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ABSTRACT

Assume that (R,m) is a Noetherian local ring. Kurano and Roberts have made

the following conjecture related to the positivity of Serre’s intersection multiplicity.

Assume that R is regular and contains prime ideals p and q such that
√

p + q = m

and dim(R/p) + dim(R/q) = dim(R); then

p(n) ∩ q ⊆ mn+1 for all n ≥ 1.

We consider this conjecture and the following question, which is a generalization of

the conjecture. Assume that R is quasi-unmixed with prime ideals p and q such that
√

p + q = m and e(Rp) = e(R). Does the inequality

dim(R/p) + dim(R/q) ≤ dim(R)

hold? We answer this question in the affirmative in the following cases:

1. R is excellent and contains a field.

2. ht (p) = 0.

3. R is Nagata and ht (q) = 0.

4. dim(R/q) = 1.

5. R is Nagata and dim(R/p) = 1.

6. R is Nagata and R/p is regular.

We also verify the original conjecture of Kurano and Roberts in a number of cases

(with no excellence restriction), most notably when

1. R contains a field.



2. p is generated by a regular sequence.

3. q is generated by part of a regular system of parameters.

We also present a number of examples that demonstrate the necessity of each of the

assumptions of the conjectures as well as the limitations of some of our results.

v



To Joy



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. THE DIMENSION INEQUALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 An Inequality for Multiplicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Reduction to the Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 The Equicharacteristic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 The Case When R/p is Regular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 The Use of Regular Alterations . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Low-Dimensional Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. THE CONJECTURE OF KURANO AND ROBERTS . . . . . . . . . 34

3.1 The Equicharacteristic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 A Note on the Mixed-Characteristic Case . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Low Dimensional Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Ideals Generated by Regular Sequences . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 The Use of Regular Alterations . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Ordinary and Symbolic Powers of Ideals . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Nonregular Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4. EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



ACKNOWLEDGMENTS

First, I would like to thank my advisor Paul C. Roberts for his willingness to

work with me. His uncanny ability to ask good questions has increased my love for

learning immensely. Second, I would like to thank my wife Joy for her unending

patience and support, as well as her willingness to nod knowingly when appropriate.

Her love and understanding has given me the power to persevere. Finally, I would

like to thank my friends, family and colleagues for their confidence in my abilities.



CHAPTER 1

INTRODUCTION

Throughout this work, all rings are assumed to be commutative and Noetherian

with identity, and all modules are assumed to be unitary.

Let (R,m) be a regular local ring of dimension d, and let M and N be finitely

generated R-modules such that M ⊗R N is a module of finite length. Serre defined

the intersection multiplicity of M and N to be

χ(M,N) =

n∑
i=0

(−1)ilength(TorR
i (M,N))

and conjectured that χ(M,N) satisfies the following properties:

1. dim(M) + dim(N) ≤ dim(R).

2. (Nonnegativity) χ(M,N) ≥ 0.

3. χ(M,N) > 0 if and only if dim(M) + dim(N) = dim(R).

or, equivalently,

1. dim(M) + dim(N) ≤ dim(R).

2. (Vanishing) If dim(M) + dim(N) < dim(R), then χ(M,N) = 0.

3. (Positivity) If dim(M) + dim(N) = dim(R), then χ(M,N) > 0.

Serre was able to verify the first statement for any regular local ring, and to verify

the others in the case when R is unramified. Since χ(M,N) has many of the

characteristics we desire from an intersection multiplicity (for example, Bézout’s

Theorem holds), it was not unreasonable to suppose that these further properties

are satisfied for an arbitrary regular local ring. The results were left unproved for
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ramified rings, and Serre also asked whether a proof existed in the equicharacteristic

case which did not use reduction to the diagonal.

The vanishing conjecture was proved about ten years ago by Gillet-Soulé [6] and

Roberts [18] using K-theoretic methods. The proof in [6] uses the theory of Adams

operations on Grothendieck groups of complexes, while that in [18] uses the theory of

local Chern characters. O. Gabber proved the nonnegativity conjecture very recently1

using a theorem of de Jong [5]. Kurano and Roberts have proved the following

theorem using methods introduced by Gabber.

Theorem 1.1 ([12] Theorem 3.2) Assume that (R,m) is a regular local ring that

either contains a field or is ramified. Also, assume that p and q are prime ideals in

R such that
√

p + q = m and dim(R/p) + dim(R/q) = dimR. If χ(R/p, R/q) > 0

then

p(n) ∩ q ⊆ mn+1 for all n ≥ 1. (1.1)

(For the definition of symbolic powers of prime ideals, see Definition 2.9.) As a

result, they conjectured that (1.1) should hold for all regular local rings.

Conjecture 1.2 Assume that (R,m) is a regular local ring and that p and q are

prime ideals in R such that
√

p + q = m and dim(R/p) + dim(R/q) = dimR. Then

p(n) ∩ q ⊆ mn+1 for all n ≥ 1.

Furthermore, Kurano and Roberts asked whether there exists an elementary proof

of the conjecture in the equicharacteristic case.

We study Conjecture 1.2, as a verification of this conjecture could introduce new

tools to apply to the positivity conjecture.

For any local ring (A, n) let e(A) denote the Hilbert-Samuel multiplicity of A with

respect to n. (For the definition of Hilbert-Samuel multiplicity, see Definition 2.5.)

It is a straightforward exercise to verify that, if R is a regular local ring with prime

1I have no direct reference to Gabber’s work as it remains unpublished. However, detailed
treatments of Gabber’s work on this problem can be found in Berthelot [2], Hochster [10] and
Roberts [19].
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ideal p and 0 6= f ∈ p, then e(Rp/(f)) = e if and only if f ∈ p(e) r p(e+1). Thus,

Conjecture 1.2 may be rephrased as the following.

Conjecture 1.2′ Assume that (R,m) is a regular local ring and that p and q are

prime ideals in R such that
√

p + q = m. If there exists 0 6= f ∈ p ∩ q such that

e(Rp/(f)) = e(R/f), then dim(R/p) + dim(R/q) ≤ dim(R)− 1.

To see that this is a restatement of Conjecture 1.2, we first recall a classical result

on the behavior of symbolic powers of prime ideals in regular local rings.

Theorem 1.3 (Nagata [16] Theorem 38.3) Assume that (R,m) is a regular local ring

with prime ideal p. Then p(n) ⊆ mn for all n ≥ 1.

Now, let R,m, p, q be as in Conjecture 1.2 and suppose that p(n)∩q 6⊆ mn+1. Then

there exists f ∈ p(n) ∩ q such that f 6∈ mn+1. By Theorem 1.3, p(n) ⊆ mn so that f ∈
mn. If f ∈ p(n+1) then f ∈ mn+1, a contradiction, so that e(Rp/(f)) = n = e(R/(f)).

If Conjecture 1.2′ holds, then this implies that dim(R/p) + dim(R/q) ≤ dim(R)− 1,

contradicting the assumption that dim(R/p) + dim(R/q) = dim(R).

Conjecture 1.2′ motivates the following generalization.

Conjecture 1.4 Assume that (R,m) is a quasi-unmixed local ring of dimension d

with prime ideals p and q such that
√

p + q = m and e(Rp) = e(R). Then dim(R/p)+

dim(R/q) ≤ d.

As we noted above, Serre proved this conjecture in the case where R is regular

where the condition e(Rp) = e(R) holds automatically. The following is a famous

conjecture whose statement is very similar to Conjecture 1.4.

Conjecture 1.5 (Peskine and Szpiro [17]) Assume that (R,m) is a local ring with

prime ideals p and q such that p has finite projective dimension and
√

p + q = m.

Then dim(R/p) + dim(R/q) ≤ dim(R).

We shall discuss connections between Conjectures 1.4 and 1.5 below.
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In the main results of this work we verify Conjectures 1.2 and 1.4 for a number of

cases. Most notably, we verify Conjecture 1.4 for excellent rings containing a field.

In Chapter 2 we prove a generalization of Theorem 1.3, which motivates the

restriction of our attention to a certain class of rings where the Hilbert-Samuel mul-

tiplicity is well-behaved with respect to localization. We then verify Conjecture 1.4

for excellent rings containing a field, certain low dimensional cases and the case

where R/p is regular. In Chapter 3 we establish Conjecture 1.2 for regular local

rings containing a field, certain low-dimensional cases, and the the cases where p is

generated by a regular sequence and where q is generated by part of a regular system

of parameters. In Chapter 4 we present a number of examples that demonstrate the

necessity of each of the assumptions of the conjectures as well as the limitations of

some of our results.



CHAPTER 2

THE DIMENSION INEQUALITY

In this chapter, we establish Conjecture 1.4 in a number of cases, most notably

in the case where R contains a field. We recall the conjecture here.

Conjecture 1.4 Assume that (R,m) is a Cohen-Macaulay local ring of dimension d

with prime ideals p and q such that
√

p + q = m and e(Rp) = e(R). Then dim(R/p)+

dim(R/q) ≤ d.

Examples 4.1, 4.2 and 4.3 below show that each requirement in this conjecture is

necessary.

We begin by proving a generalization of Theorem 1.3 motivated by a theorem of

Lech. We then verify Conjecture 1.4 in the case where R is excellent and contains a

field. Finally, we verify Conjecture 1.4 in certain low-dimensional cases and the case

where R/p is regular.

2.1 An Inequality for Multiplicities

In order to deal with Conjecture 1.4 effectively, we need to know under what con-

ditions the Hilbert-Samuel multiplicity is “well-behaved” with respect to localization,

that is, when e(Rp) ≤ e(R) for all prime ideals p. This condition is a generalization

of the containment p(n) ⊆ mn of Theorem 1.3. One class of rings for which this is

true is the class of quasi-unmixed, Nagata rings (see Theorem 2.20 below). We recall

a few definitions and background results here.

Definition 2.1 Let (A,m) be a Noetherian local ring. We say that A is equidimen-

sional if dim(A/p) = dim(A) for all p ∈ min(A). We say that A is quasi-unmixed if

its completion Â is equidimensional. A (nonlocal) ring R is quasi-unmixed if Rn is

quasi-unmixed for every maximal ideal n.
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The class of quasi-unmixed rings is closed under localization and polynomial

extensions, as the following lemma shows.

Lemma 2.2 (Hermann, Ikeda and Orbanz [8] Theorems 18.13 and 18.17) Let A

be a local ring. Then A is quasi-unmixed if and only if A is equidimensional and

universally catenary. If A is quasi-unmixed, then

1. Ap is quasi-unmixed for every prime ideal p of A.

2. The polynomial ring A[X1, . . . , Xn] is quasi-unmixed.

Definition 2.3 A ring A is called Nagata if, for every prime ideal p of A and every

finite field extension L of the quotient field of R/p, the integral closure of A/p in L

is module finite over A/p.1

The class of Nagata rings is closed under algebras essentially of finite type and

contains the class of excellent rings, as the following lemma shows. (For a complete

definition of excellent rings, see [15] Section 32. Classical examples of excellent rings

are complete rings, rings that are of finite type over a field or the ring of integers,

and localizations of excellent rings.)

Lemma 2.4 ([16] (36.1) and (36.5), Matsumura [14] Theorem 78) Let A be a ring.

1. If A is Nagata and B is essentially of finite type over A, then B is Nagata.

2. If A is excellent, then A is Nagata.

Hilbert polynomials and multiplicities shall play a central role in our work. An ex-

cellent reference for the results on generalized Hilbert polynomials and multiplicities

is [8] Chapter 1.

1As is noted in Matsumura [15] p. 264, “Nagata defined and studied the class of pseudo-geometric
rings, which were called “anneaux universellement japonais” by Grothendieck. These are now known
as ‘Nagata rings’.”
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Definition 2.5 Assume that (A,m) is a local ring and let M be a finitely generated,

nonzero A-module. Given an ideal a of A such that M/aM has finite length, the

Hilbert polynomial of a on M , denoted H [a,M ](n), is the polynomial in n of degree

r = dim(M) with rational coefficients such that for n� 0

H [a,M ](n) = length(M/an+1M).

If er is the leading coefficient of H [a,M ](n), then the Samuel multiplicity of a on M is

e(a,M) = r!er. We denote e(m,M) by e(M). If y1, . . . , ym is a system of parameters

for M , then for brevity, we let e(y,M) = e((y)A,M). If b ⊂ R is any ideal of R and

z1, . . . , zl is a system of parameters for M/bM , then define the generalized Hilbert

polynomial of z and b on M to be the polynomial H [z, b,M ](n) such that for n� 0

H [z, b,M ](n) = e(z,M/bn+1M).

(c.f., [8] (3.4) for the proof that e(z,M/bn+1M) is a polynomial function.) If the ideal

Ann(M/bM) = p is prime, then the degree of H [z, b,M ] is exactly s = dim(Mp). If

fs is the leading coefficient of H [z, b,M ] then we define the generalized multiplicity

of z and b on M as e(z, b,M) = s!fs.

We shall find the following Associativity Formula helpful when dealing with the

Hilbert-Samuel multiplicity.

Lemma 2.6 (Bruns and Herzog [4] Corollary 4.7.8) Let (A,m) be a Noetherian local

ring. Then

e(A) =
∑

length(Ap)e(A/p)

where the sum is taken over all prime ideals p such that dim(A/p) = dim(A).

The following lemma demonstrates one aspect of the behavior of the Hilbert-

Samuel multiplicity under specialization.

Lemma 2.7 ([15] Theorem 14.9) Let (R,m) be a Cohen-Macaulay local ring of di-

mension d with R-regular sequence x1, . . . , xk ∈ m. Suppose that xi ∈ mνi for each i.

Then e(R/(x)) ≥ e(R)ν1 · · · νk.
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We make use of generalized multiplicities in exactly one argument (Proposi-

tion 2.19), and they seem crucial for the proof of this result. One particularly

important property is the following.

Lemma 2.8 ([8] Proposition 3.11) With notation as above, assume that p is a prime

ideal of A such that p ⊇ Ann(M) and
√

p + (z)A = m. Then

e(z, p,M) = e(z, A/p)e(pAp,Mp).

If, in addition, A is equidimensional, then e(z, p, A) ≤ e(p + (z)A,A).

To motivate the main result of this section, we rephrase Theorem 1.3 in terms of

multiplicities. First, we recall the definition of symbolic powers of prime ideals.

Definition 2.9 Assume that A is a ring with prime ideal p. For every positive

integer n, the nth symbolic power of p is the ideal

p(n) = pnAp ∩ A.

Recall that if p is a prime ideal in a regular local ring R and x is a nonzero element

of p, then e(Rp/(x)) = e if and only if x ∈ p(e) r p(e+1).

We now give our restatement of Theorem 1.3.

Theorem 1.3′ Assume that (R,m) is a regular local ring with prime ideal p. Then

for all x ∈ p, e(Rp/(x)) ≤ e(R/(x)).

To see that this is a restatement of Theorem 1.3, fix R,m, p, x as in the Theo-

rem 1.3′. Our interpretation of multiplicity implies that e(Rp/(x)) ≤ e(R/(x)) if and

only if x ∈ p(e) r p(e+1) and x ∈ me where e = e(Rp/(x)).

