Previous: zhemv Up: ../lapack-blas.html Next: zher2

NAME ZHER - perform the hermitian rank 1 operation A := alpha*x*conjg( x' ) + A, SYNOPSIS SUBROUTINE ZHER ( UPLO, N, ALPHA, X, INCX, A, LDA ) DOUBLE PRECISION ALPHA INTEGER INCX, LDA, N CHARACTER*1 UPLO COMPLEX*16 A( LDA, * ), X( * ) PURPOSE ZHER performs the hermitian rank 1 operation where alpha is a real scalar, x is an n element vector and A is an n by n hermitian matrix. PARAMETERS UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the ele- ments of X. INCX must not be zero. Unchanged on exit. A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must con- tain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper tri- angular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal ele- ments need not be set, they are assumed to be zero, and on exit they are set to zero. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs.