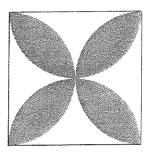
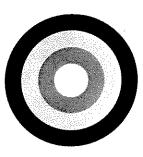
State Junior Mathematics Contest Spring 2007

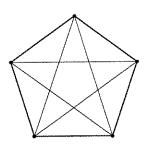

(e) 8

1. How many whole number divisors does the number 2007 have?

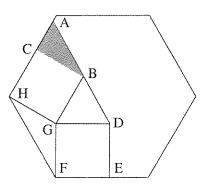

(a) 2 (b) 3 (c) 4 (d) 6

2. $66_{\text{eight}} + 132_{\text{four}} + 1011_{\text{two}} = \phantom{00000000000000000000000000000000000$
(a) 101 (b) 135 (c) 137 (d) 1131 (e) 1211
3. The decimal $0.\overline{9} = 0.999$ is equal to
(a) 1 (b) $1 - (\frac{9}{10})^{10}$ (c) $(\frac{9}{10})^{\frac{10}{9}}$ (d) $999/1000$ (e) $9/10$
4. How many whole numbers between 99 and 999 are divisible by 4, 6 and 9?
(a) 13 (b) 24 (c) 25 (d) 27 (e) 31
5. If $M/5$ has a remainder of 2 and $N/5$ has a remainder of 4, then $(M+N)/5$ will have a remainder of what?
$(a) 0 \qquad (b) 1 \qquad (c) 2 \qquad (d) 3 \qquad (e) 5$
6. How many children are there in a family in which each boy has as many sisters as brothers but each girl has twice as many brothers as sisters?
(a) 4 (b) 5 (c) 6 (d) 7 (e) 8
7. Five players are on the Academic Team. Their names do not indicate their gender.
• Three are girls and two are boys.
 Two wear white shirts and three wear black shirts.
 MIKEN and CARRY wear different color shirts.
BARI and JAMIE wear the same color shirt.
PITA and CARRY are the same gender. IAMIE and MIKEN are different genders.
 JAMIE and MIKEN are different genders. The boy with the white shirt scored the most points.
·
Who is the leading scorer?
(a) BARI (b) CARRY (c) JAMIE (d) MIKEN (e) PITA

8. Find the area of the shaded region. The petals are formed by semicircles and the square is 8 cm on a side.



- (a) $32(\pi-2)$
- (b) $8(\pi-1)$
- (c) $16(\pi-1)$
- (*d*) $64 32\pi$
- (e) $16(\pi-2)$
- 9. The radii of the circles on this target are 1, 2, 3, and 4 inches. What is the probability that a random shot that hits the target will hit the bull's eye (i.e., the inner circle)?


- (a) 1/4
- (b) 1/8
- (c) 1/16
- (d) $1/4\pi$
- (e) $1/2\pi$

10. How many triangles are in this drawing?

- (a) 10
- (b) 20
- (c) 25
- (d) 30
- (e) 35

- 11. Solve for *x*. $|3x-2| \le 17$
 - (a) no solution
 - (a) no solution (b) $x \ge \frac{19}{3}$ or $x \le -5$ (c) $x \ge -5$ (d) $x \le \frac{19}{3}$ (e) $-5 \le x \le \frac{19}{3}$
- 12. Let r be a real number–positive, negative or zero. Which of the following numbers is always greater than r?
 - (a) $r^2 + 1$
- (b) 2r (c) $\sqrt{|r|} + \frac{r}{2}$ (d) $(r+1)^3$
- 13. Ms Trong gets a ten percent raise every year. Her salary after four such raises has gone up by about what percent?
 - (a) 40%
- (b) 42%
- (c) 44%
- (d) 46%
- (e) 48%
- 14. Given this regular hexagon of side $\sqrt{3}$, squares DEFG and CBGH, line ABD, find the area of the triangle ABC.

- (a) $\frac{1}{4}$
- (b) $\frac{1}{2}$
- (c) $\frac{\sqrt{3}}{3}$
- (d) $\frac{\sqrt{3}}{6}$
- (e) none
- 15. For a function defined for all natural numbers by

$$f(n+1) = f(n) + f(n-1),$$

and beginning with f(1) = 1, f(2) = 1, for which value of n is f(n) a multiple of 4?