Example 4.4 below shows that the regularity assumption in Theorem 1.3 is nec-

essary.

Before we state and prove the generalization (which is essentially due to Lech),

we need some preliminaries. The following lemma provides a useful description of

maximal ideals in polynomial rings.
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Lemma 2.10 Assume that k is a field and that N is a maximal ideal in the polyno-

mial ring T = k[X1, . . . , Xn]. Then N can be generated by n (irreducible) elements

f1, . . . , fn such that fi ∈ k[X1, . . . , Xi] and fi is monic in Xi. Furthermore, if

k is the residue field of a Noetherian local ring (A, n) and Fi is a lift of fi in

Si = A[X1, . . . , Xi] ⊆ A[X1, . . . , Xn] = S which is monic in Xi, then the extension

A→ S/(F)S is flat. Furthermore, F is an S-regular sequence.

Proof. The existence of the fi is proved in [15] Theorem 5.1. Now, assume that k

is the residue field of a Noetherian local ring (A, n) and Fi is a lift of fi in Si which

is monic in Xi. (Such lifts always exist.) Then the extension A → A[X1]/(F1) =

S1/(F1) is finite and free, as F1 is monic in X1. in particular, the extension is flat.

Similarly, the extension

A[X1]/(F1) → (A[X1]/(F1))[X2]/(F2) = S2/(F1, F2)

is flat. In a similar way, we see that each extension

A→ A[X1]/(F1) → · · · → S/(F1, . . . , Fn)

is flat. Since the composition of flat maps is flat, the map A → S/(F)S is flat.

To see that the sequence is S-regular, note that since F1 ∈ S1 is monic in X1 it

is regular on S1 = A[X1]. Therefore, F1 is regular on S = S1[X2, . . . , Xn]. Also,

S/(F1)S = (A[X1]/(F1))[X2, . . . , Xn] = (A[X1]/(F1))[X2][X3, . . . , Xn] so that the

same argument shows that F2 is regular on S/(F1)S, and similarly for F3, . . . , Fn.

The following lemma provides useful information regarding the behavior of certain

numerical data under flat, local extensions. For a finitely generated module M over

a local ring (A,m), let µ(M) denote the minimal number of generators of M , i.e.,

µ(M) = dimA/m(M/mM).

Lemma 2.11 Assume that A→ B is a flat local homomorphism of Noetherian local

rings (A,m) and (B, n) and that a is an ideal of A.

1. µ(a) = µ(aB).
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2. If, in addition, mB = n then lengthA(mn/mn+1) = lengthB(nn/nn+1). In

particular, e(A) = e(B).

3. More generally, if mB is n-primary and M is an A-module of finite length, then

M ⊗A B has finite length over B and

lengthB(M ⊗A B) = lengthA(M)lengthB(B/mB)

Proof. Part 1 is proved by Herzog [9] Lemma 2.3. Part 2 follows from part 1 by the

following computation

lengthA(mn/mn+1) = µ(mn) = µ(mnB) = µ(nn) = lengthB(nn/nn+1)

and the definitions of e(A) and e(B).

To prove part 3, let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M be a filtration of M such

that each quotient Mi/Mi−1
∼= A/m where n = lengthA(M). Then the fact that B is

flat over A implies that 0 = M0 ⊗A B ⊂ M1 ⊗A B ⊂ · · · ⊂Mn ⊗A B = M ⊗A B is a

filtration of M ⊗A B with quotients

(Mi ⊗A B)/(Mi−1 ⊗A B) ∼= (Mi/Mi−1)⊗A B ∼= (A/m)⊗A B ∼= B/mB

so that the only associated prime of M ⊗A B is
√

mB = n. In particular, M ⊗A B

has finite length over B. Furthermore,

lengthB(M ⊗A B) =
∑

i

lengthB(Mi ⊗A B)/(Mi−1 ⊗A B) =
∑

i

lengthB(B/mB)

= n lengthB(B/mB) = lengthA(M)lengthB(B/mB)

as desired.

The following lemma provides useful information regarding the behavior of regular

sequences under (faithfully) flat extensions and the persistence of (faithful) flatness

under the taking of quotients.

Lemma 2.12 Assume that A→ B is a (faithfully) flat extension of Noetherian rings

and that A is local with maximal ideal m. Let x = x1, . . . , xk ∈ n be an A-regular

sequence and a ⊆ m an ideal. Then
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1. x is a B-regular sequence.

2. The extension A/a → B/aB is (faithfully) flat.

Proof. Part 1 follows from [4] Proposition 1.1.2. To prove part 2, it suffices to prove

that if A→ B is flat, then A/a → B/aB is flat. This is sufficient, as if A→ B is a

faithfully flat, then mB 6= (1)B so that mB/aB 6= (1)B/aB. Since A/a → B/aB is

flat, faithful flatness follows immediately.

Let M be any A/a-module. Then

B/aB ⊗A/a M ∼= B ⊗A A/a⊗A/a M ∼= B ⊗A M

It follows that if M1 → M2 →M3 is an exact sequence of A/a-modules, then applying

−⊗A/a B/aB to the sequence yields

M1 ⊗A B → M2 ⊗A B →M3 ⊗A B

which is exact if B is flat over A. Thus, B/aB is flat over A/a.

Corollary 2.13 Assume that A → B is a flat local homomorphism of local rings

(A,m) and (B, n).

1. If mB is n-primary, then

(a) dim(B) = dim(A).

(b) If A is Cohen-Macaulay, then B is Cohen-Macaulay.

(c) e(mB,B) = e(A)lengthB(B/mB)

(d) e(B) ≤ e(A)lengthB(B/mB)

2. If p is a prime ideal of A and P is a prime ideal of B which is minimal over

pB, then P ∩A = p and ht (P ) = ht (p).

Proof. 1(a). Let d = dim(A). By flatness, the extension A→ B satisfies going-down.

In particular, d ≤ dim(B). Let x = x1, . . . , xd ∈ m be a system of parameters for A
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and let a = (x)A. Then
√

a = m so that
√

aB ⊇ √
mB = n. Thus, aB is n-primary

and generated by d elements, so that d ≥ dim(B).

1(b). The system of parameters x is a regular sequence on A of length d. By

Lemma 2.12, x is a regular sequence on B of length dim(B).

1(c). By Lemma 2.11 part 3,

lengthB(B/mnB) = lengthB((A/mn)⊗A B) = lengthA(A/mn)lengthB(B/mB)

As the left-hand side and the right hand side are both polynomials of degree d in n

by part (a), we have the desired equality.

1(d). As mB ⊆ n, we have e(B) = e(n, B) ≤ e(mB,B) = e(A)lengthB(B/mB).

2. Suppose that P ∩A 6= p. Since P ∩A is a prime ideal of A properly containing

p, going-down implies that P contains a prime ideal Q that contracts to p. But then

pB ⊆ Q ⊂ P , contradicting the minimality of P . The fact that ht (P ) = ht (p) is

proved in [8] Lemma 18.10.

Example 4.5 below shows that the inequality in part 1(d) can be strict and that

equality may hold, even for flat, local homomorphisms of regular local rings.

The following lemma gives the first tool we need in order to establish the fact

that the Hilbert-Samuel multiplicity is well-behaved under polynomial extensions.

Lemma 2.14 Let (A, n) be a local ring, S = A[X1, . . . , Xn] a ring of polynomials

and M a maximal ideal of S such that M ∩ A = n. Let X be an indeterminate,

A(X) = A[X]n[X] and SM(X) = SM [X]MM [X]. Then, there is a maximal ideal ideal

N of A(X)[X1, . . . , Xn] such that SM(X) = A(X)[X1, . . . , Xn]N .

Proof. To start, we have

SM(X) = A[X1, . . . , Xn]M [X]M [X] = A[X1, . . . , Xn, X]M [X]

= A[X][X1, . . . , Xn]M [X].

The prime ideal M [X] ⊂ A[X][X1, . . . , Xn] avoids the multiplicative subset A[X] r

n[X] and therefore corresponds to a prime ideal N in A[X]n[X][X1, . . . , Xn]. Further-

more,
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ht (N) = ht (M [X]) = dim(A) + n = dim(A(X)) + n

= dim(A[X]n[X][X1, . . . , Xn])

so that N is maximal. Finally,

SM(X) = A[X][X1, . . . , Xn]M [X] = A[X]n[X][X1, . . . , Xn]M [X]

= A(X)[X1, . . . , Xn]N

which shows that N has the desired properties.

The following lemma gives the first indication that the Hilbert-Samuel multiplicity

is well-behaved under polynomial extensions and provides us with the first tool needed

to prove that e(Rp) ≤ e(R) for a large class of rings.

Lemma 2.15 Assume that (R,m) is a local Noetherian ring of dimension d and n is

a positive integer. Let S = R[X1, . . . , Xn]. Let R(X) = SmS. Then e(R) = e(R(X)).

Proof. If J = mS then, it is straightforward to verify that

grJJ
(SJ) ∼= grm(R)(Z1, . . . , Zn)

where

grm(R)(Z1, . . . , Zn)k = (mk/mk+1)(Z1, . . . , Zn)

=
{f
g
| f ∈ (mk/mk+1)[Z1, . . . , Zn], g ∈ (R/m)[Z1, . . . , Zn]

}
It follows that, if w1, . . . , wt ∈ mk/mk+1 is a basis of mk/mk+1 over R/m, then

w1, . . . , wt ∈ mk/mk+1 is a basis of Jk
J/J

k+1
J over SJ/JJ . That is, the Hilbert functions

of grJJ
(SJ) and grm(R) are the same, and the claim follows immediately.

Corollary 2.21 below gives a surprising generalization of this lemma.

We are interested in proving that e(Rp) ≤ e(R) for a large class of rings. Before

we state and prove the result, we need some background information on reductions

of ideals and the analytic spread of an ideal.
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Definition 2.16 Let (A,m) be a Noetherian local ring and let a be an ideal. The

Rees algebra of a is the graded ring

A[at] = ⊕∞
n=0ant

which we consider as a subring of A[t]. The associated graded ring of a is the graded

ring

gra(A) = ⊕∞
n=0an/an+1 = A[at]/aA[at].

The special fibre of the Rees algebra R[at] is the ring

F (a) = R[at]⊗R R/m

The Krull dimension of F (a) is the analytic spread of a and is denoted s(a). An

ideal b contained in a is a reduction of a if there exists a positive integer n such that

an+1 = ban. In this case, b is a minimal reduction of a if it is minimal among all

reductions of a with respect to inclusion.

We summarize some useful properties of the analytic spread of an ideal and of

reductions of an ideal.

Lemma 2.17 Let (A,m) be a Noetherian local ring of dimension d and let a be an

ideal.

1. ht (a) ≤ s(a) ≤ dim(A).

2. s(a) = dim(gra(A)/mgra(A)).

3. a has a minimal reduction b.

4. if A/m is infinite, then we may choose a minimal reduction of m generated by

d elements which form part of a minimal generating set for m.

5. If A/m is infinite and b is a minimal reduction of a, then the natural map

grb(A)/mgrb(A) → gra(A)/mgra(A) is a graded inclusion and an integral ex-

tension. In particular, s(a) = s(b). Also, µ(b) = s(a).
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6. If a is an m-primary ideal and b is a reduction of a, then e(b, A) = e(a, A).

Proof. For 1,2,3,5 and 6, see Vasconcelos [22] Section 5.1 and Brodmann and

Sharp [3] Sections 18.1–18.2. Part 4 follows from the construction, which we outline

here. Let F (m) = A[mt]⊗AA/m = grm(A), which is a finitely generated algebra over

A/m. By Noether normalization, there are elements y1, . . . , yd of F (m) such that the

natural map A/m[Y1, . . . , Yd] → F (m) is injective and is an integral extension. If

A/m is infinite, then the yi can be chosen in degree 1. The generators of the minimal

reduction of m are exactly lifts of the yi to m, and since the yi have degree 1 these

lifts form part of a minimal set of generators for m.

The following theorem gives a second indication that the Hilbert-Samuel multi-

plicity is well-behaved under polynomial extensions and provides us with the next

tool needed to prove that e(Rp) ≤ e(R) for a large class of rings.

Theorem 2.18 Assume that (A, n, K) is a local ring, and let M be a maximal ideal

in the polynomial ring S = A[X1, . . . , Xn] such that M ∩A = n. Then e(A) = e(SM).

Proof. First, we reduce to the case where K is infinite. Suppose that K is finite.

With the notation of Lemma 2.15 we see that e(A) = e(A(X)) and e(SM) =

e(SM(X)). By Lemma 2.14, SM(X) = A(X)[X1, . . . , Xn]N for some maximal ideal

N of A(X)[X1, . . . , Xn] so that if e(A(X)) = e(SM(X)) then we are done. Thus, we

may assume that K is infinite.

Let T = K[X1, . . . , Xn] = S/nS and N = M/nS. Then N is a maximal ideal

in T , and has a generating set f1, . . . , fn as in Lemma 2.10. Let Fi ∈ S be a lift of

fi as in Lemma 2.10, so that the extension A → S/(F)S is flat. This implies that

the composition A → S/(F)S → (S/(F)S)M = SM/(F)SM is flat. Furthermore,

the maximal ideal of SM/(F)SM is exactly MM/(F)SM = (nSM + (F)SM)/(F)SM =

n(SM/(F)SM). By Lemma 2.11, e(A) = e(SM/(F)SM), so it suffices to show that

e(SM) = e(SM/(F)SM). The fact that K is infinite implies that n has a reduction

ideal a ⊆ n, which is generated by dim(A) elements, by Lemma 2.17, part 5. It is

straightforward to verify that the ideal LM = aSM + (F)SM ⊆ MM = n + (F)SM is
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a reduction of MM . Furthermore, LM is generated by dim(A) + n elements, that is,

by a system of parameters. By Lemma 2.10, the Fi form a regular sequence on SM .

Thus,

e(SM) = e(LM , SM)

(as LM is a reduction ideal of MM)

= e(LM/(F)SM , SM/(F)SM)

(by repeated application of [15] Theorem 14.11)

= e(SM/(F)SM)

as LM/(F)SM is a reduction of MM/(F)SM .

Example 4.6 below shows that the condition M ∩ A = n does not automatically

follow from the fact that M is maximal.

The following proposition is the key tool for proving our generalization of The-

orem 1.3. We note that its proof contains the only argument using the generalized

multiplicities introduced in Definition 2.5.

Proposition 2.19 Assume that R is an equidimensional local ring and that p is a

prime ideal of R such that R/p is a regular local ring. Then e(Rp) ≤ e(R).

Proof. By assumption, there is a sequence z1, . . . , zl in R such that z is a regular

system of parameters for R/p. Then applying Lemma 2.8

e(Rp) = e(pp, Rp)e(z, R/p) = e(z, p, R)

≤ e((z)R+ p, R) = e(m, R) = e(R)

as desired.

The following is a generalization of Theorem 1.3 that is motivated by a theorem

of Lech [13]. Lech’s theorem is stronger in the sense that it gives an inequality

for Hilbert polynomials instead of multiplicities. It is slightly weaker, though, as it

assumes the ring A is excellent instead of quasi-unmixed and Nagata.
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Theorem 2.20 Assume that (R,m) is a local, quasi-unmixed, Nagata ring with

prime ideal p. Then e(Rp) ≤ e(R).

