The t-distribution arises in statistics. If @math{Y_1} has a normal distribution and @math{Y_2} has a chi-squared distribution with @math{\nu} degrees of freedom then the ratio,

has a t-distribution @math{t(x;\nu)} with @math{\nu} degrees of freedom.

__Random:__double**gsl_ran_tdist***(const gsl_rng **`r`, double`nu`)-
This function returns a random variate from the t-distribution. The
distribution function is,
for @math{-\infty < x < +\infty}.

__Function:__double**gsl_ran_tdist_pdf***(double*`x`, double`nu`)-
This function computes the probability density @math{p(x)} at
`x`for a t-distribution with`nu`degrees of freedom, using the formula given above.

Go to the first, previous, next, last section, table of contents.