In 1988, Park and Miller wrote a paper entitled "Random number generators: good ones are hard to find." [Commun. ACM, 31, 1192--1201]. Fortunately, some excellent random number generators are available, though poor ones are still in common use. You may be happy with the system-supplied random number generator on your computer, but you should be aware that as computers get faster, requirements on random number generators increase. Nowadays, a simulation that calls a random number generator millions of times can often finish before you can make it down the hall to the coffee machine and back.

A very nice review of random number generators was written by Pierre L'Ecuyer, as Chapter 4 of the book: Handbook on Simulation, Jerry Banks, ed. (Wiley, 1997). The chapter is available in postscript from from L'Ecuyer's ftp site (see references). Knuth's volume on Seminumerical Algorithms (originally published in 1968) devotes 170 pages to random number generators, and has recently been updated in its 3rd edition (1997). It is brilliant, a classic. If you don't own it, you should stop reading right now, run to the nearest bookstore, and buy it.

A good random number generator will satisfy both theoretical and
statistical properties. Theoretical properties are often hard to obtain
(they require real math!), but one prefers a random number generator
with a long period, low serial correlation, and a tendency *not* to
"fall mainly on the planes." Statistical tests are performed with
numerical simulations. Generally, a random number generator is used to
estimate some quantity for which the theory of probability provides an
exact answer. Comparison to this exact answer provides a measure of
"randomness".

Go to the first, previous, next, last section, table of contents.