Proof. If we can prove the inequality for dim(R/p) = 1, then we will be done, as

follows. Let p = p0 ⊂ p1 ⊂ · · · ⊂ pn = m be a saturated chain of prime ideals in R.

Each Rpi
is a local, quasi-unmixed, Nagata ring with prime ideal (pi−1)pi

. The fact

that dim(Rpi
/(pi−1)pi

) = 1 and the one-dimensional case imply that

e(Rp) = e((Rp1)(p0)p1
) ≤ e(Rp1) ≤ · · · ≤ e(Rpn) = e(R)

as desired.

Assume that dim(R/p) = 1. Since R is Nagata, the integral closure A of R/p is

module-finite over R/p. In particular, dim(A) = dim(R/p) = 1. A is Noetherian and

integrally closed, and therefore is a Dedekind domain. Because A is module finite

over R/p, there is a surjection S = A[X1, . . . , Xn] → B. Let K denote the kernel of

this map so that S/K = A. The commutative diagram

R - R/p

S
? φ- A

?

shows that K∩R = p. Let r ⊂ A be a maximal ideal. Since the extension R/p → A is

finite, we know that (r∩R)/p is maximal in R/p, that is, (r∩R)/p = m/p. Let M =

φ−1(r) which properly contains K and is therefore maximal in S, as dim(S/K) = 1.

Then SM/KM
∼= AMA = Ar is a discrete valuation ring. Again by the commuting

diagram, M ∩ R = m. By Theorem 2.18 we see that e(R) = e(SM). Furthermore,

after localizing at p we see that e(Rp) = e(SK) since K corresponds to a maximal

ideal of Rp[X1, . . . , Xn] such that Kp ∩Rp = pp. By replacing R with SM and p with

KM , we may assume that R/p is a discrete valuation ring. The result now follows

from Proposition 2.19.

Example 4.7 below shows that the quasi-unmixedness requirement in Theorem 2.20

is necessary.

The following Corollary is a surprising generalization of Lemma 2.15 and Theo-

rem 2.18.
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Corollary 2.21 Assume that (R,m) is a local, quasi-unmixed, Nagata ring and let

S = R[X1, . . . , Xn] be a polynomial ring over R. Assume that P is a prime ideal of

S and let p = P ∩R. Then e(Rp) = e(SP ).

Proof. The localization Rp is a local, equidimensional, Nagata ring and the ideal

PRp[X1, . . . , Xn] is a prime ideal of Rp[X1, . . . , Xn]. Thus, we may assume that

p = m. Let M denote a maximal ideal of S such that P ⊆ M . Then the rings

SM and SP are both local, equidimensional and Nagata so that by Lemma 2.15 and

Theorems 2.20 and 2.18

e(Rp) = e(SpS) ≤ e(SP ) ≤ e(SM ) = e(Rp)

giving the desired equality.

Due to the fact that the proof of Theorem 2.20 depends heavily on the Nagata

condition, one might look for a counterexample to the inequality e(Rp) ≤ e(R) among

the classical examples of non-Nagata rings. A number of such examples may be found

in [16] Appendix. Each example is of the form T = R[c] where R is a regular local ring

and c is integral over R. In the following proposition and corollary we demonstrate

that, for every prime ideal P and every maximal ideal M containing P in a ring of

this form, we have the inequality e(TP ) ≤ e(TM ).

Proposition 2.22 Assume that R is a regular local ring and that T is a domain

containing R which is finite as an R-module. Assume also that T = R[c] for some

element c ∈ T . Then for every maximal ideal M of T and every prime ideal P of T

such that P ⊆M , e(TP ) ≤ e(TM).

Proof. Consider the surjection R[X] → R[c] = T given by X 7→ c. Since T

is module-finite over R, c satisfies a monic polynomial with coefficients in R. Let

f ∈ R[X] be a monic polynomial of minimal degree such that f(c) = 0. If f is

not irreducible, say f = f1f2 with each fi monic and not a unit in R[X], then

0 = f(c) = f1(c)f2(c) and the fact that T is a domain implies that fi(c) = 0 for

i = 1 or i = 2. Neither fi is a constant and therefore have strictly smaller degree
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than f , contradicting the minimality of the degree of f . Thus, our map R[X] → T

factors through the projection R[X]
π→ R[X]/(f) giving a surjective homomorphism

R[X]/(f)
ρ→ T . The rings R[X]/(f) and T are both domains with dimension equal

to dim(R). Thus, the kernel of ρ must be zero, so that ρ is an isomorphism.

For any maximal ideal M of T let M1 = π−1(M), and for any prime ideal P

contained in M let P1 = π−1(P ). Then P1 is a prime ideal in the regular ring R[X]

which is contained in the maximal ideal M1. Furthermore, since R[X]M1 is a regular

local ring, Theorem 1.3′ implies that

e(TP ) = e(R[X]P1/(f)) = mR[X]P1
(f)

≤ mR[X]M1
(f) = e(R[X]M1/(f)) = e(TM)

which proves the result.

Corollary 2.23 Assume that R is a regular local ring and that T is any ring (not

necessarily a domain) containing R which is finite as an R-module. Assume also that

T = R[c] for some element c ∈ T . Then for every maximal ideal M of T and every

prime ideal P of T such that P ⊆M , e(TP ) ≤ e(TM ).

Proof. Let Q1, . . . , Qn be the minimal prime ideals of T . By the going-up property

for finite extensions, we see that Qi ∩ R = (0). Let M be a maximal ideal of T

and let P be any prime ideal contained in M . Assume that Q1, . . . , Qj ⊆ P and

that Qj+1, . . . , Qm 6⊆ P . Then for Q = 1, . . . , j, R is a subring of T/Qi, and

T/Qi is a finite R-module which is generated by the residue of c as an R-algebra.

Thus the inclusion R ⊆ T/Qi satisfies the hypotheses of the proposition and so

e(TP/(Qi)P ) ≤ e(TM/(Qi)M). By the Associativity Formula

e(TP ) =

j∑
i=1

length(TQi
)e(TP/(Qi)P ) ≤

j∑
i=1

length(TQi
)e(TM/(Qi)M)

≤
n∑

i=1

length(TQi
)e(TM/(Qi)M) = e(TM )
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which is the desired result.

The following propositions shows that another case where the Nagata condition

of Theorem 2.20 may be omitted is the case where p is minimal of the “correct”

dimension.

Proposition 2.24 Assume that (R,m) is a Noetherian local ring with minimal prime

ideal p such that dim(R/p) = dim(R). Then e(Rp) ≤ e(R).

Proof. The result is a direct consequence of the Associativity Formula which implies

that

e(R) =
∑

length(Rr)e(R/r)

≥ length(Rp)e(R/p) ≥ length(Rp) = e(Rp)

where the sum is taken over all prime ideals r of R such that dim(R/r) = dim(R).

2.2 Reduction to the Completion

One standard technique in commutative algebra is to reduce a given question to

a question for complete rings. We accomplish this for Conjecture 1.4, assuming that

we start with an excellent ring.

The following theorem allows us to reduce Conjecture 1.4 to the case where the

quotient R/p is a normal domain. This will be the key step in our reduction to the

case where R is complete.

Theorem 2.25 Let (R,m) be a Nagata, Cohen-Macaulay local ring, and suppose that

, for every ring (S,M) which is a localization at a maximal ideal of a polynomial ring

over R, the following holds: for all prime ideals P and Q of S such that
√
P +Q = M ,

e(SP ) = e(S) and S/P is a normal domain,

dim(S/P ) + dim(S/Q) ≤ dim(S).

Then, for all prime ideals p and q of R such that
√

p + q = m and e(Rp) = e(R),

dim(R/p) + dim(R/q) ≤ dim(R).
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Proof. Fix prime ideals p and q of R such that
√

p + q = m and e(Rp) = e(R). Let

B be the integral closure of R/p. Since R is Nagata, B is module-finite over R/p.

In particular, dim(B) = dim(A/p). Because B is module finite over A/p, there is a

surjection T = R[X1, . . . , Xn] → B. Let K denote the kernel of this map so that

T/K = B. The commutative diagram

R
β- R/p

T
? φ- B

?

shows that K ∩R = p. Let n ⊂ B be a maximal ideal. Since the extension R/p → B

is finite, we know that n ∩ R/p is maximal in R/p, that is, n ∩ R/p = m/p. Also,

there are no primes of B which are properly contained in n and contract to m/p in

R/p. It follows that
√

qBn =
√

(m/p)Bn = nn.

Let N = φ−1(n), so that T/N ∼= B/n. Then, K ⊆ N and since m = β−1(n) =

R ∩ φ−1(n) = R ∩ N , we see that L = qT ⊆ N . We claim that
√
KN + LN = NN .

Since K + L ⊇ K = ker(φ) we see that K + L = φ−1(φ(K + L)) = φ−1(qB).

Let φ denote the map TN → Bn. If x ∈ NN , then φ(x) ∈ n so that for some n,

φ(xn) = φ(x)n ∈ qBn. Then xn ∈ φ−1(qBn) = (K + L)N so that NN ⊆ √
KN + LN

as desired.

By Theorem 2.18, we see that e(TN ) = e(R) = e(Rp) = e(TK). (The final

equality follows from the fact that K determines a maximal ideal of Rp[X1, . . . , Xn].)

By construction, TN/KN is a normal domain. Furthermore, TN is a good complete

intersection ring of type k. Thus, if dim(TN/KN) + dim(TN/LN ) ≤ dim(TN) then

dim(R/p) + dim(R/q) = dim(TN/KN) + dim(TN/LN)− n ≤ dim(TN )− n = dim(R)

as desired.

Note that the same procedure allows us to reduce further to the case where both

R/p and R/q are normal domains.

It is clear from the proof that, in the statement of the theorem, “Cohen-Macaulay”

may be replaced by either “quasi-unmixed,” “Gorenstein” or “complete intersection

(of codimension c).”
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Example 4.3 below shows that we must assume that our ring is at least equidi-

mensional, for Conjecture 1.4 to hold.

In the following theorem, “Cohen-Macaulay” may be replaced by either “quasi-

unmixed,” “Gorenstein” or “complete intersection (of codimension c).” This is the

result which will allow us to reduce Conjecture 1.4 to the case where R is complete.

Theorem 2.26 Let (R,m) be an excellent, Cohen-Macaulay local ring. Assume the

following for every ring (S,M) which is the localization of a polynomial ring over R at

a maximal ideal: for all prime ideals P̂ , Q̂ of the completion Ŝ such that

√
P̂ + Q̂ =

M̂ , e(ŜP̂ ) = e(Ŝ) and Ŝ/P̂ is a normal domain,

dim(Ŝ/P̂ ) + dim(Ŝ/Q̂) ≤ dim(Ŝ).

Then, for all prime ideals p and q of R such that
√

p + q = m and e(Rp) = e(R),

dim(R/p) + dim(R/q) ≤ dim(R).

Proof. By Theorem 2.25 it suffices to show that for every ring (S,M) which is a

localization at a maximal ideal of a polynomial ring over R, the following holds: for

all prime ideals P and Q such that
√
P +Q = M , e(SP ) = e(S) and S/P is a normal

domain,

dim(S/P ) + dim(S/Q) ≤ dim(S).

Let S,M, P,Q satisfy these hypotheses. S is excellent, which implies that S/P is

also excellent (c.f., [15] §32). By [15] Theorem 32.2, Ŝ/P = Ŝ/P Ŝ is normal. In

particular, P̂ = P Ŝ is a prime ideal of Ŝ such that Ŝ/P̂ is a normal domain. Since

the map S → Ŝ is faithfully flat, P̂∩S = P . Thus, by Corollary 2.13, ht (P̂ ) = ht (P ).

By [8] Theorem 18.13 (d), dim(Ŝ/P̂ ) = dim(S/P ). Let Q̂ be any minimal prime ideal

of QŜ, for which dim(Ŝ/Q̂) = dim(S/Q) by the same reasoning. Furthermore, the

extension SP → ŜP̂ is faithfully flat and PP ŜP̂ = P̂P̂ so that, by Lemma 2.11

e(ŜP̂ ) = e(SP ) = e(S) = e(Ŝ)
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Thus, by assumption

dim(S/P ) + dim(S/Q) = dim(Ŝ/P̂ ) + dim(Ŝ/Q̂) ≤ dim(Ŝ) = dim(S)

as desired.

2.3 The Equicharacteristic Case

In this section, we verify Conjecture 1.4 for excellent rings which contain a field.

The main tool is Theorem 2.28. Before we prove the theorem, we recall some

basic facts in the following lemma that will allow us to apply Theorem 2.28 to

Conjecture 1.4.

Lemma 2.27 ([15] Theorem 29.4, [4] Proposition 2.2.11)

1. Assume that B is a Noetherian complete local ring containing a field. Then

there exists a subring A ⊆ B with the following properties: A is a complete regular

local ring with the same residue field as B, and B is finitely generated as an A-module.

2. Let B be a Noetherian local ring and A a regular local subring such that B is

a finite A-module. Then B is Cohen-Macaulay if and only if it is a free A-module.

The following theorem is the main tool we need to verify Conjecture 1.4 in the

case of an excellent ring that contains a field.

Theorem 2.28 Assume that B is a Cohen-Macaulay ring and (A,m) a regular local

subring such that B is a finite free A-module. Assume that P is a prime ideal of B

with P ∩A = p and e(BP ) = rankA(B). Then P is the unique prime ideal of B which

contracts to p in A, and BP/PP
∼= Ap/pp.

Proof. First, we reduce to the case where p = m. It suffices to show that the

extension Ap → Bp with Pp ⊂ Bp satisfies the hypotheses of the theorem. Any

localization of a Cohen-Macaulay ring is Cohen-Macaulay, so Bp is Cohen-Macaulay.

The ring Ap is regular and by the exactness of − ⊗A Ap, Ap is a subring of Bp. If

r = rankA(B) then B ∼= Ar and so Bp
∼= Ar

p is finite and free over Ap. Furthermore,

Pp is a prime ideal of Bp which contracts to the maximal ideal of Ap and e((Bp)P ) =

e(BP ) = rankA(B) = r = rankAp(Bp) so all the hypotheses are satisfied.
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By the finiteness of the extension A → B, P is maximal. The ring B/mB is

Artinian because any ideal of B which contains mB must contract to m in A and

therefore must be maximal. In particular, a regular system of parameters of A

passes to a system of parameters of B (and since B is Cohen-Macaulay, a maximal

B-regular sequence). Let K = A/m, L = B/P and P̂ = P/mB. By the finiteness

of the extension A → B, the extension K → L is finite. Since B/mB is a finite-

dimensional vector space over K, B/mB has finite length as an A-module. By the

structure theorem for Artinian rings, B/mB has a finite number of maximal ideals,

P̂ = P̂1, P̂2, . . . , P̂k, and B/mB ∼= ∏
i(B/mB)P̂i

. In particular, each (B/mB)P̂i

is finitely generated over A and has finite length as an A-module. We compute

l = lengthBP
(BP/mBP ). Let BP/mBP = Ml ⊃ Ml−1 ⊃ · · · ⊃ M0 = 0 be a filtration

of BP/mBP by BP submodules such that Mi/Mi−1
∼= B/P = L. Then the additivity

of length implies that

lengthA(BP/mBP ) =
l∑

i=1

lengthA(Mi/Mi−1) =
l∑

i=1

dimK(L) = l dimK(L)

so that

lengthBP
(BP/mBP ) = l = lengthA(BP/mBP )/ dimK(L).

