State Senior Mathematics Contest Spring 2007

1. What is the greatest divisor of 19! and 19! + 17?

		(<i>a</i>)	1	(<i>b</i>)	17	(c)	19	(d)	19!	(<i>e</i>)	17!		
2.	The	decima	al $0.\overline{9}$	= 0.999) is 6	equal	to						
	(<i>a</i>)	1	(<i>b</i>)	$1-(\frac{9}{10})$	$_{\bar{0}})^{10}$	(c)	$(\frac{9}{10})$	10	(<i>d</i>)	999/1	000	(<i>e</i>)	9/10
3.	-			on an i hat is y				_	-	ear an ars?	d gair	1 25%	the
	(a)	0%	(b) 5%	(c) 2.	5%	(<i>d</i>)	-5%	΄ο (e) 1.2	25%	
4.	How	many	diviso	rs doe	s the n	umb	er 20	07 ha	ive?				
		(a	a) 2	(<i>b</i>)	3	(c)	4	(<i>d</i>)	6	(<i>e</i>)	8		
5.	The missi		er 2 ²⁹	is a 9-	digit ı	numb	er wi	th dis	tinct	digits.	Whic	h digi	t is
		(a) 0	(<i>b</i>)	3	(c)	4	(<i>d</i>)	5	(e)	7		
6.	If this	patte:	rn cor	ntinues	s, whei	e wo	uld th	e num	ıber 2	289 app	pear?		
				1									
		7	3	5 9	11								
	13	,	15	17		19							
				(a) (b) (c) (d) (e)	9 th (9 th (last	eleme eleme elem	ent in ent in ent in	row 10 row 17 row 18 row 1	7 3 .7				
										<i>a</i> and ssible o			
					(<i>a</i>)	<i>a</i> =	$\frac{7}{4}$, $r =$	$\frac{3}{7}$					
					(<i>b</i>)	<i>a</i> =	2, <i>r</i> =	$\frac{3}{4}$					
					(c)	<i>a</i> =	$\frac{3}{2}$, $r =$	$\frac{1}{2}$					
							3, <i>r</i> =	•					
					(<i>e</i>)	<i>a</i> =	1, <i>r</i> =	$\frac{1}{4}$					

- 8. For all $x \in (0, 1)$, which statement is true?
 - (a) $e^x < 1 + x$
 - (b) ln(1+x) < x
 - (c) $x < \sin x$
 - (d) $x < \ln x$
 - (e) $x+1 < e^{-x}$
- 9. A set of 26 encyclopedias (one for each letter) is placed on a bookshelf in alphabetical order from left to right. Each encyclopedia is 2 inches thick including the front and back covers. Each cover (front or back) is 1/4 inch thick. A bookworm eats straight through the encyclopedias, beginning inside the front cover of volume A and ending after eating through the back cover of volume z. How many inches of book did the bookworm eat?
 - (a) 48
- (b) 48.5
- (c) 51.25
- (d) 51.5
- (e) 51.75
- 10. What is the smallest positive integer so that $\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^n = 1$
 - (a) 0
- (b) 2
- (c) 4
- (d) 8 (e) 16
- 11. One hundred balls labelled 1 through 100 are placed in a bag. Four balls are removed from the bag, one by one. What is the probability that the label on the first ball is higher than the label on the last?
 - $(a) \quad 5/4$
- (b) 1/2
- (c) 0
- (d) 49/50
- (e) 4/5
- 12. What are the dimensions of the rectangle with the largest area that can be inscribed in the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$?
 - (a) 2×3
 - (b) $2\sqrt{3} \times 3\sqrt{3}$
 - (c) $\sqrt{3} \times \frac{3}{2}\sqrt{3}$ (d) $2\sqrt{2} \times 3\sqrt{2}$ (e) $\sqrt{2} \times \frac{3}{2}\sqrt{2}$

- 13. If you place these expressions in increasing order, which one will be in the middle?
 - (a) $\sum_{k=1}^{1000} (-1)^k$
 - (b) $\sum_{k=2}^{20} k^2$
 - $(c) \quad \sum_{k=1}^{\infty} \frac{1}{k}$
 - $(d) \quad \sum_{k=1}^{100} k$
 - $(e) \quad \sum_{k=1}^{\infty} 2\left(\frac{1}{2}\right)^k$
- 14. The diagonals of a rhombus are 12 and 24. Determine the radius of the circle inscribed in the rhombus.
 - (a) $6\sqrt{5}$
 - (b) $12\sqrt{5}$

