__Function:__double**gsl_sf_expm1***(double*`x`)__Function:__int**gsl_sf_expm1_e***(double*`x`, gsl_sf_result *`result`)- These routines compute the quantity @math{\exp(x)-1} using an algorithm that is accurate for small @math{x}.

__Function:__double**gsl_sf_exprel***(double*`x`)__Function:__int**gsl_sf_exprel_e***(double*`x`, gsl_sf_result *`result`)- These routines compute the quantity @math{(\exp(x)-1)/x} using an algorithm that is accurate for small @math{x}. For small @math{x} the algorithm is based on the expansion @math{(\exp(x)-1)/x = 1 + x/2 + x^2/(2*3) + x^3/(2*3*4) + \dots}.

__Function:__double**gsl_sf_exprel_2***(double*`x`)__Function:__int**gsl_sf_exprel_2_e***(double*`x`, gsl_sf_result *`result`)- These routines compute the quantity @math{2(\exp(x)-1-x)/x^2} using an algorithm that is accurate for small @math{x}. For small @math{x} the algorithm is based on the expansion @math{2(\exp(x)-1-x)/x^2 = 1 + x/3 + x^2/(3*4) + x^3/(3*4*5) + \dots}.

__Function:__double**gsl_sf_exprel_n***(int*`n`, double`x`)__Function:__int**gsl_sf_exprel_n_e***(int*`n`, double`x`, gsl_sf_result *`result`)-
These routines compute the @math{N}-relative exponential, which is the
`n`-th generalization of the functions`gsl_sf_exprel`

and`gsl_sf_exprel2`

. The @math{N}-relative exponential is given by,

Go to the first, previous, next, last section, table of contents.