By Lemma 2.7, e(BP ) ≤ e(BP/mBP ), as m is generated by a B-regular sequence.

Our assumptions imply that

∑
i

dimK((B/mB)P̂i
) = dimK(B/mB) = rankA(B) = e(BP ) ≤ e(BP/mBP )

= lengthBP
(BP/mBP ) = lengthA(BP/mBP )/ dimK(L)

= dimK(BP/mBP )/ dimK(L) ≤ dimK(BP/mBP )

≤
∑

i

dimK((B/mB)P̂i
)

so we must have equality. This can happen only if (i) P̂ is the unique prime ideal of

B/mB and (ii) dimK(L) = 1. These are the desired results.

We are now in the position to verify Conjecture 1.4 in the case of an excellent

ring that contains a field.
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Theorem 2.29 Assume that (R,m) is an excellent local Cohen-Macaulay ring which

contains a field. Also, assume that P and Q are prime ideals of R such that
√
P +Q =

m and e(RP ) = e(R). Then dim(R/P ) + dim(R/Q) ≤ dim(R).

Proof. As in the proof of Proposition 2.32, we may pass to the ring R(X) = R[X]m[X]

to assume that R has infinite residue field. By Theorems 2.25 and 2.26 we may pass

to the completion of the localization of a polynomial ring over R at a maximal ideal.

In particular, we may assume that R is a complete local Cohen-Macaulay ring which

contains a field.

Lemma 2.17 shows that we may choose a system of parameters y1, . . . , yn of R

such that (i) the yi form part of a minimal generating set of m and (ii) the yi generate

a minimal reduction of m. Fix z1, . . . , zq ∈ m such that y1, . . . , yn, z1, . . . , zq form a

minimal generating set for m. Since R is complete, R has a coefficient field K and

the natural map K[[Y1, . . . , Yn]] → R given by Yi 7→ yi is injective and R is module

finite over A = K[[Y1, . . . , Yn]] (c.f., [15] §29). By Lemma 2.27, the fact that R is local

Cohen-Macaulay implies that R is free over A of finite rank r. By the definition of a

coefficient ring, we know that the residue field of R is K. Furthermore, the natural

map ρ : K[[Y1, . . . , Yn, Z1, . . . , Zq]] → R given by Yi 7→ yi and Zj 7→ zj is surjective.

Let A′ = K[[Y1, . . . , Yn, Z1, . . . , Zq]] with maximal ideal m′ and I = ker(ρ). The

constructions show that we have a natural commuting diagram

A
φ- A′

@@
ψ
R

R

ρ?

Let p = P∩A. Since the extension A→ R is finite and free (i.e. integral and flat) both

going-up and going-down hold so that ht (p) = ht (P ) and dim(A/p) = dim(R/P ).

If we can show that
√

pA′ + ρ−1(Q) = m′, then it follows that

dim(R/P ) + dim(R/Q) = dim(A/p) + dim(A′/φ−1(Q))

= dim(A′/pA′)− q + dim(A′/φ−1(Q))

≤ dim(A′)− q = n = dim(R)

as desired.



26

For an ideal a of A′, let Z(a) ⊆ Spec(A′) denote the closed subscheme determined

by a. In order to show that
√

pA′ + ρ−1(Q) = m′, it suffices to show that

Z(pA′ + ρ−1(Q)) = Z(ρ−1(P ) + ρ−1(Q))

as the facts that
√
P +Q = m and ρ is surjective imply that

√
ρ−1(P ) + ρ−1(Q) =

m′. Since pA′ + ρ−1(Q) ⊆ ρ−1(P ) + ρ−1(Q), the containment Z(pA′ + ρ−1(Q)) ⊇
Z(ρ−1(P )+ρ−1(Q)) is clear. To demonstrate the other inclusion, we note that, since

I ⊆ ρ−1(Q),

pA′ + ρ−1(Q) = (pA′ + I) + ρ−1(Q)

so that

Z(pA′ + ρ−1(Q)) = Z((pA′ + I) + ρ−1(Q)) = Z(pA′ + I) ∩ Z(ρ−1(Q)).

Since Z(ρ−1(P ) + ρ−1(Q)) = Z(ρ−1(P )) ∩ Z(ρ−1(Q)) it then suffices to show that

Z(pA′+I) ⊆ Z(ρ−1(P )). It suffices to show that ρ−1(P ) is the unique minimal prime

ideal of pA′ + I in A′. By our commuting diagram, the (minimal) primes of pA′ + I

are in 1-1 correspondence with the (minimal) primes of pR = ρ(pA′ + I). Thus, it

suffices to show that P is the unique minimal prime of pR. By assumption P ∩A = p,

and e(RP ) = e(R). So, if we can show that e(R) = rankA(R), then Theorem 2.28

implies that P is the unique prime ideal of R which contracts to p in A. If P ′ is any

minimal prime of pR, then Corollary 2.13 implies that P ′ ∩A = p, a contradiction.

To compute e(R), we use the fact that (y)R is a minimal reduction of m so that

e(R) = length(R/(y)R) = dimK(R/(y)R) = dimK(R⊗A A/(Y)A)

= dimK(R ⊗A K) = dimK(Ar ⊗A K) = dimK(Kr) = r = rankA(R).

This completes the proof.

We note here that the excellence assumption is used only in order to reduce to

the completion.
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2.4 The Case When R/p is Regular

In this section, we prove Conjecture 1.4 in the case where R/p is regular. The

proof depends on reductions of ideals, in particular on the notion of equimultiplicity.

Here we give the definition of equimultiple ideals and quote the property that is of

primary interest to us.

Definition 2.30 An ideal a of a local Noetherian ring is said to be equimultiple if

ht (a) = s(a).

The following lemma supplies an explanation for this definition.

Lemma 2.31 ([8] Theorem 20.9) Let A be a quasi-unmixed local ring and let p be

a prime ideal of A for which A/p is regular. Then the following conditions are

equivalent.

1. e(A) = e(Ap)

2. ht (p) = s(p)

Examples 4.8 and 4.9 below show that if R/p is not regular, neither implication

of the lemma holds.

The following proposition is the main result of this section where we prove Con-

jecture 1.4 in the case where R/p is regular. Notice that the Cohen-Macaulayness

assumption is loosened to “quasi-unmixed” here.

Proposition 2.32 Assume that (R,m) is a quasi-unmixed local ring with prime

ideals p and q such that
√

p + q = m, R/p is regular and e(Rp) = e(R). Then

dim(R/p) + dim(R/q) ≤ dim(R).

Proof. If the residue field of R is finite, let R(X) = R[X]m[X]. By Lemma 2.2,

R(X) is quasi-unmixed. The prime ideals P = pR(X) and Q = qR(X) satisfy the
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properties
√
P +Q = mR(X), R(X)/P = R/p(X) is regular and (by Lemma 2.15)

e(R(X)P ) = e(Rp) = e(R) = e(R(X). Thus, if the proposition holds for R(X) then

dim(R/p) + dim(R/q) = dim(R(X)/P ) + dim(R(X)/Q)

≤ dim(R(X)) = dim(R)

and the proposition holds for R. Thus, we may assume that the residue field of R is

infinite.

By Lemma 2.31, the prime ideal p ⊂ R is equimultiple. Since the residue field

of R is infinite, p contains a sequence y1, . . . , yi which generate a minimal reduction

of p where i = ht (p). Since
√

p + q = m, we see that q is an ideal of definition for

R/p and therefore q contains a system of parameters z1, . . . , zj for R/p. In particular

j = dim(R/p). We claim that y1, . . . , yi, z1, . . . , zj is a system of parameters for R.

Since i + j = ht (p) + dim(R/p) = dim(R), the sequence has the correct length and

we need only check that the sequence generates an m-primary ideal. We compute√
(y, z)R =

√√
(y)R+

√
(z)R =

√
p +

√
(z)R. The fact that z is a system of

parameters for R/p implies that the only prime ideal of R containing p and z is m,

as desired.

To prove the result, it suffices to show that i ≥ dim(R/q), as this will show that

dim(R) = i+ j ≥ dim(R/q) + dim(R/p). In the ring R/q, the images of y generate

an ideal which is primary to m/q since
√

(y)R = p. Since dim(R/q) is the least

integer l such that an ideal primary to the maximal ideal of R/q can be generated

by l elements, we are done.

With Proposition 2.32 in mind, one might hope that there is a nice relation

between the conditions “e(Rp) = e(R)” and “p has finite projective dimension.”

Examples 4.10 and 4.11 below show that these conditions are mutually exclusive in

a ring which is not regular.

2.4.1 The Use of Regular Alterations

With Gabber’s work on nonnegativity (c.f., [19]) and Proposition 2.32 in mind, it

would make sense to try to use de Jong’s Theorem on regular alterations to reduce
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Conjecture 1.4 to the case where (a global version of) p has a regular quotient. Details

of the results concerning existence of regular alterations may be found in [5]. The

main result for our purposes is the following.

Theorem 2.33 Let A be a local integral domain that is a localization of a ring of

finite type over a field or a complete discrete valuation ring with algebraically closed

residue field. Then there exists a projective map φ : X → Spec(A) such that

1. X is an integral regular scheme.

2. If K is the quotient field of A, then the extension k(X) of K is finite (we say

that X is generically finite over Spec(A).

Such a morphism φ will be called an regular alteration. For us, the result says that,

given such a ring A, there is a natural number n and ideal I ∈ Proj(A[X0, . . . , Xn])

such that I ∩R = (0), the scheme Proj(A[X0, . . . , Xn]/I) is regular, and the natural

morphism φ : Proj(A[X0, . . . , Xn]/I) → Spec(A) is generically finite. It follows auto-

matically, since φ is proper (c.f., Hartshorne [7] Theorem II.4.9) it is closed. Further-

more, the generically finite condition implies that the schemes Proj(A[X0, . . . , Xn]/I)

and Spec(A) have the same dimension.

For our purposes, let (R,m) be a local, equidimensional, Nagata ring which is

of finite type over a field or a complete discrete valuation ring with algebraically

closed residue field. Let p and q be prime ideals of R such that
√

p + q = m and

e(Rp) = e(R). We let A = R/p and let I ∈ Proj(R/p[X0, . . . , Xn]) be an ideal coming

from a regular alteration of R/p. Let S = R[X0, . . . , Xn] so that I corresponds to an

element P ∈ Proj(S). Let Q = qS. If P and Q were to satisfy the same conditions

satisfied by p and q, at least locally, then we might hope that a counterexample in R

would pass to a counterexample in A. If M is any prime ideal of S that contains P ,

then Theorem 2.20 implies that

e(R) = e(Rp) ≤ e(RM∩R) ≤ e(R)

so that e(Rp) = e(RM∩R). Corollary 2.21 then implies that

e(SP ) = e(Rp) = e(RM∩R) = e(SM)
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so that the multiplicity condition of Conjecture 1.4 is satisfied. Example 4.15 below

shows that P and Q will not in general satisfy the condition
√
P +Q = M , even

after localizing at a maximal ideal M which contains P and Q.

We note that in Gabber’s proof of the Nonnegativity Conjecture, he circumvents

this problem by using the fact that the map Proj(S) → Spec(R) is proper. The essen-

tial point is that, any element of Proj(S) which contains I and qS must contract to the

maximal ideal of R. This tells us that the map Proj(S/(I + qS)) → Spec(R) factors

through the natural map Spec(R/mk) → Spec(R) for some k, so that Proj(S/(I+qS))

is a scheme over R/mk. It may be that this global finiteness condition can replace

the local finiteness condition that R/p ⊗ R/q has finite length, but there is much

work to be done here.

2.5 Low-Dimensional Cases

In this section, we prove Conjecture 1.4 in certain low-dimensional cases. Al-

though the proofs are relatively straightforward, the results are worth mentioning.

In each case, the Cohen-Macaulay assumption of the conjecture may be relaxed to

“equidimensional” with the possible extra assumption “Nagata.”

In the following proposition we verify Conjecture 1.4 when dim(R/p) = dim(R).

Proposition 2.34 Assume that (R,m) is an equidimensional local ring with prime

ideals p and q such that
√

p + q = m. Assume that p is a minimal prime of R and

e(Rp) = e(R). Then q = m, so that dim(R/p) + dim(R/q) = dim(R).

Proof. Our assumptions imply that

length(Rp) = e(Rp) = e(R)

and the Associativity Formula implies that

length(Rp) = e(R) =
∑

length(Rr)e(R/r)

where the sum is taken over all prime ideals r of R such that dim(R/r) = dim(R).

Since each e(R/r) > 0, it follows that length(Rr) = 0 for all r 6= p with dim(R/r) =
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dim(R). Since R is equidimensional, this implies that {p} = min(R). In particular,

q ⊇ √
(0) = p. The fact that q is prime implies that m =

√
p + q =

√
q = q, as

desired.

The proof of Proposition 2.34 shows that, for minimal primes p, the assumption

e(Rp) = e(R) is quite strong. In fact, we have the following.

Proposition 2.35 Assume that (R,m) is an equidimensional local ring with minimal

prime ideal p, and consider the following statements.

1. e(R/p) = 1.

2. e(Rp) = e(R).

3. p is the unique minimal prime of R.

(a) Any two of these conditions imply the third.

(b) If R is quasi-unmixed then condition 1 may be replaced by “R/p is regular”.

Proof. (a) If e(R/p) = 1 and e(Rp) = e(R) then the above computation shows that

length(Rp) = e(Rp) = e(R) =
∑

length(Rr)e(R/r)

≥ length(Rp)e(R/p) = length(Rp)

where the sum is taken over all prime ideals r of R such that dim(R/r) = dim(R).

the only term which occurs in the sum is the term corresponding to p. Since R is

equidimensional, this implies that p is the unique minimal prime of R.

If e(R/p) = 1 and p is the unique minimal prime of R

e(R) =
∑

length(Rr)e(R/r) = length(Rp)e(R/p) = length(Rp) = e(Rp)

where the sum is taken over all prime ideals r of R such that dim(R/r) = dim(R).

If e(Rp) = e(R) and p is the unique minimal prime of R, then a similar computation

shows that e(R/p) = 1.
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(b) If R is quasi-unmixed, then [8] Theorem 6.8 implies that e(R/p) = 1 ⇔ R/p

is regular.

Notice the similarity between this and Lemma 2.31.

In the following proposition we verify Conjecture 1.4 in the case where dim(R/q) =

dim(R). Note that the Cohen-Macaulayness condition has been loosened to “quasi-

unmixed,” although we need to assume “Nagata.”

