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Review
•

 

Witten 1982: Close relationship between cohomology of real 
Riemannian space Y and the Hilbert space of a SUSY σ-model with 
target space Y

•

 

Y is a real Riemannian manifold for N=1 SUSY model
•

 

Correspondence derives from formal isomorphism (and associated 
complexes) between 
–

 

exterior derivative algebra: {d,d†

 

}=Δ
–

 

SUSY algebra: {Q, Q} =H 
•

 

With more than one SUSY and on complex manifolds, algebras are 
modified
–

 

exterior derivative (holomorphic) {∂,∂†

 

}=Δ∂

 

and {∂,∂†

 

}=Δ∂
–

 

SUSY relation (real) {Q±

 

, Q±

 

} = H ± p
•

 

Y Kähler

 

: Δ∂

 

= Δ∂

 

= 1/2Δd we can
–

 

Define: d±

 

= ∂

 

±

 

∂
–

 

Whereupon {d±

 

, d †

 

±

 

} = Δd



Review (cont’d)
•

 

Zero modes (kernel) of 
–

 

Δd

 

correspond to deRham

 

H* 
–

 

Δ∂

 

correspond to Dolbeault

 

H*
–

 

(H ±

 

p) correspond to Q±

 

- H*

•

 

Translationally

 

invariant zero-modes are also annihilated by H, 
hence have zero energy

•

 

Since  <H> ≥

 

0, zero modes are the ‘ground’

 

states, i.e. 
supersymmetric

 

vacua

 

(string spectrum)

•

 

Example:
–

 

Twisted model  where Q±

 

operators have spin 0 and generate 
BRST symmetry

–

 

BRST symmetry produces associated complex with cohomology 
that is in 1-1 correspondence with original SUSY



Motivation and Background
•

 

Most of literature (1988-1995) focused on Y smooth (Green, 
Hubsch, Strominger, et al.)

•

 

Interest developed in (conifolds) ‘mildly’

 

singular target spaces

•

 

Want to explore zero-modes of H, i.e. Q±

 

–

 

cohomology, in relation 
to (co)homology

 

of singular varieties

•

 

hep-th/9612075: T. Hubsch

 

defines a working definition of ‘Stringy 
Singular Cohomology’

•

 

hep-th/0210394: T. Hubsch

 

and A. Rahman construct cohomology 
theory motivated by hep-th/9612075, but found “obstruction”

 

in the 
middle dimension

•

 

math.AT/0704.3298: A. Rahman constructs perverse sheaf that 
fulfills part of Kahler

 

package and has necessary cohomology



Brief Overview of Model (hep-th/0210394)

•
 

Spacetime
 

is identified as the ‘ground state 
variety’

 
of a supersymmetric

 
σ-model

•
 

Massless
 

fields/particles correspond to 
cohomology classes of this ground state variety

•
 

Simplest physically interesting and non-trivial 
case spacetime

 
is of the form

where M3,1

 
is the usual Minkowski

 
space and Y 

is a Calabi-Yau
 

manifold 



Model (cont’d)

•
 

Y was constructed as a projective 
hypersurface

 
made up of the bosonic

 coordinates 
where Y admits a        action,    

•
 

The    invariant superpotential
 

W=pG(s) 
where G(s) is a degree five homogeneous 
polynomial  



Ground State Variety

•
 

Examine zero locus of the superpotential
 W

•
 

Then we can define the ground state 
variety as (holomorphic

 
form)

where f.p. are the set of fixed points of the
action



G(s) transversal: G=dG=0 only at s=0



G(s) non-transversal: ∂s

 

G

 

on finite sj

 

=s#



Smooth to Singular

Smooth target space Singular target space

G(s) is transversal G(s) is non-transversal



String spectrum

•
 

Wave functionals
 

in world-sheet field 
theory are the canonical coordinates in the 
effective space-time field theory

•

 

Wave functionals Massless fields and particles elements of

•
 

In order to determine string spectrum, we must 
understand 



Hubsch
 

Conjecture
•

 

T. Hubsch

 

(hep-th/9612075) conjectured that the cohomology theory 
for string theory should be as follows:

• The middle dimension has more cycles due to details surrounding
‘shrinking’

 

of cycles and then subsequent counting of cycles embedded in   
machinery of conifold

 

transition



Issues…
•

 
Hubsch

 
conjecture is not mathematically 

“correct”…He sought other cohomology theories 
that had correct properties like 

••
 

Problem:Problem: does not have the correct rank of 
cohomology in the middle dimension.  This does 
not fulfill the String theory requirement in the 
middle dimension.

