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Purpose of review

Mathematical modeling of tumorigenesis is a fast-growing
area of research. This review describes recent (since July
2003) advances in this area and discusses possible
implications for the field of cancer biology in general.
Recent findings

Broadly speaking, there are three major areas in which
theory has contributed the most to cancer research: (1)
modeling in the context of epidemiology and other
statistical data, (2) mechanistic modeling of avascular and
vascular tumor growth, and (3) modeling of cancer
initiation and progression as somatic evolution. The first
area uses models to fit the existing data, the second
approach takes advantage of methods of physics and
engineering to describe tumor growth, and the third
method looks at cancer progression as a local, Darwinian
evolution.
Summary

The article describes new, interesting ideas put forward in
the last year, and suggests that to make the modeling
effort more relevant, a better dialogue should be
developed between theorists and experimental biologists.
The author believes this is possible.
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Introduction
People who are not mathematicians are strange. At least,

they think differently. Things that mathematicians take

for granted are exciting news for them. Problems that are

most interesting for mathematicians do not even register

with them. And, most annoyingly, they have a habit of

asking really difficult questions. For instance, you are

working on a model of colon cancer initiation. The bi-

ologist keeps asking, “Can you include this? Can you

include that in your model?” You smile meekly (“It’s

hard!”), and then, just to finish you off, he adds, “By the

way, things work differently whether it is in the front or

on the back of the colon.” You didn’t tell him that you

modeled the colon as a sphere . . .

Something has to change. This article reviews the cur-

rent state of affairs of mathematical modeling of cancer,

and discusses ways in which it could be made more use-

ful. It begins by asserting that cross-pollination among

fields is helpful and important. In principle, new meth-

odologies may lead to breakthroughs and exciting dis-

coveries in traditional fields. However, to be useful, the

new methodologies should be integrated in the knowl-

edge accumulated in the field. In the past year, several

interesting and unexpected ideas came from people of

different backgrounds, including statistics, material sci-

ence, fluid mechanics, population dynamics, and evolu-

tionary game theory. These ideas are reviewed in the

following sections. The reasons that theory and experi-

ment still have a long way to go before harmony is

reached are discussed in the Conclusion section.

Statistics and modeling
One of the oldest and most successful methodologies in

theoretical cancer research is using the available incident

statistics and creating models to explain the observa-

tions. This field was originated by Suresh Moolgavkar

and colleagues [1] almost 3 decades ago.

Age incidence curves and multistage

carcinogenesis models

Several articles looked at age incidence curves [2,3,4•]

and death statistics [5•]. In the last article, the statistics

of fluctuations in cancer deaths per year led to an in-

triguing discovery: there is a big difference between can-

cers of young ages and cancers after 40. The authors

suggest that cancers attacking older people behave like
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critical systems in physics and can be considered as an

avalanche of malfunctions in the entire organism.

A statistical analysis of somatic mutations in embryonic

development leading to somatic mosaicism was per-

formed by Frank [4•], which has relevance for cancers

caused by two recessive mutations. Frank [6••] also used

the classic Armitage and Doll model of multistage carci-

nogenesis to apply the concept of robust genetic control

network. If a cancer requires a consecutive accumulation

of many mutational events, this will statistically delay the

onset of cancer but at the same time allow the accumu-

lation of deleterious mutations in the population. Mool-

gavkar and Luebeck [7••] applied an extended Mool-

gavkar-Venzon-Knudson model of carcinogenesis to the

incidence of cancer and found that if clonal expansion of

partially altered cells is properly accounted for, then it is

unnecessary to invoke genomic instability as an early

event in malignant transformation. This is related to an-

other topic, the role of genetic instability in cancer,

which has attracted a lot of attention and is considered

here.

Statistics and modeling in the study

of chromosome aberrations

Combining data analysis and modeling led to interesting

results when looking at distributions of chromosome ab-

errations [8••]. Statistical tools were used to analyze the

patterns of chromosome aberrations in tumors. The ob-

servation was that the number of chromosomal imbal-

ances per tumor follows a power law (with the exponent

1). The main idea of a model explaining this behavior is

as follows. The karyotype in unstable cancers evolves

gradually, in such a way that the variability is propor-

tional to the number of changes that already exist. The

authors propose two possible interpretations of the

model. One is that the rate at which changes accumulate

increases as cancer progresses (this is consistent with the

notion of a mutator phenotype of Loeb). The other is the

evolving and increasingly permissive tumor environ-

ment. Similar theoretical and computational tools were

applied to testicular germ cell tumor karyotypes [9•]. It

was shown that two distinct processes are operating in

the karyotypic evolution of these tumors: whole-

chromosome changes originate from a multipolar cell di-

vision of a tetraploid cell, whereas imbalances accumu-

late in a stepwise manner.

Mechanistic models of tumor growth
An entirely different approach to cancer modeling is to

look at the mechanistic aspects of tumor growth (see [10]

for review).