Proposition 2.36 Assume that (R,m) is a quasi-unmixed, Nagata local ring with

prime ideals p and q such that
√

p + q = m. Assume that e(R) = e(Rp) and q is

a minimal prime of R. Then p = m, so that dim(R/p) + dim(R/q) = dim(R/q) =

dim(R).

Proof. The Associativity Formula implies that

∑
r

length(Rr)e(R/r) = e(R) = e(Rp) =
∑
r⊆p

length(Rr)e(Rp/rp)

where the first sum is taken over all prime ideals r of R such that dim(R/r) = dim(R)

and the second sum is taken over all prime ideals r of R such that dim(R/r) = dim(R)

and r ⊆ p. Since each e(R/r) ≥ e(Rp/rp) by Theorem 2.20, the equality implies that

every minimal prime of R is contained in p and each e(R/r) = e(Rp/rp). In particular,

q ⊆ p. As above, this implies that p = m.

In the following proposition we verify Conjecture 1.4 in the case where dim(R/q) =

1. Note that the Cohen-Macaulayness condition has been loosened to “equidimen-

sional,”

Proposition 2.37 Assume that (R,m) is an equidimensional local ring with prime

ideals p and q such that
√

p + q = m. Assume that e(Rp) = e(R) and dim(R/q) = 1.

Then dim(R/p) + dim(R/q) ≤ dim(R). I

Proof. Suppose that dim(R) < dim(R/p)+dim(R/q) = dim(R/p)+1 ≤ dim(R)+1.

Then dim(R/p) + 1 = dim(R) + 1 so that dim(R/p) = dim(R). As R is equidimen-
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sional, this implies that p is a minimal prime of R. By Proposition 2.34, q = m, a

contradiction.

In the following proposition we verify Conjecture 1.4 when dim(R/p) = 1. Note

that the assumption “Cohen-Macaulay” has been loosened to “quasi-unmixed,” al-

though we need to assume “Nagata.”

Proposition 2.38 Assume that (R,m) is a quasi-unmixed, Nagata local ring with

prime ideals p and q such that
√

p + q = m. Assume that e(Rp) = e(R) and

dim(R/p) = 1. Then dim(R/p) + dim(R/q) ≤ dim(R). In particular, if R is

Cohen-Macaulay and Nagata then Conjecture 1.4 holds for R when dim(R/p) = 1.

Proof. The proof is identical to that of Proposition 2.37, using Proposition 2.36

instead of Proposition 2.34.



CHAPTER 3

THE CONJECTURE OF KURANO AND

ROBERTS

In this chapter, we prove Conjecture 1.2 for a number of cases, most notably when

(1) R contains a field, (2) p is generated by a regular sequence, and (3) R/q is regular.

We note that each of these cases is proved without any excellence assumptions and

therefore the results are not simple consequences of the results of the previous chapter.

We recall the conjecture here.

Conjecture 1.2 Assume that (R,m) is a regular local ring and that p and q are

prime ideals in R such that
√

p + q = m and dim(R/p) + dim(R/q) = dimR. Then

p(n) ∩ q ⊆ mn+1 for all n > 0.

Examples 4.16, 4.17 and 4.18 below show that each of the requirements of the

conjecture is necessary.

3.1 The Equicharacteristic Case

The proof of Conjecture 1.2 in the equicharacteristic case differs from the proof

of Theorem 2.29 in only one place: the method of reduction to the completion. The

following lemma is our first tool in making this reduction.

Lemma 3.1 Assume that φ : R → S is a homomorphism of rings, P is a prime

ideal in S and p = φ−1(P ). Then p(n) ⊆ φ−1(P (n)), for all n > 0.

Proof. We have a natural commuting diagram

Rp

ψ- SP

R

6
φ- S

6
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and we are considering the behavior of the ideals pn and P n under the appropriate

extensions and contractions. Since pS ⊆ P , we see that pnS = (pS)n ⊆ P n and

therefore that (pnS)SP ⊆ P n
P . Thus,

φ−1(P (n)) = φ−1(P n
P ∩ S)

= (ψ−1(P n
P )) ∩ R

(since the diagram commutes)

⊇ (ψ−1((pnS)SP )) ∩R
= (ψ−1((pnRp)SP )) ∩ R
= (ψ−1(pn

pSP )) ∩ R
⊇ pn

p ∩ R
= p(n)

as desired.

The following proposition will allow us to reduce Conjecture 1.2 to the case where

R is complete.

Proposition 3.2 Assume that (R,m) and (S, n) are regular local rings and R → S

is a faithfully flat extension such that mS = n. If Conjecture 1.2 holds for R̂, then

Conjecture 1.2 holds for R.

Proof. Let p and q be prime ideals of R such that p+q is m-primary and ht p+ht q =

dimR and fix f ∈ p(n) ∩ q. Let P be a prime of R̂ that is minimal over pR̂ and let

Q be a prime of R̂ that is minimal over qR̂. By Corollary 2.13, ht (P ) = ht (p) and

ht (Q) = ht (q), so that ht (P ) + ht (Q) = dim(R) = dim(R̂). By assumption√
P +Q ⊇ √p + qR̂ = mR̂ = n

so that P +Q is n-primary. By Lemma 3.1, f ∈ P (n)∩Q. Since Conjecture 1.2 holds

for R̂, f ∈ nn+1 ∩ R = mn+1, as desired.

In the following theorem, we verify Conjecture 1.2 for regular local rings that

contain a field by showing that it follows from the results of the previous chapter.
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Theorem 3.3 Assume that (R,m) is a regular local ring that contains a field and

that p and q are prime ideals of R such that
√

p + q = m and dim(R/p)+dim(R/q) =

dim(R). Then p(n) ∩ q ⊆ mn+1 for all positive integers n.

Proof. Let R̂ denote the m-adic completion of R. Then the extension R → R̂ is

faithfully flat (c.f., [15] Theorem 8.14). Also, R̂ is a regular local ring with maximal

ideal mR̂ (c.f., Atiyah and MacDonald [1] Propositions 10.15, 10.16 and 11.24). By

Proposition 3.2, it suffices to prove that the theorem holds for R̂, so we may assume

that R is complete.

Suppose that f ∈ p(n)∩q and f 6∈ mn+1. By Theorem 1.3 f ∈ mn, and f 6∈ p(n+1).

Let R′ = R/(f) and similarly for m′, p′ and q′. Then R′ is a complete Cohen-Macaulay

local ring with prime ideals p and q such that
√

p′ + q′ = m′ and e(R′
p′) = n = e(R′).

By Theorem 2.29

dim(R) = dim(R/p) + dim(R/q) = dim(R′/p′) + dim(R′/q′) ≤ dim(R′) = dim(R)− 1

a contradiction. This establishes the result.

3.2 A Note on the Mixed-Characteristic Case

The argument of the previous section depends heavily on the assumption that

our rings contain a field. Thus, we can not apply these methods to rings of mixed

characteristic. We can, however, make a reduction in this case to assume that our

rings have algebraically closed residue fields. The following lemma gives the main

tool used for this reduction. Recall that a p-ring is a discrete valuation ring whose

maximal ideal is generated by the prime integer p (that is, the p-fold sum of 1).

Lemma 3.4 Let L be a complete p-ring with residue field k. Let K be the algebraic

closure of k. Then there exists complete p-ring L̃ dominating L with residue field K.

Furthermore, the inclusion L ⊆ L̃ is a flat extension.

Proof. By [15] Theorem 29.4, there exists a p-ring L1 dominating L with residue

field K. If we let L̃ be the completion of L1, then L̃ is a complete p-ring dominating

L1 (and therefore dominating L) with residue field K by [15] note (4) on p. 63. The
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fact that the extension is flat follows from the fact that a module over a discrete

valuation ring is flat if and only if it is torsionfree.

The following proposition allows us to reduce Conjecture 1.2 to the case where

the ring has algebraically closed residue field.

Proposition 3.5 Conjecture 1.2 holds for all regular local rings of mixed charac-

teristic if and only if it holds for all regular local rings of mixed characteristic with

algebraically closed residue fields.

Proof. One implication is trivial. Assume that Conjecture 1.2 holds for all regular

local rings of mixed characteristic with algebraically closed residue fields, and let R

be a regular local rings of mixed characteristic. By Proposition 3.2, we may assume

that R is complete. Let k = R/m. The Cohen Structure Theorem implies that R has

a coefficient ring L which is a complete p-ring and that either R ∼= L[[X1, . . . , Xd]]

(unramified) or R ∼= L[[X1, . . . , Xd]][X]/(f) where f is an Eisenstein polynomial

(ramified). Let L̃ be as in Lemma 3.4. IfR is unramified, then let R̃ = L̃[[X1, . . . , Xd]].

Otherwise, let R̃ = L̃[[X1, . . . , Xd]][X]/(f). In either case, R̃ is a complete, regular

local ring dominating R, which has the same dimension (d+1) as R. Furthermore, the

inclusion R ⊆ R̃ is a flat extension of regular local rings. Let m̃ denote the maximal

ideal of R̃. Then for all n, mnR̃ = m̃n and m̃n ∩R = mn. By Corollary 2.13, if p and

q are prime ideals of R such that dim(R/p) + dim(R/q) = dimR = d+ 1, and p̃ and

q̃ are primes of R̃, which are minimal over pR̃ and qR̃ respectively, then dim(R̃/p̃) =

dim(R/p) and dim(R̃/q̃) = dim(R/q), so that dim(R̃/p̃)+dim(R̃/q̃) = d+1 = dim R̃.

If, additionally,
√

p + q = m, then mt ⊆ p + q so that m̃t = mtR̃ ⊆ pR̃+ qR̃ ⊆ p̃ + q̃,

which implies that
√

p̃ + q̃ = m̃. Finally, suppose that p(n) ∩ q 6⊆ mn+1. Then there

exists f ∈ (p(n) ∩ q) r mn+1, and if we consider f as an element of R̃, then (i)

f ∈ p̃(n) ∩ q̃ by Lemma 3.1, and (ii) f 6∈ m̃n+1 by our previous observations. Thus, a

counterexample in R would pass to a counterexample in R̃, and it suffices to prove

the theorem for R̃. This is the desired result.

It should be noted that this construction works equally well if R = k[[X1, . . . , Xd]].



38

3.3 Low Dimensional Cases

In this section, we prove Conjecture 1.2 in the following cases: (i) dim(R) ≤ 3,

(ii) length(R/(p + q)) = 1, and (iii) n = 1. The motivation for considering such

low-dimensional cases is that they are relatively straightforward and could provide

the beginning of any number of induction arguments. The following lemma gives the

main tool for dealing with the case dim(R) ≤ 3.

Lemma 3.6 Let R be any commutative ring, q a prime ideal of R and a a principal

ideal in R. Then a ∩ q(n) = aq(n) for every n > 0.

Proof. Let a = aR. Since bc ⊆ b ∩ c for any pair of ideals, we need only show that

aR ∩ q(n) ⊆ aRq(n). Fix ax ∈ aR ∩ q(n). Since a 6∈ q we see that a is a unit in Rq.

Thus, in Rq, x = a−1ax ∈ qn
q so that x ∈ qn

q ∩R = q(n), as desired.

The following proposition supplies a verification of Conjecture 1.2 for regular local

rings of dimension at most 3.

Proposition 3.7 Assume that R is a regular local ring of Krull dimension d ≤ 3

with maximal ideal m. Then for all prime ideals p and q of R such that
√

p + q = m

and dim(R/p) + dim(R/q) = d, p(m) ∩ q(n) ⊆ mm+n, for all m,n > 0. In particular,

Conjecture 1.2 holds for regular local rings of dimension at most 3.

Proof. The fact that d ≤ 3 implies that either p or q has height 0 or 1, that is, either

p or q is principal. If p is principal, say p = aR, then p(m) = amR and since an 6∈ q

(otherwise p ⊆ q) Lemma 3.6 implies that p(m) ∩ q(n) = p(m)q(n) ⊆ mm+n. The proof

is similar if q is principal.

The following proposition supplies a verification of Conjecture 1.2 in the case

where p + q = m, i.e., the case where length(R/(p + q)) = 1.

Proposition 3.8 Assume that R is a regular local ring of Krull dimension d with

maximal ideal m. Let p and q be prime ideals of R such that p + q = m and

dim(R/p)+dim(R/q) = d. Then for all m,n ≥ 0, p(m)∩q(n) ⊆ mm+n. In particular,

Conjecture 1.2 holds under these hypotheses.
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Proof. We begin by demonstrating that there exists a regular system of parameters

t1, . . . , tr, u1, . . . , us for R such that p is generated by the ti and q is generated by

the uj. Let M = m/m2, P = (p + m2)/m2 ⊆ M and Q = (q + m2)/m2 ⊆ M .

Then P + Q = M . Let t1, . . . , tr ∈ p such that {ti} ⊂ P forms a basis of P over

R/m = k, and similarly for u1, . . . , us ∈ q. Since the ti are linearly independent

over k, the ideal p′ = (t1, . . . , tr) is prime of height r contained in p. Similarly,

q′ = (u1, . . . , us) is prime of height s contained in q. Since {ti, uj} spanM , we see that

r+s ≥ dim(M) = d. If p′ 6= p, then r = ht p′ < ht p so that d ≤ r+s < ht p+ht q = d,

a contradiction. Thus, p = p′ and similarly q = q′. Then r + s = ht p + ht q = d,

and since {ti, uj} span M , we see that this is a basis for M . Thus, we have a regular

system of parameters.

Let G = grm(R) = k[T1, . . . , Tr, U1, . . . , Ur] where Ti and Uj are the images of

ti and uj, respectively, in m/m2. With the notation of Definition 2.9 Ti = tGi and

similarly for Uj . Let P = (T1, . . . , Tr), Q = (U1, . . . , Ur) and M = P + Q. Then

pG = P , and in fact, (pm)G = Pm for all m since each is generated by the monomials

in the tGi = Ti of degree m. Similarly, (qn)G = Qn and (mn)G = Mn. Also, by

checking monomials, we see that Pm ∩ Qn = PmQn ⊆ Mm+n. Now, suppose that

f ∈ (pm ∩ qn) r mm+n. Then the degree of f is strictly smaller than m+ n, so that

fG 6∈ Mm+n. But fG ∈ (pm)G ∩ (qn)G = Pm ∩ Qn ⊆ Mm+n, a contradiction. Since

p and q are generated by regular sequences, p(m) = pm and q(n) = qn, proving our

result.

Note the stronger containment p(m) ∩ q(n) ⊆ mm+n proved in the previous two

propositions. We do not conjecture that this containment should hold in the arbitrary

case, as we have no evidence like Theorem 1.1 to suggest that it should hold in general.

However, at this time, I know of no counterexample.

The following proposition gives a verification of Conjecture 1.2 in the case where

n = 1.

Proposition 3.9 Assume that R is a regular local ring of Krull dimension d with

maximal ideal m. Let p and q be prime ideals of R such that
√

p + q = m and
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dim(R/p) + dim(R/q) = d. Then p ∩ q ⊆ m2.

Proof. If p ∩ q 6⊆ m2, then fix f ∈ (p ∩ q) r m2. In particular, f ∈ m r m2,

so that R′ = R/fR is a regular local ring of dimension d − 1. If p′, q′ and m′

are the images of p, q and m, respectively, in R′, then p′ + q′ is m′-primary and

dim(R′/p′)+dim(R′/q′) = d > dim(R′), which contradicts Serre [21] Theorem V.6.3.

