, in the diagram
AxB—A

o

C ={(a,b) € Ax B : a(a) = B(b)}. It is straightforward to verify the following
facts: (i) C' is a local ring with maximal ideal n = (X)A x (Y)B; (ii) dim(C) = 1;
(iii) e(C) = 1; and (iv) the ideal p = (0)A x (Y')B is a prime such that e(C,) =n >

1 =e¢(C). The essential problem is that C' has components of different dimension.
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The following two examples show that if R/p is not regular, neither implication

of Lemma 2.31 holds.

Example 4.8 Let R = k[X,Y, Z, U, V,W] and let p be the ideal generated by the

2 x 2 minors of the generic matrix
(X Y Z )
u v w
Since R is regular, e(R) = 1 = e(R,). However, ht(p) = 2 and s(p) = 3, since
otherwise p would be generated by a regular sequence by Theorem 3.14. We note
that it can be shown, using local cohomology, that there is no regular sequence in

p which generates p up to radical, i.e., p is not a set-theoretic complete intersection

ideal. (I am grateful to Anurag Singh for showing me a proof of this fact.)

Example 4.9 Let R = k[X,Y, Z, W]/(XY — ZW) with p = (0)R. Then ht (p) =
0 = s(p). However, e(R) =2 and e(R,) = 1.

The following two examples show that, in a ring that is not regular, neither of the
following conditions implies the other: “e(R,) = e(R)” and “p has finite projective

dimension.”

Example 4.10 Let R = k[X,Y, Z W]/(X? - Y Z) = k[z,y, z,w] with p = (z, 2).
Then p has infinite projective dimension and e(R) = 2 = e(R,). Notice that R is a

domain and R/p is regular.

Example 4.11 Let R = k[X,Y, Z, W]/(X? — Y Z) with ¢ = (0). Then R/q is free

(and therefore has finite projective dimension) and e(R) =2 > 1 = e(R,).

We notice that Example 4.11 is not as satisfying as Example 4.10, in the sense that
R/q is not regular. We were attempting to find a local domain R with prime ideal
p satisfying the following conditions: (i) R/p is regular, (ii) p has finite projective
dimension, and (iii) e(R) > e(R,). We have already seen that these conditions are
quite restrictive. In fact, such an example does not exist, as we see in Theorem 4.13

below. The following lemma supplies the main tool for proving the theorem.
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Lemma 4.12 Let (R,m) be a local ring and M a finitely generated R-module. Let
Fy — M be an R-free resolution of M and assume that X = x1,...,2; € R is a
sequence which is reqular on M. Let K, = K(x) denote the Koszul complex of x on

R. Then F, ®r K, is a free resolution of M /xM.

Proof. Since Ko(x1,...,2;) = Ko(x1) ® K¢(22, ... ,;), we may assume without loss
of generality that ¢ = 1, i.e., that we have a regular sequence of length 1. In this

case, K, is exactly
0—-RS5R—0
The tensor product of complexes F, ®r K, is given as
(Fo®@rKe)i =F,® F,_;
with differentials F; ® F;_; 2 F,_1 & F;_, given by
(a,b) = (d(a) + (—1)"""xb, d(b))

where d represents the differential of the complex F,. In particular, F, ®g K, is a

finite free complex. The natural split exact sequence
O—-F —-F&F .- F_1—0
gives us a short exact sequence of chain complexes
0— F, — Fo,Qr Ky — F[-1] — 0

where F,[—1] is the twisted complex of F, so that F,[—1]; = F;_;. This gives a long

exact sequence in homology

= Hy(F)) — Hy(Fy ®p Ko) — Hi_(F)) > Hi_((F.) — - -- (4.1)

It is straightforward to verify that the connecting homomorphism ¢ is given by

multiplication by (—1)""'z. For i > 1 the sequence (4.1) is

= 0> H(F,®rKy) -0 —0— ---
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so that H;(Fy ®r K.) = 0. For i = 1 we have the sequence
o= 0— H(F,op K,) — M 5 M

Since z is regular on M, the map M — M is injective so that H(F, ®g K.) = 0.
For i <0, (Fy ®g K,); =0, and it follows that F, ®pg K, is a free resolution of

ker(Dy) = Coker(M % M) = M/xM
as desired. [}

The following theorem demonstrates that there does not exist a local domain R
with prime ideal p satisfying the following conditions: (i) R/p is regular, (ii) p has

finite projective dimension, and (iii) e(R) > e(R,).