Vascular and avascular tumor growth

Several articles described the growth of a tumor as a

mechanistic system, concentrating on the avascular stage

of growth [11,12•,13,14,15•,16•,17]. In some cases, tu-

mor was described as a fluid (with a production term

proportional to concentration of nutrients) [11,12•], or as

a mixture of solid (tumor) and liquid (extracellular fluid

with nutrients) phases [14]. Agent-based modeling was

used to describe migration of tumor cells by means of a

local search algorithm depending on nutrition and toxic-

ity [18•]. Tumor growth was compared with ontogenic

growth of organisms in search of a universal law [19•].

Other articles looked at the vascular stage and consid-

ered mechanisms responsible for angiogenesis [20••,

21•]. In these models, cells divide and migrate in re-

sponse to stress and lack of nutrition. The process of

angiogenesis was described by using the theory of rein-

forced random walks [22•]. Endothelial cells escape the

parent vessel, invade the extracellular matrix, proliferate,

and lead to capillary branching. This framework was

used to examine the action of an inhibitor of angiogen-

esis, angiostatin. The effect of red blood cell heteroge-

neity was examined by means of a cellular automaton

model superimposed on a mechanistic model of blood

flow through a fixed network of vessels [23•]. Both vas-

cular adaptation and cell cycle dynamics were taken into

account in the model by Alarcon et al. [24••], which also

investigated effects of p27 on the cell cycle.

Cancer research and cancer modeling:

two different fields?

The work described here is a part of a large, long-term

research effort to design mathematical methodology for

studying tumor growth. It uses the tools of applied math-

ematics, such as nonlinear partial differential equations,

on the one hand, and discrete, cellular automaton ap-

proaches on the other. It incorporates physical properties

of soft biologic tissues and takes advantage of methods

developed in material science and fluid mechanics. What

is slightly disconcerting is that cancer modeling is often

very detached from experimental and clinical cancer re-

search. Because of the involved mathematical exposi-

tions, journals that publish theoretical work are mostly

inaccessible to the wider, biologically oriented commu-

nity. If fact, a separate mathematical cancer community

has emerged that appears largely isolated from the rest of

cancer research. This is very unfortunate, because expe-

rience of physical sciences can be very useful in studying

many features of tumor growth, such as vascular collapse

[25•]. In this article, the distribution of stress was calcu-

lated throughout the tumor as it changes in time as a

result of cell division, and the vascular collapse was mod-

eled by identifying the region where stresses exceed a

critical value. Other examples of successful usage of

mechanistic modeling come from the studies of drug

therapy.

Probably the best results can be obtained if theory goes

hand in hand with experimental studies. Unfortunately,

there are only a few examples of that. Bru et al. [26••]
observed a linear growth of the colony diameter in tumor
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cell lines in vitro. The authors went on to develop a

model that takes account of the fractal structure of a

tumor. Most of the growth activity (ie, mitosis) was as-

sumed to be concentrated on the boundary of the colony

or tumor, which led to a linear growth law for the colony

diameter.

Studying the effect of therapy: theory and

experiment combined

Modeling was used to address practical questions of drug

dosage and therapy timing. A model by Anderson and

Chaplain [27] was adapted [28•] to incorporate endothe-

lial cell proliferation because of tumor angiogenic factors,

and also to include the action of endostatin. Numerical

simulations showed vessel growth toward a tumor, where

the mechanisms of haplotaxis, chemotaxis, proliferation,

and degradation are taken into account. Different treat-

ment regimes had different degrees of effectiveness in

inhibiting tumor angiogenesis. Swanson et al. [29,30]

studied cancerous growth for gliomas in the context of

drug therapy. Their model included both cell prolifera-

tion and motility and took account of inhomogeneities of

the brain tissue. The authors concluded that because of

high diffusivity, any local treatment would fail. A math-

ematical model for the in vitro kinetics of the anticancer

agent topotecan was developed [31•], with an emphasis

on the structural identifiability analysis, which deter-

mined whether model outputs can uniquely determine

all of the unknown parameters. A model for chronic my-

elogenous leukemia [32•] described the interaction of

cancer cells with the immune system and used a thor-

ough analysis of parameter dependence. The use of on-

colytic viruses as therapeutic agents against cancer was

discussed by Wodarz [33•].

Several collaborations between theorists and experimen-

talists were aimed at studying tumor drug responses

[34•–36•]. Basse et al. [37•,38] used explicit modeling of

a population of cells going through the cell cycle by in-

cluding transition probabilities between different

phases. The authors compared their results with DNA

profiles from flow-cytometry experiments in which a

melanoma cell line was exposed to the anticancer drug

paclitaxel (mitotic inhibitor). Lupi et al. [39•] measured

and predicted the outcome of various schedules of treat-

ment of human ovarian cancer cell lines by topotecan.