3.4 Ideals Generated by Regular Sequences

One particularly well-behaved class of ideals include those which can be generated

by a regular sequence. When p is such an ideal, we prove a slightly stronger version

of Conjecture 1.2 and a similar result when q is generated by part of a regular system

of parameters. The following lemma gives a verification of a version of Conjecture 1.2

for graded rings. We shall use the lemma below to verify Conjecture 1.2 when p is

generated by a regular sequence.

Lemma 3.10 Let (A, n) be a local ring of Krull dimension s, G = A[X1, . . . , Xr] a

polynomial ring, P = 〈X1, . . . , Xr〉, and M = nG + P . Assume that Q is a proper

homogeneous ideal of G (so that, in particular, Q ⊆ M) such that htQ = s. Let

Q0 = Q∩A, and assume that Q0 is n-primary. Then Q∩ P n ⊆ nP n ⊆Mn+1 for all

n ≥ 0.

Proof. Let Q′ be a minimal prime of Q such that htQ′ = htQ. Then Q′ is

homogeneous and n ⊇ Q′ ∩ A ⊇ Q0. Since Q0 is n-primary and Q′ ∩ A is prime, we

see that Q′ ∩A = n. Furthermore, if we can show that Q′ ∩P n ⊆ nP n ⊆Mn+1, then

Q ∩ P n ⊆ Q′ ∩ P n ⊆ nP n ⊆ Mn+1 and we are done. Thus, we may assume that Q

is prime and that Q0 = n. Then Q and nG = Q0G ⊆ Q are both prime of height s

so that Q = nG. Then, any element f of Q∩P n has coefficients in n ⊂M , implying

that Q ∩ P n ⊆ nP n ⊆MP n ⊆Mn+1, as desired.

The following is a technical lemma we shall employ in the proof of Conjecture 1.2

in the case where p is generated by a regular sequence.
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Lemma 3.11 Let A be a ring with ideals a and b. Let G = grb(A) and aG ⊂ G the

ideal of initial forms of a in G which is the homogeneous ideal aG = ⊕i((a ∩ bi) +

bi+1)/bi+1, and let b′ = bA/a. Then there is a ring isomorphism G/aG ∼= grb′(A/a).

Proof. The natural map G→ grb′(A/a), given in degree i by the projection

bi/bi+1 → (bi + a)/(bi+1 + a) = bi/(bi ∩ (bi+1 + a)) = bi/(bi+1 + (bi ∩ a))

is a well-defined homomorphism of graded rings that is surjective. The kernel in

degree i is exactly (bi+1 + (bi ∩ a))/bi+1 which is exactly the term of aG in degree i,

so that aG is the kernel.

The following proposition gives the essential argument for Conjecture 1.2 when p is

generated by a regular sequence (Corollary 3.13). We state the proposition separately

here as we shall use it later for symbolic powers of ideals that are not necessarily

prime (Theorem 3.24). Note that the regularity requirement of Conjecture 1.2 has

been loosened here.

Proposition 3.12 Assume that R is a Cohen-Macaulay, local ring of Krull dimen-

sion d with maximal ideal m. Let I and J be ideals of R such that I is gener-

ated by a regular sequence,
√
I + J = m and dim(R/I) + dim(R/J) = d. Then

In ∩ J ⊆ mIn ⊆ mn+1, for all n ≥ 0.

Proof. Let x1, . . . , xr ∈ m be a regular sequence that generates I. In particular,

I has height r. Let A = R/I, n = mA and G = grI(R). Since the xi form a

regular sequence, G = A[X1, . . . , Xr] is a polynomial ring, where Xi = xG
i . Let

s = dim(A) = d − r = ht (J), and let P = IG and Q = JG. Then P = 〈X1, . . . , Xr〉
and for n > 0, (pn)G = P n (to see this we can check generators). Furthermore,

Lemma 3.11 implies that G/Q = G/JG ∼= grI′(R/J) so that htQ = dim(G) −
dim(G/Q) = d − dim(grI′(R/J)) = d − dim(R/J) = ht J = s. Finally, Q0 =

(J + I)/I which is n-primary since I + J is m-primary. Thus, Lemma 3.10 implies

that Q ∩ P n ⊆ nP n ⊆Mn+1.

Now, suppose that In ∩ J 6⊆ mIn. Then there exists f ∈ (In ∩ J) r mIn. In

particular, f ∈ In r In+1 so that fG ∈ Gn. By construction, though, f ∈ Q ∩
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P n ⊆ nP n so that f ∈ Mn+1
n = nIn/In+1 = (mIn + In+1)/In+1. This implies that

f ∈ mIn + In+1 ⊆ mn+1, a contradiction.

Corollary 3.13 Assume that R is a Cohen-Macaulay, local ring of Krull dimension

d with maximal ideal m. Let p and J be ideals of R such that p is prime,
√

p + J =

m and dim(R/p) + dim(R/J) = d. If p is generated by a regular sequence, then

p(n) ∩ J ⊆ mn+1, for all n ≥ 0.

Proof. Since p is generated by a regular sequence, p(n) = pn. Now apply Proposi-

tion 3.12.

We shall see below (Theorem 3.24) that Conjecture 1.2 holds when p is generated

by a regular sequence and is not necessarily prime.

It is natural to consider next the case where p is equimultiple. A theorem of

Huneke [11] tells us that in many cases this follows directly from Corollary 3.13.

Theorem 3.14 Let R be a Noetherian local ring and p a prime ideal such that Rp

is regular. Suppose either R of grR(p) is Cohen-Macaulay. If p is equimultiple then

p is generated by an R-sequence.

The following proposition gives another criterion for the containment pn ∩ q ⊆
mn+1 to hold.

Proposition 3.15 Assume that R is a regular local ring of Krull dimension d with

maximal ideal m. Let p and q be prime ideals of R such that
√

p + q = m and

dim(R/p) + dim(R/q) = d. Let G = grm(R) and let P = pG, Q = qG and M = mG

be the ideals of initial forms in G. If
√
P +Q = M , then pn ∩ q ⊆ mn+1.

Proof. First, we observe that P n∩Q ⊆Mn+1. Since the localization GM is a regular

local ring which contains a field, the theorem holds in this ring. Since PM + QM is

MM -primary and htPM + htQM = htP + htQ = ht p + ht q = d = dimGM , we

consider minimal primes of P and Q of the same heights to see that

(P n ∩Q)M = (PM)n ∩QM ⊆ (MM )n+1 = (Mn+1)M
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and we contract to G to see that

P n ∩Q ⊆ (P n ∩Q)M ∩G ⊆ (Mn+1)M ∩G = M (n+1) = Mn+1

since M is maximal.

Next, we observe that ((pn)G)n = (P n)n. Notice that once we show this, we are

done. If f ∈ (pn ∩ q) r mn+1 then

fG ∈ Gn ∩ (pn)G ∩ qG = ((pn)G)n ∩ (qG)n = (P n ∩Q)n ⊆ (Mn+1)n = 0

which is a contradiction. To prove the desired equality, we observe that

(P n)n = (P1)
n = (pn + mn+1)/mn+1 = ((pn ∩mn) + mn+1)/mn+1 = ((pn)G)n

as desired.

Example 4.19 below shows that, in general,
√

pG + qG 6= M .

With all this work in mind, one might also ask whether there are reasonable

conditions that guarantee that p(n) ∩ q = p(n)q. Certainly, this equality would imply

Conjecture 1.2 for these ideals. It is always true that p(n) ∩ q ⊇ p(n)q, but equality

does not hold in general: for example if p(n) is contained in q or vice-versa. Under our

usual dimension and spanning restrictions, it seems natural to wonder if this equality

holds for sufficiently “nice” ideals, for example, ideals generated by a regular sequence

or even by part of a regular system of parameters. By Lemma 3.6, if one of the ideals

is principal (i.e., generated by a regular sequence of length 1), the answer is “yes.”

In general, though, the answer is still “no.” To see this, we start with a lemma which

shows that the different between p(n) ∩ q and p(n)q can be computed using Tor.

Lemma 3.16 Assume that R is a local, Noetherian ring with x1, . . . , xs ∈ m a

regular sequence. Let J = (x1, . . . , xs), and let I be a nontrivial ideal of R. Then

TorR
1 (R/I,R/J) ∼= (I ∩ J)/(IJ)

Proof. Since J is generated by the regular sequence x1, . . . , xs we can use the Koszul

complex to compute the Tor module. We recall the relevant definitions. Let K0 = R,
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K1 = Rs and K2 = r(
s
2). Let a basis of K2 be given as {eij : 1 ≤ i < j ≤ s}. Then

the differentials are given by the following formulas.

K2

d2 - K1

d1- K0

eij
- xiej − xjei

ei
- xi

The module TorR
1 (R/I,R/J) is the homology of this complex after tensoring with

R/I. We construct an isomorphism φ from this module to (I ∩ J)/(IJ). An element

of TorR
1 (R/I,R/J) is represented by an s-tuple (ai) = (a1, . . . , as) ∈ ker(d1) ⊆ K1 =

Rs. Since (ai) is in the kernel of d1,
∑

i aixi = 0 so that
∑

i aixi ∈ I. Since the xi ∈ J ,∑
i aixi ∈ I∩J . Thus, we define φ : ker(d1) → (I∩J)/(IJ) as (ai) 7→

∑
i aixi. To see

that this is well-defined, the essential step is to show that if ai = 0, then
∑

i aixi ∈ IJ .

This is clear, however, as ai = 0 ⇒ ai ∈ I. This map factors through the quotient

ker(d1)/Im(d2), as φ(d2(ei,j)) = φ(xiej − xjei) = xixj − xjxi = 0. This gives a

well-defined map φ : TorR
1 (R/I,R/J) → (I ∩ J)/(IJ). It is surjective, as every

element of (I ∩ J)/(IJ) is of the form
∑

i aixi and is, by definition, in the image of

φ. To see that φ is injective, suppose that (ai) 7→ 0. This implies that
∑

i aixi ∈ IJ
so that

∑
i aixi =

∑
i pixi for some pi ∈ I. Then

∑
i(ai − pi)xi = 0, so that in the

original Koszul complex (before tensoring with R/I) the element (ai− pi) ∈ K1 is in

the kernel of d1. This complex is exact, so (ai − pi) = d2(b) for some b ∈ K2. Thus,

d2(b) = (ai − pi) = (ai) which implies that (ai) = 0 in TorR
1 (R/I,R/J), as desired.

We note that this lemma holds without the assumption that J is generated by a

regular sequence (c.f., Rotman [20] Corollary 11.27).

Now assume thatR is a regular local ring with ideals I and J such that dim(R/I)+

dim(R/J) = dimR,
√
I + J = m and J is generated by a regular sequence x1, . . . , xs ∈

m. Then the lemma tells us that I ∩ J = IJ if and only if TorR
1 (R/I,R/J) = 0 if

and only if the xi form a regular sequence on R/I. This condition occurs if and only

if R/I is Cohen-Macaulay. To see this, assume that R/I is Cohen-Macaulay. Then

depth(R/I) = dim(R/I) = s, by assumption, and x1, . . . , xs generate an ideal of

height s in R/I and therefore form a regular sequence on R/I. Conversely, if R/I

is not Cohen-Macaulay then depth(R/I) < dim(R/I) = s and R/I can not have a
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regular sequence of length s. It follows that there are numerous examples where the

containment I(n) ∩ J ) I(n)J is nontrivial.

In the following proposition, we verify Conjecture 1.2 for the case where q is

generated by part of a regular system of parameters.

Proposition 3.17 Assume that (R,m) is a regular local ring of Krull dimension d.

Let p and q be prime ideals of R such that
√

p + q = m and dim(R/p)+dim(R/q) = d.

Assume that q is generated by part of a regular system of parameters. Then p(n)∩q ⊆
mnq, for all n ≥ 0. In particular, Conjecture 1.2 holds when R/q is regular.

Proof. First, we note that, if we can prove that p(n) ∩ q ⊆ mn+1, then the desired

result follows. We prove this by induction on s = ht (q). The case s = 0 is trivial,

and the case s = 1 follows from Lemma 3.6. Fix any u ∈ q r m2 and let R = R/uR,

q = q/uR and so on. By Proposition 3.9, u 6∈ p, so that ht (p) = ht (p). Let r be a

minimal prime ideal of p which has the same height as p. By induction, r(n)∩q ⊆ mnq

so that p(n) ∩ q ⊆ mnq + (u). For f ∈ p(n) ∩ q, f =
∑

i aixi + bu where the ai ∈ mn.

If b 6∈ mn, then f 6∈ mn+1 which contradicts the containment p(n) ∩ q ⊆ mn+1.

Suppose that the residue field of R is finite. As in the proof of Theorem 3.3, let

R(X) = R[X]m[X] which is a faithfully flat extension of R such that mR(X) is the

maximal ideal M of the regular local ring R(X). Furthermore, since q is generated

by part of a regular system of parameters for R, the same is true for the extension

Q = qR(X). Let P be a minimal prime of pR(X) and fix f ∈ p(n)∩q. If Part 1 holds

for R(X), then f ∈ Mn+1 ∩ R = mn+1 by faithful flatness. Thus, we may assume

that R has infinite residue field.

Let x1, . . . , xs be part of a regular system of parameters such that q = (x1, . . . , xs).

We prove each result by induction on s. Lemma 3.6 implies the case s = 1 for both

results. Assume that s ≥ 2 and for some u ∈ q r m2, let R = R/(u), q = qR, and so

on. Then ht (p) = ht (p) so let r be a minimal prime ideal of p which has the same

height as p. Then r and q satisfy the hypotheses of the proposition, so by induction,

r(n) ∩ q ⊆ mn+1. By Lemma 3.1, this implies that p(n) ∩ q ⊆ mn+1 + (u) for all such

u. Suppose that f ∈ p(n) ∩ q such that f 6∈ mn+1. Since s ≥ 2, we see that for every
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unit v of R, f ∈ mn+1 + (x1 + vx2). Since f ∈ mn r mn+1, the initial form of f in

G = grm(R) = R/m[X1, . . . , Xd] is a multiple of X1 + vGX2 for every such v. Since

R has infinite residue field, there are an infinite number of distinct elements of G of

this form so that fG has an infinite number of prime factors, a contradiction.

3.4.1 The Use of Regular Alterations

With Gabber’s work on nonnegativity (c.f., [19]) and Propositions 3.12 and 3.17

in mind, it would make sense to try to use Theorem 2.33 to reduce to the case where

a global version of p or q is locally generated by a regular system of parameters.

For our purposes, let (R,m) be a regular local ring that is of finite type over a

field or a complete discrete valuation ring with algebraically closed residue field. Let

p and q be prime ideals of R such that
√

p + q = m and ht (p) + ht (q) = dim(R).

