The chi-squared distribution arises in statistics If @math{Y_i} are @math{n} independent gaussian random variates with unit variance then the sum-of-squares,

has a chi-squared distribution with @math{n} degrees of freedom.

__Random:__double**gsl_ran_chisq***(const gsl_rng **`r`, double`nu`)-
This function returns a random variate from the chi-squared distribution
with
`nu`degrees of freedom. The distribution function is,for @c{$x \ge 0$} @math{x >= 0}.

__Function:__double**gsl_ran_chisq_pdf***(double*`x`, double`nu`)-
This function computes the probability density @math{p(x)} at
`x`for a chi-squared distribution with`nu`degrees of freedom, using the formula given above.

Go to the first, previous, next, last section, table of contents.