The authors used a previously developed model [40] and

were able to predict results of complex treatment sched-

ules.

The question of the precise origin of neovascularization

was addressed. The traditional view of angiogenesis em-

phasizes proliferation and migration of local endothelial

cells. However, circulating endothelial progenitor cells

have recently been shown to contribute to tumor angio-

genesis. The article by Stoll et al. [41••] quantified the

relative contributions of endothelial and endothelial pro-

genitor cells to angiogenesis using a mathematical

model, with implications for the rational design of anti-

angiogenic therapy.

Cancer as somatic evolution
Several articles applied methods of population dynamics

and evolutionary game theory to study cancer. First de-

veloped by ecologists and evolutionary biologists, these

methods have been used to understand the collective

behavior of a population of cancer cells. Gatenby and

Gawlinski [42•] and Gatenby and Vincent [43••,44]

used this methodology to study cancer growth [42•] and

evolution [43••], with applications to therapy [44]. To

study the evolvability of the population, the authors used

an elegant approach of fitness generating function

[43••]. This gives rise to an optimization problem on

fitness landscapes. A quasispecies-type approach is also

discussed [45•]. Combined with stochastic analysis of

the Moolgavkar-Venzon-Knudson model, this method

can lead to interesting biologic insights.

Role of genetic instability in cancer

Many cancers are characterized by a high degree of an-

euploidy, which is believed to be a result of chromosom-

al instability. The precise role of chromosomal instability

in cancer is still a matter of heated debate. A mathemati-

cal model was developed [46•] in which the role of chro-

mosomal instability in inactivation of a tumor suppressor

gene was considered. Both copies of a tumor suppressor

gene need to be inactivated for a cell to acquire a ma-

lignant phenotype. Chromosomal instability results in an

increased rate of loss of heterozygosity and can thus lead

to the accelerated unmasking of an inactivating mutation

in a tumor suppressor gene. At the same time, it can be

costly for cells because of the increased number of del-

eterious mutations. It was found that the fitness of cancer

cells is optimized if the rate of chromosome loss is of the

order of 10−3 to 10−2 [47••,48••], which coincides with

experimental measurements. It was further shown that

chromosomal instability cannot arise simply because it

allows a faster accumulation of carcinogenic mutations,

but must be a consequence of alternative reasons such as

environmental factors, oxidative stress, or carcinogens.

An increase in DNA damage experienced by tissue fa-

vors instability, thus making chromosomal instability a

driving force for cancer progression [49••].

Tissue architecture and accumulation of mutations

Frank and Nowak [50••] model cancer as an accumula-

tion of somatic mutations. In a series of articles, they

study how the architecture of renewing epithelial tissues

could affect the accumulation of mutations. A possible

mechanism of protection against cancer is stochastic

elimination of cancer cells [51•]. It is shown that tissue

design in which a hierarchy of stem cells replenishes the

transient population of differentiated cells could reduce

the accumulation of mutations. The effect of tissue com-
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partment is also studied [52•]. Large stem pools will lead

to cancer progression via initial tumor suppressor and

oncogene mutations and rapid cellular proliferation.

Small stem compartments may begin cancer progression

with genetic instability. An elegant linear process of so-

matic evolution was introduced [53,54•] that in some

sense mimics the dynamics of a stem cell renewing the

tissue of a compartment. This process has the property of

canceling out selective differences among cells, yet re-

taining the protective function of apoptosis. This design

can slow down the rate of somatic evolution and there-

fore delay the onset of cancer. A more detailed stem cell

model was proposed by Calabrese et al. [55••] in which

clonal evolution in stem cell niches was considered. The

specific selection pressures acting among stem cells with

an a germ-line inactivated copy of the APC gene helped

explain the experimentally observed methylation pat-

terns in colon crypts characteristic of patients with famil-

ial adenomatous polyposis [56•]. It was argued that

germline APC mutations might potentially alter niche

stem cell survival through dominant-negative interac-

tions or haploinsufficiency.

Conclusion
Many papers have been written, many interesting mod-

els created, many challenging questions asked. However,

everyone knows that most of the models will never be

checked, and most questions remain unnoticed by the

wider community. What is lacking is mutual understand-

ing and appreciation on the part of experimental and

theoretical scientists. There are many reasons for this.

Theorists sometimes do modeling for the sake of the

mathematical analysis that they can successfully pursue,

which is of zero relevance to the field of cancer research.

This creates general skepticism among the experimen-

talists. On the other hand, biologists are often unfairly

dismissive of the role of theory. It is not uncommon to

hear that all theory is naive and the mathematicians can-

not possibly grasp the full complexity of biologic reality,

leave alone modeling it accurately. This may be true, but

the author believes that the door should remain open for

alternative views and refreshing ideas. Mathematicians

think differently, but this may not necessarily be a bad

thing.
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