We let A = R/p and let I ∈ Proj(R/p[X0, . . . , Xn]) be an ideal coming from a

regular alteration of R/p. Let S = R[X0, . . . , Xn] so that I corresponds to an

element P ∈ Proj(S). Let Q = qS. If P and Q were to satisfy the same conditions

satisfied by p and q, at least locally, then we might hope that a counterexample in

R would pass to a counterexample in A. Unfortunately, P and Q will not satisfy

the desired conditions, as noted previously. The same problem occurs if we take a

regular alteration of R/q.

3.5 Ordinary and Symbolic Powers of Ideals

We investigate versions of Conjecture 1.2 where p and q are not necessarily prime

ideals and where the inclusion under consideration is pn ∩ q ⊆ mn+1. We also give

some indication as to how this may help in the investigation of the original version

of the conjecture. The following lemma allows us to replace q with any ideal with

the same radical as q in Conjecture 1.2.

Lemma 3.18 Assume that R is a regular local ring of Krull dimension d with

maximal ideal m. Let I and J be ideals of R such that
√
I + J = m and dim(R/I) +

dim(R/J) = d. Let J ′ be an ideal of R with the same radical as J (e.g., J ′ is a

reduction of J or the integral closure of J or the radical of J). Then
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1. In ∩ J ′ ⊆ mn+1 for all n ≥ 1 if and only if In ∩ J ⊆ mn+1 for all n > 0.

2. If I is unmixed, I(n) ∩ J ′ ⊆ mn+1 for all n > 0 if and only if I(n) ∩ J ⊆ mn+1

for all n > 0.

Proof. The proof of part 1. is almost identical to that of part 2. so we only prove part

2. The assumption that I is unmixed is only needed for the properties of I(n) which we

require. The result is symmetric in J ′ and J , as
√
J =

√
J ′ ⇒ dim(R/J) = dim(R/J ′)

and
√
J ′ + I = m. Assume that I(n) ∩ J ′ ⊆ mn+1 for all n ≥ 1, and suppose that

f ∈ (I(n) ∩ J) r mn+1. Then, the degree of f (with respect to m) is exactly n, and

the degree of f t is exactly nt for all positive integers t. By assumption, J t ⊆ J ′ for

some positive integer t. Thus, f t ∈ J ′ ∩ (I(n))t ⊆ J ′ ∩ I(nt) ⊆ mnt+1, a contradiction.

We consider the containment In ∩ J ⊆ mn+1 for the following reasons: (i) it is

not known, and (ii) if we can verify this containment, then it may lead us closer to

establishing Conjecture 1.2.

The following lemma is the first tool to be used in verifying a version of Conjec-

ture 1.2 for a class of ideals in the unramified, mixed-characteristic case.

Lemma 3.19 Assume that A is a complete regular local ring, n > 0, and f =

Xn + a1X
n−1 + · · ·+ an a polynomial with coefficients in A. If p ⊂ A[[X]] is a prime

ideal, p0 = p ∩ A and f ∈ p(n), then p is the unique prime ideal of A[[X]] containing

f , which contracts to p0 in A.

Proof. First, we reduce to the case where p0 is maximal. Let S = A r p0.

Weierstrass Preparation implies that in the commuting diagram (where all the maps

are canonical)

A - A[X] - A[X]/(f)

@@R

A[[X]]
?

- A[[X]]/(f)
?

the right-hand vertical map is an isomorphism. The localized diagram
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Ap0
- Ap0[X] - Ap0 [X]/(f)

@@R

A[[X]]S
?

- A[[X]]S/(f)

∼= ?

also has an isomorphism in that spot. The prime ideals of A[[X]] that contain f and

contract to p0 in A are in bijection with the primes of A[[X]]S/(f) ∼= Ap0 [X]/(f)

which contract to the maximal ideal of the local ring Ap0. Furthermore, letting

s = (p ∩ A[X])S we have

f ∈ (p(n))S ∩ A[X]S = ((p ∩A[X])S)(n) = s(n).

If we can show that s is the unique prime in Ap0[X] containing f which contracts to

s0 = (p0)p0 in Ap0 , then p is the unique such prime in A[[X]]. So we may assume that

we are considering the extension A→ A[X] and that p ∩ A is maximal.

The extension A → A[X]/(f) is finite, so p ⊂ A[X]/(f) is maximal. Thus, p is

maximal. Since p0 is maximal, A/p0[X] is a PID and so p̂ ⊂ A/p0[X] ∼= A[X]/p0[X] is

principal, generated by f̂1, which is a prime factor of the image f̂ of f in p̂ ⊂ A/p0[X].

Since p is maximal, pn is p-primary and f ∈ p(n) = pn so that f̂ ∈ p̂n = 〈f̂n
1 〉. Thus,

f̂ = f̂n
1 û for some û. Since f̂1 must have positive degree, we see that f̂1 must be

linear, and û must be constant, so that modulo p0, f has a unique prime factor.

Thus, any distinct primes of A[X] containing f and contracting to p0 would pass to

distinct primes of A/p0[X] containing f̂ . But the only such prime is 〈f̂1〉, so we have

uniqueness.

The following lemma is the main tool to be used in verifying a version of Conjec-

ture 1.2 for a class of ideals in the unramified, mixed-characteristic case.

Lemma 3.20 Assume that A is a complete regular local ring, n > 0, and f =

Xn + a1X
n−1 + · · · + an a polynomial with coefficients in A. Let R = A[[X]] with

maximal ideal m and assume that p and q are prime ideals in R such that
√

p + q = m

and f ∈ p(n) ∩ q. If p0 = p ∩ A, then p0R+ q is also m-primary.

Proof. For an ideal a ⊆ R, let Z(a) ⊆ Spec(R) denote the closed subscheme

determined by a. Since a is m-primary iff Z(a) ⊆ {m}, we need only show that
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Z(p0R+ q) = Z(p + q). Since p0R+ q ⊆ p + q, we know that Z(p0R+ q) ⊇ Z(p + q),

so we need only demonstrate the reverse inclusion. The fact that f is in q tells us that

p0R+q = (p0R+fR)+q, so that Z(p0R+q) = Z((p0R+fR)+q) = Z(p0R+fR)∩
Z(q). Since Z(p + q) = Z(p) ∩ Z(q), it suffices to show that Z(p0R + fR) ⊆ Z(p).

Furthermore, it suffices to show that if R = R/(p0R+ fR), then the image p of p in

R is the unique minimal prime of R, since then any prime of R must also contain p.

Since A/p0 is complete and local, and since f is monic we see that the extension

A/p0 → A/p0[X]/(f) = R is finite. Furthermore, R is a free A/p0-module, so

both the going-up and going-down theorems hold for this extension. In particular,

ht p = ht (p∩A/p0) = ht (0) = 0 so that p is a minimal prime of R. Now, let s be any

minimal prime of R. By Lemma 3.19, it suffices to show that the contraction of s in

A/p0 is (0). Since A/p0 is an integral domain, it suffices to show that ht (s∩A/p0) = 0.

This follows by going-up and going-down, since ht (s ∩ A/p0) = ht s = 0.

The following proposition gives another class of ideals satisfying the containment

In ∩ J ⊆ mn+1 for all n ≥ 1.

Proposition 3.21 Let L be a complete p-ring with infinite residue field k and let

R = L[[X1, . . . , Xd]] with maximal ideal m. Assume that I and J are ideals of R such

that dim(R/I) + dim(R/J) = d + 1 and
√
I + J = m. Let p denote the image of p

in m/m2, and let I = (I + m2)/m2 ⊆ m/m2. If kp 6⊆ I, then In ∩ J ⊆ mn+1 for all

n ≥ 1.

Proof. If I ⊆ m2, then In ⊆ m2n ⊆ mn+1 for all n > 0. Otherwise, let d(I) =

dimk(I) > 0. For d(I) ≥ 2, the proof of Proposition 3.17 shows that we can reduce

to the case d(I) = 1. (Let H = grm(R), and for z ∈ R, let Z ∈ H denote the initial

form of z in H . Fixing x, y ∈ p r m2 such that kX 6= kY , we need to make sure

that there is an infinite number of elements x+ uy that are relatively prime modulo

m2 and such that R/(x + uy)R is unramified of mixed characteristic. That is, the

x + uy must satisfy x + uy 6∈ (p) + m2. To see that this is possible, we note that, if

P |(X + UY ), then for every nonzero V ∈ k, P - (X + V (X + UY )).) Similarly, we

may assume that d(J) ≤ 1.
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Fix x ∈ p r m2. Let G = grp(R) and and consider the natural homomorphism of

graded rings φ : G→ H . Let qG denote the ideal of initial forms of q in G, and for any

element f of q let fG denote the initial form of f in G. To show that pn ∩ q ⊆ mn+1

for all n ≥ 1, it is equivalent to show that φ(qG) = 0. Since p ⊂ (x)+m2, we see that

the image of φ is exactly k[X]. Suppose that f ∈ (pn∩q)rmn+1. Then φ(fG) = aXn

for some nonzero element a ∈ k, and it follows that f ∈ (xn)+ mn+1. If x 6∈ (p)+ m2,

then we may assume that x = X1, and Lemma 3.20 gives a contradiction.

For what follows, we need a notion of symbolic powers for arbitrary ideals.

Definition 3.22 Let I be an ideal of a ring A. The nth symbolic power of I is the

ideal

I(n) =
⋂

(InAp ∩A)

where the intersection is taken over all minimal prime ideals of A/I. If I is a prime

ideal, then this definition agrees with the previous definition.

The following lemma shows that symbolic powers of ideals generated by regular

sequences are exactly the regular powers. This shall give us the generalization of

Corollary 3.13 which was mentioned above.

Lemma 3.23 Assume that I is generated by a regular sequence (not necessarily

prime) of height r in a Cohen-Macaulay local ring A. Then I(n) = In for all n ≥ 1.

Proof. Let a1, . . . , ar be a regular sequence generating I, and let I = q1 ∩ · · · ∩ qj

be an irredundant primary decomposition of I with
√

qi = pi. Since I is generated

by a regular sequence and A is Cohen-Macaulay, we know that ht (pi) = r for each i.

First, we note that I(1) = I. The correspondence of primary ideals under localization

implies

I(1) = ∩i(qpi
∩A) = ∩iqi = I

as desired.
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Now, assume that n > 1 and fix x ∈ I(n). By induction on n, we know that

x ∈ I(n−1) = In−1. Suppose that x 6∈ In. By the definition of I(n), there exists si ∈
Rr pi such that six ∈ In. Since x ∈ I(n−1) = In−1, the fact that the al form a quasi-

regular sequence implies that there exists a homogeneous polynomial F (x1, . . . , xr) ∈
R[x1, . . . , xr] of degree n − 1 such that F (a1, . . . , ar) and the coefficients of F are

not all in I. The polynomial siF then satisfies siF (a1, . . . , ar) = six ∈ In so that the

coefficients of siF are all in I. Because such an si exists for each pi, it follows that

the coefficients of F are all in I(1) = I, a contradiction.

Theorem 3.24 Assume that R is a Cohen-Macaulay, local ring of Krull dimension

d with maximal ideal m. Let I and J be ideals of R such that
√
I + J = m and

dim(R/I) + dim(R/J) = d. If I is generated by a regular sequence, then I(n) ∩ J ⊆
mI(n) ⊆ mn+1, for all n ≥ 0.

Proof. In light of the proof of Corollary 3.13, the result follows from Lemma 3.23.

3.6 Nonregular Rings

The nature of induction arguments we might try lead us to take quotients of our

rings. For example, recall the induction argument for Proposition 3.17. However,

without minimal generators of m in our ideals, our quotients will no longer be regular.

One might ask whether we can loosen the restriction of regularity if we require more

from our ideals p and q. For instance, we might require p and q to have finite

projective dimension. As we have shown, we may need to assume thatR satisfies some

reasonable hypotheses, for instance, quasi-unmixedness or Cohen-Macaulayness. It

seems clear that we should work within a class of rings which properly contains the

regular local ones and is closed under specialization (i.e., passing to a quotient by a

regular sequence). We desire this in order to be able to take more quotients, since

our ideals will contain plenty of regular elements, even if they contain no minimal

generators of m.

In light of Example 4.16, we see that the assumption that p and q have finite

projective dimension is quite restrictive. In fact, we immediately have the following.
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Lemma 3.25 Assume that (R,m) is a local Noetherian ring with prime ideal p of

finite projective dimension. Then Rp is a regular local ring. In particular, p is locally

generated by a regular sequence.

Proof. The fact that p has finite projective dimension implies that R/p has finite

projective dimension. Let F• → R/p be a free resolution of R/p over R. Because

localization is exact, we see that (Rp) ⊗R F• → (Rp) ⊗R R/p = k(p) is a finite

free resolution of k(p) over Rp. Thus, the residue field of Rp has finite projective

dimension over Rp. The theorem of Auslander-Buchsbaum-Serre (c.f., [4] Theorem

2.2.7) implies that Rp is regular.

Another indication of the strength of the finite projective dimension condition is

supplied by the following lemma.

Lemma 3.26 Assume that (R,m) is a local Noetherian ring with finitely generated

module M of finite projective dimension. If Ass(R)∩Supp(M) 6= ∅, then Supp(M) =

Spec(R).

Proof. Fix p ∈ Ass(R)∩Supp(M). The exactness of localization implies thatMp 6= 0

has finite projective dimension over Rp. Also, Ap has depth 0 since the maximal ideal

of Rp is pp ∈ Ass(Rp) and therefore pp consists of zerodivisors and we can not start a

regular sequence. By the theorem of Auslander-Buchsbaum (c.f., [4] Theorem 1.3.3)

pdim(Mp) ≤ depth(Rp) so that pdim(Mp) = 0. It follows that Mp is projective, and

since Rp is local, that Mp is free. Let F• → M be a finite free resolution of M over

R. For every prime ideal q of R, (F•)q →Mq is a finite free resolution of Mq over Rq,

and each (Fi)q has the same rank over Rq as Fi has over R. Applying this to p = q,

we see that the free module Mp 6= 0 has rank

0 < rank(Mp) =
∑

i

(−1)irank(Fi)p =
∑

i

(−1)irank(Fi)

If q is a prime of R which is not in Supp(M), then Mq = 0 so that

0 =
∑

i

(−1)irank(Fi)q =
∑

i

(−1)irank(Fi)
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a contradiction. Thus, Supp(M) = Spec(R), as desired.

The following corollary gives another condition under which the regularity re-

quirement of Conjecture 1.4 may be loosened.

Corollary 3.27 Assume that (R,m) is a local Cohen-Macaulay ring of dimension d

with ideals p and J such that p is prime of finite projective dimension, dim(R/p) +

dim(R/J) = d and
√

p + J = m. If ht (p) = 0 or ht (J) = 0 then p(n) ∩ J ⊆ mn+1.

In particular, this containment holds for local Cohen-Macaulay rings of dimension 0

and 1.

Proof. First, assume that ht (J) = 0. Then ht (p) = d so that p = m. Lemma 3.25

implies that R = Rm = Rp is regular. In particular, R is an integral domain so that

J = 0. The result is now trivial in this case.