 - (e) Cannot inscribe a circle in a rhombus
- 15. If w, x, y, z are positive real numbers such that w + x + y + z = 2, then

$$N = (w + x)(y + z)$$

satisfies

- (a) $0 \le N \le 1$
- (b) $1 \le N \le 2$
- (c) $2 \le N \le 3$
- (d) $3 \le N \le 4$
- (e) $4 \le N \le 5$
- 16. As $x \to \infty$, the function $\left(\frac{x-3}{x+2}\right)^x$ approaches

- (a) e (b) $\frac{1}{e}$ (c) e^{-5} (d) e^{5} (e) 1

- 17. Triangle ABC has sides 10, 24, and 26 cm long. A rectangle that has an area equal to that of the triangle has width 3 cm. Find the perimeter of the rectangle.
 - (a) 40 cm
- (b) 43 cm
- (c) 56cm
- (d) 68 cm
- (e) 86cm
- 18. Given the square with midpoints B and C. What is the $\sin \alpha$?

- (d) $\frac{1}{\sqrt{5}}$ (e) $\frac{2}{\sqrt{5}}$
- 19. If the area of a circle is equal to the area of an equilateral triangle, then the ratio of the side of the triangle to the radius of the circle is closest to which number?
 - (a) 3
- (b) 4
- (c) 5
- (*d*) 6
- (e) 7
- 20. If this multiplication problem works in base b, what is b?

$$(15_b)(15_b) = 321_b$$

- (a) 4
- (b) 6
- (c) 7
- (d) 8
- (e) 9
- 21. A rhombus with sides of 8 cm and an angle of 120^{o} will have an area closest to.
 - (a) $35 \,\mathrm{cm}^2$
- (b) $45 \,\mathrm{cm}^2$
- (c) $55 \,\mathrm{cm}^2$
- $(d) 60 \,\mathrm{cm}^2$
- (e) $65 \,\mathrm{cm}^2$
- 22. If b > a, then the equation (x a)(x b) 1 = 0 has
 - (a) both roots in [a, b]
 - (b) both roots in $(-\infty, a)$
 - both roots in (b, ∞) (c)
 - (d) one root in $(-\infty, a)$ and the other in (b, ∞)
 - (e) one root in [a, b] and the other in (b, ∞)

23. How many different triangles can you draw as in the figure, if the three vertices have to be among the shown points A_1, \ldots, A_8 ?

- (a) 8(7)(6)
- (b) 56
- (c) 8!
- (d) 3!
- (e) 24

24. What is the value of

$$\frac{1}{2+\frac{1}{2+\frac{1}{2+\dots}}}$$

- (b) $\frac{1}{2}$ (a) 1
- (c) $1 + \sqrt{2}$ (d) $-1 \pm \sqrt{2}$
- (e) $-1 + \sqrt{2}$
- 25. Paul and Judy play the exciting game "throw a coin six times". If the coin shows heads, Paul gets a point, if tails, Judy gets a point. After six throws, they compare their scores. How likely is it that the game will be a tie?

- (a) $\frac{1}{2}$ (b) $\frac{5}{16}$ (c) $\frac{1}{4}$ (d) $\frac{7}{16}$ (e) $\frac{3}{16}$
- 26. If $f(\sin(x)) = \sin(3x)$, then $f(\cos(30^{\circ})) = ?$

- (a) 0 (b) 1 (c) -1 (d) $\sqrt{\frac{3}{2}}$ (e) $\frac{1}{2}$
- 27. If the equation $\left(\frac{1}{4}\right)^x + \left(\frac{1}{2}\right)^{x-1} + b = 0$ has a positive solution, then the real number b is in what interval?
 - (a) $-\infty < b < 1$
 - (b) $-\infty < b < -2$
 - (c) $-\infty < b < 0$
 - (d) -3 < b < 0
 - (e) $-\infty < b < -3$
- 28. If $f(x) = 3x^2 x + 4$, $f(g(x)) = 3x^4 + 18x^3 + 50x^2 + 69x + 48$, then what is one of the sums of all the coefficients of g(x)?
 - (a) 8

- (b) 1 (c) 3 (d) 7 (e) 0

- 29. Evaluate $\int_{1}^{3} \frac{x^3 + x^2 + 1}{x^2 + x} dx$
- (a) $4 + \ln \frac{2}{3}$ (b) $4 \ln \frac{2}{3}$ (c) $\frac{9}{2} + \ln \frac{3}{4}$

- (d) $\frac{9}{2} \ln \frac{4}{3}$ (e) $\frac{9}{2} \ln \frac{2}{3}$
- 30. Find the perpendicular distance of the point (4,3) from the line

$$y = -2x - 4.$$

- (a) $\sqrt{65}$ (b) 9 (c) $2\sqrt{5}$ (d) $3\sqrt{5}$
- (e) 4