Theorem 4.13 Let (R, m) be a local ring with prime ideal p such that p has finite
projective dimension and let R denote the completion of R. Assume that one of the

following holds:
1. R/p is regular.
2. R is quasi-unmized and e(R,) = e(R).

Then R is reqular. (In particular, e(R,) = 1 = e(R) and every prime ideal has finite

projective dimension.)

Proof. 1. Assume that (R, m) is a local ring with prime ideal p such that R/p is
regular and p has finite projective dimension. Let F, — R/p be a minimal, finite
R-free resolution of R/p. Since R/p is regular, let x = x1,... ,2; € R be a sequence
which forms a regular system of parameters of R/p. Let K, = K,(x) denote the
Koszul complex of x on R, so that, by the lemma, F, ®r K, is a finite, R-free
resolution of (R/p)/(xR/p) = R/m. The existence of such a resolution implies that

R is regular.
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2. Assume that e(R,) = e(R), R is quasi-unmixed. By [8] Theorem 6.8, R is
regular if and only if e(R) = 1. By Lemma 3.25, R, is regular so that e(R) =
e(R,) =1, as desired. |

A surprising benefit of prime ideals satisfying conditions 1 and 2 of the theorem is
that the multiplicity of R can be computed using any minimal reduction of p. More

specifically we have the following.

Proposition 4.14 Assume that (R, m) is a quasi-unmized, Nagata local ring with
infinite residue field and prime ideal p such that R/p is regular and e(R,) = e(R).
Then, for any minimal reduction a of p, e(R) = e(R/a).

Proof. Let z,...,z; € m be a sequence whose residues in R/p form a regular
system of parameters and let y,...,y; € p generate a minimal reduction a of p. By
Lemma 2.31 ¢ = ht (p), and since j = dim(R/p) we see that i+j = dim(R). The ideal
b = (z,y)R is a minimal reduction of m, as it is generated by the correct number of

elements and, assuming that p"a = p"*! we have

m"b = (p,2)"(y.2) 2 (0"(y),0"(2), 9" (2)%,..., (2)"")

= (P p"(2),p" N (2)% . (2)"T) = m T
In particular, b/a is a reduction of m/a so that
e(R) =e(b,R) =e(b/a,R/a) = e(R/a)
as desired. |

The following example shows that ideals P and () which arise after a regular
alteration of the situation of Conjecture 1.4 will not in general satisfy the condition

VP + Q) = M, even after localizing at a maximal ideal M which contains P and ().

Example 4.15 Let R = k[z,y, z,w], p = (z,y) and q = (z,w). Then R/p = k[z, w]
and if we blow-up along the ideal (z,w) then we get a birational resolution with

P = (z,y,zT —wS) C k[z,y, z,w][S, T]. (Even though R/p is already regular, there
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is no way to guarantee that we will pick the “nicest” regular alteration possible.)
With the above notation, @ = (z,w). Even though the dimension statement from
above shows that, locally, P and () have the “correct” heights, their sum is not
locally primary to the maximal ideal. For example, if we consider the open region
Uy C Proj(A/P), which is determined by taking the homogeneous localization
(A/P)ry, we have Pipy + Q) = (x,y,2 — w%) + (z,w) = (x,y,z,w,w%). For this

sum to be the right size, we would need (some power of) % to be in the sum as well,

which is not the case.

The following example shows that the assumption of regularity in Conjecture 1.2

is necessary.

Example 4.16 Let k be a field and let R = k[X,Y, Z]/(X?—Y Z) = k[z, vy, z]. Then
R is a complete intersection of dimension 2, but is not regular. Let p = (x, z) and
q = (z,y) which are prime ideals in R such that p+q = m and dim(R/p)+dim(R/q) =
1+ 1= dim R. However, x € pNq so that pNq Z m?.

The following example shows that the assumption y/p + g = m in Conjecture 1.2

is necessary.

Example 4.17 Let R = k[X,Y] and p = q = (X). Then R is regular and
dim(R/p) + dim(R/q) = 1+ 1 = dim R. However, pNq = (X) € m*.

The following example shows that the assumption dim(R/p)+dim(R/q) = dim R

in Conjecture 1.2 is necessary.

Example 4.18 Let R = k[X] and p = g = (X). Then R is regular and p + q = m.
However, pNq = (X) € m%

The following example shows that the hypothesis /P + () = M in Proposition 3.6

will not hold in general.

Example 4.19 Let R have dimension 2 with regular system of parameters t, u. Let

p=(t) and q = (t + u?). Then P = Q = (t%).
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