Next, assume that ht (p) = 0 so that ht (J) = d, from which it follows that J

is m-primary. Since p ∈ Ass(R) ∩ Supp(R/p), Lemma 3.26 implies that V (p) =

Supp(R/p) = Spec(R). Thus, p is the unique minimal prime of R. It follows that

p = 0 (from which the result is trivial), as follows. Since Rp is a zero-dimensional

regular local ring, pp = 0. This implies that there exists s ∈ Rr p such that sp = 0.

If p 6= 0, then s is a zerodivisor on R. However, the fact that R is Cohen-Macaulay

implies that the set of zerodivisors is exactly the union of the associated primes of

R, i.e., it is p. It follows that s ∈ p, a contradiction.

Notice that in the corollary, we do not require J to be prime or to have finite

projective dimension. One thing to consider is that, since R is no longer assumed

to be regular, there is no guarantee that p(n) ⊆ mn. (See Example 4.16 below.) It

may be, however, that the assumption of finite projective dimension will mend this

deficiency, though this is an important open question in the field.
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EXAMPLES

In this chapter we give a number of examples that demonstrate the reasons for

the assumptions we place on our conjectures, as well as the limitations of some of the

results.

The following example shows that the requirement e(Rp) = e(R) is necessary for

Conjecture 1.4.

Example 4.1 Let k be a field, R = k[[X, Y, Z,W ]]/(XY − ZW ) = k[[x, y, z, w]] with

p = (x, z)R and q = (y, w)R. Then e(R) = 2 > 1 = e(Rp) and dim(R/p) +

dim(R/q) = 4 > 3 = dim(R).

The following example shows that the requirement
√

p + q = m is necessary for

Conjecture 1.4.

Example 4.2 Let k be a field, R = k[[X]], p = q = (0). Then e(Rp) = e(R) = 1 and

dim(R/p) + dim(R/q) = 2 > 1 = dim(R).

The following example shows that, in order for Conjecture 1.4 to hold, we must

assume that our ring is at least equidimensional.

Example 4.3 Let k be a field and R = k[[X]]×k k[[Y, Z]]. That is, in the diagram

k[[X]] × k[[Y, Z]] - k[[X]]

k[[Y, Z]]
? α - k

β ?

R = {(a, b) ∈ k[[X]] × k[[Y, Z]] : α(a) = β(b)}. It is straightforward to verify the

following facts: (i) R is a local ring with maximal ideal m = ((X, 0), (0, Y ), (0, Z));

(ii) dim(R) = 2; (iii) e(R) = 1; and if p = ((X, 0))R and q = ((0, Y ), (0, Z))R then
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p + q = m and e(Rp) = e(Rq) = e(R) = 1. However, dim(R/p) + dim(R/q) = 3 >

2 = dim(R). he essential problem is that R has components of different dimension.

We should note, as this pertains to Conjecture 1.5, that both p and q have infinite

projective dimension. We demonstrate this in steps. First, depth(R) = 1 so that,

in particular, R is not Cohen-Macaulay. It is straightforward to verify that the

element (X, Y ) is R-regular. The element (X, 0) is not in the ideal (X, Y )R: if

(X, 0) = (X, Y )(f, g) = (Xf, Y g) then g = 0 and f = 1 contradicting the fact

that (f, g) ∈ K[[X]] ×K K[[Y, Z]]. Also, every nonunit of R/(X, Y )R annihilates the

(nonzero) image of (X, 0): (f, g)(X, 0) = (Xf, 0) = (X, Y )(f, 0) ∈ (X, Y )R. Thus,

the longest regular sequence in R has length 1, as desired.

Second, we note the following properties of p and q. depthR(R/p) = 2, as

R/p ∼= K[[Y, Z]] via the natural map R → K[[Y, Z]] and the sequence (0, Y ), (0, Z) is

a maximal regular sequence on R/p. Similarly, depth(R/q) = 1. Furthermore, R/q

is not free, as dim(R/q) = 1 and dim(R) = 2.

Now, suppose that R/p has finite projective dimension. By the formula of Aus-

lander and Buchsbaum, we have

pdim(R/p) + depth(R/p) = depth(R) = 1

But the left-hand side of this equation is pdim(R/p) + 2 > 2, a contradiction. If

R/q had finite projective dimension, then a similar computation would show that

pdim(R/q) = 0 so that R/q is free, a contradiction.

The following example shows that the regularity assumption in Theorem 1.3 is

necessary.

Example 4.4 Let k be a field and let R = k[[X, Y, Z]]/(X2−Y Z) = k[[x, y, z]]. Then

R is a complete intersection of dimension 2, but is not regular. Let p = (x, z) which

is a prime ideal in R. It is straightforward to verify that p(2) = (z) which is not

contained in m2. Note that p does not have finite projective dimension. This shall

be relevant below when we compare Conjectures 1.4 and 1.5.
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The following example shows that the bound in Corollary 2.13 part 1(d) can be

achieved and can be strict, even for a flat, local homomorphism of regular local rings.

Example 4.5 Let k be a field, A = k[[X, Y ]] and Â = k[[X,
√
Y ]]. Then Â/nÂ =

k[[X,
√
Y ]]/(X, Y ) has length 2. However,

e(Â/(X)) = 1 < 2 = e(A/(X))lengthÂ(Â/nÂ)

e(Â/(Y )) = 2 = e(A/(Y ))lengthÂ(Â/nÂ)

so, the inequality can be strict or not.

The following example shows that the condition M ∩A = n in Theorem 2.18 does

not automatically follow from the fact that M is maximal.

Example 4.6 Let A be a discrete valuation ring with uniformizing parameter t.

Then the field of fractions of A is

K = A[t−1] = A[X]/(1− tX)

so that the ideal (1 − tX)A[X] is maximal. However, it is straightforward to verify

that (1− tX)A[X] ∩ A = (0), which is not maximal.

The following example shows that the requirement of equidimensionality in The-

orem 2.20 is necessary.

Example 4.7 Let k be a field, A = k[[X]], B = k[[Y ]]/(Y n) for some n > 1, and

C = A×k B. That is, in the diagram

A×B - A

B
? α- k

β ?

C = {(a, b) ∈ A × B : α(a) = β(b)}. It is straightforward to verify the following

facts: (i) C is a local ring with maximal ideal n = (X)A × (Y )B; (ii) dim(C) = 1;

(iii) e(C) = 1; and (iv) the ideal p = (0)A× (Y )B is a prime such that e(Cp) = n >

1 = e(C). The essential problem is that C has components of different dimension.
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The following two examples show that if R/p is not regular, neither implication

of Lemma 2.31 holds.

Example 4.8 Let R = k[[X, Y, Z, U, V,W ]] and let p be the ideal generated by the

2× 2 minors of the generic matrix (
X Y Z
U V W

)

Since R is regular, e(R) = 1 = e(Rp). However, ht (p) = 2 and s(p) = 3, since

otherwise p would be generated by a regular sequence by Theorem 3.14. We note

that it can be shown, using local cohomology, that there is no regular sequence in

p which generates p up to radical, i.e., p is not a set-theoretic complete intersection

ideal. (I am grateful to Anurag Singh for showing me a proof of this fact.)

Example 4.9 Let R = k[[X, Y, Z,W ]]/(XY − ZW ) with p = (0)R. Then ht (p) =

0 = s(p). However, e(R) = 2 and e(Rp) = 1.

The following two examples show that, in a ring that is not regular, neither of the

following conditions implies the other: “e(Rp) = e(R)” and “p has finite projective

dimension.”

Example 4.10 Let R = k[[X, Y, Z,W ]]/(X2 − Y Z) = k[[x, y, z, w]] with p = (x, z).

Then p has infinite projective dimension and e(R) = 2 = e(Rp). Notice that R is a

domain and R/p is regular.

Example 4.11 Let R = k[[X, Y, Z,W ]]/(X2 − Y Z) with q = (0). Then R/q is free

(and therefore has finite projective dimension) and e(R) = 2 > 1 = e(Rq).

We notice that Example 4.11 is not as satisfying as Example 4.10, in the sense that

R/q is not regular. We were attempting to find a local domain R with prime ideal

p satisfying the following conditions: (i) R/p is regular, (ii) p has finite projective

dimension, and (iii) e(R) > e(Rp). We have already seen that these conditions are

quite restrictive. In fact, such an example does not exist, as we see in Theorem 4.13

below. The following lemma supplies the main tool for proving the theorem.
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Lemma 4.12 Let (R,m) be a local ring and M a finitely generated R-module. Let

F• → M be an R-free resolution of M and assume that x = x1, . . . , xi ∈ R is a

sequence which is regular on M . Let K• = K•(x) denote the Koszul complex of x on

R. Then F• ⊗R K• is a free resolution of M/xM .

Proof. Since K•(x1, . . . , xi) = K•(x1)⊗K•(x2, . . . , xi), we may assume without loss

of generality that i = 1, i.e., that we have a regular sequence of length 1. In this

case, K• is exactly

0 → R
·x→ R→ 0

The tensor product of complexes F• ⊗R K• is given as

(F• ⊗R K•)i = Fi ⊕ Fi−1

with differentials Fi ⊕ Fi−1
Di→ Fi−1 ⊕ Fi−2 given by

(a, b) 7→ (d(a) + (−1)i−1xb, d(b))

where d represents the differential of the complex F•. In particular, F• ⊗R K• is a

finite free complex. The natural split exact sequence

0 → Fi → Fi ⊕ Fi−1 → Fi−1 → 0

gives us a short exact sequence of chain complexes

0 → F• → F• ⊗R K• → F•[−1] → 0

where F•[−1] is the twisted complex of F• so that F•[−1]i = Fi−1. This gives a long

exact sequence in homology

· · · → Hi(F•) → Hi(F• ⊗R K•) → Hi−1(F•)
δ→ Hi−1(F•) → · · · (4.1)

It is straightforward to verify that the connecting homomorphism δ is given by

multiplication by (−1)i−1x. For i > 1 the sequence (4.1) is

· · · → 0 → Hi(F• ⊗R K•) → 0 → 0 → · · ·
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so that Hi(F• ⊗R K•) = 0. For i = 1 we have the sequence

· · · → 0 → H1(F• ⊗R K•) → M
·x→M

Since x is regular on M , the map M → M is injective so that H1(F• ⊗R K•) = 0.

For i < 0, (F• ⊗R K•)i = 0, and it follows that F• ⊗R K• is a free resolution of

ker(D0) = Coker(M
·x→ M) = M/xM

as desired.

The following theorem demonstrates that there does not exist a local domain R

with prime ideal p satisfying the following conditions: (i) R/p is regular, (ii) p has

finite projective dimension, and (iii) e(R) > e(Rp).

Theorem 4.13 Let (R,m) be a local ring with prime ideal p such that p has finite

projective dimension and let R̂ denote the completion of R. Assume that one of the

following holds:

1. R/p is regular.

2. R is quasi-unmixed and e(Rp) = e(R).

Then R is regular. (In particular, e(Rp) = 1 = e(R) and every prime ideal has finite

projective dimension.)

Proof. 1. Assume that (R,m) is a local ring with prime ideal p such that R/p is

regular and p has finite projective dimension. Let F• → R/p be a minimal, finite

R-free resolution of R/p. Since R/p is regular, let x = x1, . . . , xi ∈ R be a sequence

which forms a regular system of parameters of R/p. Let K• = K•(x) denote the

Koszul complex of x on R, so that, by the lemma, F• ⊗R K• is a finite, R-free

resolution of (R/p)/(xR/p) = R/m. The existence of such a resolution implies that

R is regular.
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2. Assume that e(Rp) = e(R), R is quasi-unmixed. By [8] Theorem 6.8, R is

regular if and only if e(R) = 1. By Lemma 3.25, Rp is regular so that e(R) =

e(Rp) = 1, as desired.

A surprising benefit of prime ideals satisfying conditions 1 and 2 of the theorem is

that the multiplicity of R can be computed using any minimal reduction of p. More

specifically we have the following.

Proposition 4.14 Assume that (R,m) is a quasi-unmixed, Nagata local ring with

infinite residue field and prime ideal p such that R/p is regular and e(Rp) = e(R).

Then, for any minimal reduction a of p, e(R) = e(R/a).

Proof. Let z1, . . . , zj ∈ m be a sequence whose residues in R/p form a regular

system of parameters and let y1, . . . , yi ∈ p generate a minimal reduction a of p. By

Lemma 2.31 i = ht (p), and since j = dim(R/p) we see that i+j = dim(R). The ideal

b = (z,y)R is a minimal reduction of m, as it is generated by the correct number of

elements and, assuming that pna = pn+1 we have

mnb = (p, z)n(y, z) ⊇ (pn(y), pn(z), pn−1(z)2, . . . , (z)n+1)

= (pn+1, pn(z), pn−1(z)2, . . . , (z)n+1) = mn+1.

In particular, b/a is a reduction of m/a so that

e(R) = e(b, R) = e(b/a, R/a) = e(R/a)

as desired.

The following example shows that ideals P and Q which arise after a regular

alteration of the situation of Conjecture 1.4 will not in general satisfy the condition
√
P +Q = M , even after localizing at a maximal ideal M which contains P and Q.

Example 4.15 Let R = k[[x, y, z, w]], p = (x, y) and q = (z, w). Then R/p = k[[z, w]]

and if we blow-up along the ideal (z, w) then we get a birational resolution with

P = (x, y, zT −wS) ⊂ k[[x, y, z, w]][S, T ]. (Even though R/p is already regular, there
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is no way to guarantee that we will pick the “nicest” regular alteration possible.)

With the above notation, Q = (z, w). Even though the dimension statement from

above shows that, locally, P and Q have the “correct” heights, their sum is not

locally primary to the maximal ideal. For example, if we consider the open region

U(T ) ⊆ Proj(A/P ), which is determined by taking the homogeneous localization

(A/P )(T ), we have P(T ) + Q(T ) = (x, y, z − w S
T
) + (z, w) = (x, y, z, w, w S

T
). For this

sum to be the right size, we would need (some power of) S
T

to be in the sum as well,

which is not the case.

The following example shows that the assumption of regularity in Conjecture 1.2

is necessary.

Example 4.16 Let k be a field and let R = k[[X, Y, Z]]/(X2−Y Z) = k[[x, y, z]]. Then

R is a complete intersection of dimension 2, but is not regular. Let p = (x, z) and

q = (x, y) which are prime ideals in R such that p+q = m and dim(R/p)+dim(R/q) =

1 + 1 = dimR. However, x ∈ p ∩ q so that p ∩ q 6⊆ m2.

The following example shows that the assumption
√

p + q = m in Conjecture 1.2

is necessary.

Example 4.17 Let R = k[[X, Y ]] and p = q = (X). Then R is regular and

dim(R/p) + dim(R/q) = 1 + 1 = dimR. However, p ∩ q = (X) 6⊆ m2.

The following example shows that the assumption dim(R/p)+dim(R/q) = dimR

in Conjecture 1.2 is necessary.

Example 4.18 Let R = k[[X]] and p = q = (X). Then R is regular and p + q = m.

However, p ∩ q = (X) 6⊆ m2.

The following example shows that the hypothesis
√
P +Q = M in Proposition 3.6

will not hold in general.

Example 4.19 Let R have dimension 2 with regular system of parameters t, u. Let

p = (t) and q = (t+ u2). Then P = Q = (tG).
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