- If n = 3k, then f(n) is a multiple of 4
- (b) If n = 4k, then f(n) is a multiple of 4
- If n = 5k, then f(n) is a multiple of 4 (c)
- (d) If n = 6k, then f(n) is a multiple of 4
- It is not possible to predict which terms will be a multiple of 4.

16.	-						-	rst year o years?	and gain	25% th	ıe
	(a)	00%	(h)	50%	(c)	2 50%	(d)	50%	(a) 1	250%	

17. The number 2^{29} is a 9-digit number with distinct digits. Which digit is missing?

(c) 4

(d) 5

(*e*) 7

18. If this pattern continues, where would the number 289 apppear?

1
3
5

(e)

(b) 3

19. A set of 26 encyclopedias (one for each letter) is placed on a bookshelf in alphabetical order from left to right. Each encyclopedia is 2 inches thick including the front and back covers. Each cover (front or back) is 1/4 inch thick. A bookworm eats straight through the encyclopedias, beginning inside the front cover of volume A and ending after eating through the back cover of volume z. How many inches of book did the bookworm eat?

last element in row 18

- (a) 48 (b) 48.5 (c) 51.25 (d) 51.5 (e) 51.75
- 20. Solve for x. $2x^2 3x = 9 3x^2$

(a) 0

(a)
$$\frac{3\pm3\sqrt{7}}{10}$$

(b) $\frac{-3\pm3\sqrt{21}}{10}$
(c) $\frac{3\pm3\sqrt{21}}{10}$
(d) $\frac{3\pm\sqrt{171}i}{10}$
(e) $\frac{-3\pm3\sqrt{7}}{10}$

21. If w, x, y, z are positive real numbers such that w + x + y + z = 2, then

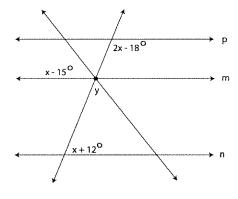
$$N = (w+x)(y+z)$$

satisfies

- $(a) \quad 0 \le N \le 1$
- (b) $1 \le N \le 2$
- (c) $2 \le N \le 3$
- (d) $3 \le N \le 4$
- (e) 4 < N < 5

22. Triangle ABC has sides 10, 24, and 26 cm long. A rectangle that has an area equal to that of the triangle has width 3 cm. Find the perimeter of the rectangle.

- (a) 40cm
- (b) 43 cm
- (c) 56cm
- (d) 68 cm
- (e) 86cm


23. $_{m}P_{n} = {}_{10}C_{7}$ for what values of m and n?

- (a) m = 7, n = 10
- (b) m = 10, n = 3
- (c) m = 5, n = 4
- (d) m = 5, n = 1
- (e) m = 7, n = 5

24. A recipe calls for $\frac{2}{3}$ of a cup of sugar. You find that you only have $\frac{1}{2}$ cup of sugar left. What fraction of the recipe can you make?

- (a) $\frac{1}{6}$ (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{3}{4}$
- $(e) \frac{4}{3}$

25. Find the measure of y given the following picture and the fact that p||n||m.

- (a) 46°
- (b) 62°
- $(c) 106^{\circ}$
- (d) 74°
- (e) 59°

		old is Mary now?	mios my prosent ag	ge, and I will be half as
	(a) 6 yrs	(b) 9 yrs (c)	15 yrs (d)	24 yrs (e) 27 yrs
27.	Susan work toget		wn, they can do it	nours. If Fred, Joe and in $\frac{12}{13}$ of an hour. How
	(a) 2 hrs (b) 3 hrs (c)	4 hrs (d) 5	hrs (e) 6 hrs
28.	remainder on afte \$3 on a magazine, How much of his	rschool snacks. T which left him wi allowance did he	hen from the mone th $\frac{1}{24}$ of his allowar	He spent $\frac{11}{18}$ of the sy remaining, he spent ace to put into savings.
29.	. ,	ags, 3 green flag	, ,	s. How many 9-flag
	(a) 4!3!2!	$(b) \frac{7!}{4} \qquad (c)$	9! $(d) \frac{9!}{4!3!}$	$(e) \frac{7!}{4!3!}$
30.			. Each person shown many people wer	ok hands exactly once e at the party?
	with each of the of	p 120.	3 1 1	Fy -