•
 

What is the cohomology theory for String Theory 
for singular and smooth target spaces? 



Mathematical Construction

•
 

We seek a complex of sheaves      such 
that we have the same cohomology as        
but more cohomology in the middle 
dimension



Sh(Y) A

D(Y) D(A)

h

Rh

Given a functor

 

h from h:Sh(Y) A. There is a right derived functor
Rh: D(Y) D(A)

Derived Category



The motivation for this problem lies in the 
following construction.  Consider the long 
exact sequence in the middle dimension for 
the pair (Y,Yo):

α

Im

 

(α)



Further Requirements for 

•
 

Off-middle dimension k  ≠
 

n

•
 

Meet other ‘properties’
 

of String theory: 
the Kähler

 
package

•
 

Poincare Duality
•

 
Kunneth

 
Formula

•
 

Complex Conjugation
•

 
Hodge Structure



Notation
•

 
Assume Y has only one singular point {y}

•
 

Y is 2n-dimensional Calabi-Yau
 

manifold
•

 
Yo

 
= Y –

 
{y} is the non-singular part of the space

•
 

Define inclusions i: Yo Y and j: {y} Y
•

 
For a complex of sheaves  on Y, we have 
functors

 
i* , i* , i!

 

,j* ,j* , j! ,and j!
•

 
Derived functors

 
will be noted R i* , Ri!

 

, R j* , and  
R j!

•
 

Category of complexes of constructible sheaves 
of Q-vector spaces



What should this object be?

•
 

R. MacPherson
 

(IAS) suggested that there is a 
particular perverse sheaf  with properties: 
–

 
For k>n, cohomology of the whole space Y

–
 

For k<n, cohomology of the non-singular part 
of the space

–
 

For k=n, more cohomology than other 
degrees

•
 

Solution: Perverse sheaves: Full subcategory of 
derived category            i.e. same morphisms, 
particular objects





How do we construct it?

•
 

Use theorem of MacPherson
 

and Vilonen
 which requires understanding of the Zig-

 zag
 

category…



Zig-zag
 

Category



•
 

An object of P(Y) can be constructed  from 
an object in Z(Y,y).

• Note that Z(Y,y) requires the following:
•

 
Choose vector spaces K and C such that 

the sequence is exact
•

 
Define a local system on non-singular 

part

Remarks:



K C

This sequence 
needs to be exact 
at K and C

Maps come from 
distinguished triangle



Strategy…

With the cohomology properties in mind, 
construct a perverse sheaf by:

•
 

Choosing a K and C 
•

 
Verify these choices give a Zig-zag

 
object

•
 

Use Theorem of MacPherson
 

and Vilonen
 to show there is a perverse sheaf that 

corresponds to this object



The choice of K and C we want fit in the following 
diagram where the long exact sequence is 
expressed with derived functors

Long exact 
sequence of the 

pair (Y,Yo)

Choice of K and C 
for Zig-Zag

 

Object

Middle dimension 
cohomology

Needed 
requirement for 

middle dimension

0-map



Zig-zag
 

object



Statement of the Main Theorem



Duality



Duality Functor
 

in Z(Y,y)



Duality

μ



Final Thoughts
•

 
We have constructed a perverse sheaf with one part of 
the Kahler

 
package, cohomology rank in all degrees. 

Remains to prove the remainder of Kähler
 

package

•
 

w/ T. Pantev: 
–

 

Analyze S0

 

through studying properties of nearby and vanishing 
cycles perverse sheaves.  

–

 

Define exactly what S0

 

is in terms of ‘well-known’

 

objects
–

 

Look at how it fits in with Orlov

 

constructions

•
 

w/ T. Hubsch: 
–

 

String theory examples using degree five polynomials
–

 

Spaces with more degenerate singularities
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