From polyhedra to smoother shapes
Let us start our today’s gathering with two questions:

1. How many tessellations of a plane by regular polygons are there?

2. How many regular polyhedra are there?

To get you started thinking about these two questions let us settle on
few definitions for today. A polygon is a plane figure that is bounded by a
closed path composed of a finite sequence of straight line segments (edges).
This definition allows for too many funny shapes, so we restrict ourselves to
regular simple polygons: all sides are of equal length, all angles are of equal
measure and any two edges intersect either not at all or in a vertex.
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The last three figures are the kind we will not discuss today

A close grown up cousin of a polygon is a polyhedron. It is a three dimen-
sional figure composed of polygons (faces) that are joined along their edges.
Again in order not to be overwhelmed by the variety of polyhedra we’ll stick
to regular ones, those whose faces are regular polygons. We’ll even go one
step further and require that our regular polyhedra are convex.

‘We leave the first three behind and only talk about the likes of the last two

But let’s get back to our questions: can we answer them, and can we
explain why they appear together?



The answer to the first question becomes rather easy to obtain once we
remember that our polygons have congruent angles and that they ought to
fit snugly around each vertex. You could have thought about the second
question in a similar manner: How can we glue regular polygons together so
that they can form a polyhedron? But, we could approach the question from
a different direction: Is there a way to fit a polyhedron in some space so that
the knowledge of that space dictates the characteristics of a polyhedron? Or,
could the question of number of regular polyhedra be connected to a question
of tiling something other than a plane?

Let’s go back to polyhedra and try to see how important their shape is.
In other words, is there something that is common to all polyhedra? Every
once in a while, when faced when a problem that is new, it could be useful
to go back to the basics, and it doesn’t get more basic than counting. So,
pick your favorite solid (doesn’t have to be regular) and count what you can.
Then change your solid around, give it a few kicks, stretches, pushes and
pulls, but gently. For example, I like cubes. I counted its faces, edges and
vertices and got: F'=6,F =12,V =8

My cube is looking slightly sickly, I should probably help it a bit. I propped
it up, just like you would a tent, and got this:

I counted again, and this time my count changed. What happens with your
favorite polyhedron? Do you notice anything? Can you explain it?



Let us consider any polyhedron. Remove one of its faces like this:

If the surface of the polyhedron was made of some nice pliable stretchy ma-
terial, then by pulling the edges of the missing face away from each other,
we can deform all the rest and lay it nicely into the plane. We got a network
of points and curves. Regular faces cease to be regular polygons if of course
they were regular to start with. However, the number of vertices, edges and
faces remained the same as those of the given polyhedron (the removed face
corresponds to the exterior of the network.)

We are going to apply repeatedly a series of additional transformations
that would simplify the network without changing F' — E + V:

1. If there is a polygonal face with more than three sides, we draw a
diagonal. This adds one edge and one face. Continue adding edges
until all the faces are triangular.

2. Remove (one at a time) all the triangles with two edges shared by the
exterior of the network. This removes a vertex, two edges and one face.

3. Remove a triangle with only one edge adjacent to the exterior. This
decreases the number of edges and faces by one each and does not
change the number of vertices.

Carry out steps 2 and 3 repeatedly one after another until only one triangle
is left. For a single triangle F' = 2 (counting the face we removed), £ = 3,
V = 3. Therefore FF — E +V = 2, which proves Fuler’s Formula: For a
simple polyhedron FF — E +V = 2.

It did not matter which polyhedron we started with. What mattered, as
far as we are concerned, is that all the polyhedra are essentially spheres. Re-
member that their surfaces are made of balloon like material. If we inflate the
balloon, what we get is a sphere. All the edges and vertices were smoothed
out, but we can still see their marks (say we had a foresight to color them
purple). Or, to put it slightly differently, we would have a tessellation of a



sphere by polygons. This tells us that regardless of which subdivision of a
sphere into polygons we consider, we will always get V — E + F = 2. You
might have already known, or guessed by now, that the number V' — E + F
is rather special so that it even got a name: FEuler number (characteristic).
This number is a topological invariant: any two spaces that can be homeo-
morphically ! mapped into each other will have equal Euler characteristic.

Now we can go back to our polyhedron problem:

Problem In how many different ways can you tessellate a sphere by reg-
ular polygons?
Is there really anything special about the sphere? Can’t we look for decom-

positions and Euler characteristics of other surfaces? Let’s branch out.
Problem Find the Euler characteristic of

e 3 torus:

e genus 2 surface:

e genus 3 surface:

Problem Find the Euler characteristic of genus g surface.

!'Two spaces are homeomorphic if there is a continuous bijection between them.
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