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Abstract 
 
Background. 
Recent mathematical models have been developed to study the dynamics of chronic 
myelogenous leukemia (CML) under imatinib treatment.  None of these models 
incorporates the anti-leukemia immune response.  Recent experimental data show that 
imatinib treatment may promote the development of anti-leukemia immune responses as 
patients enter remission [1]. 
 
Methodology/Principal Findings. 
Using these experimental data we develop a mathematical model to gain insights into the 
dynamics and potential impact of the resulting anti-leukemia immune response on CML.  
We model the immune response using a system of delay differential equations, where the 
delay term accounts for the duration of cell division.  The mathematical model suggests 
that anti-leukemia T cell responses may play a critical role in maintaining CML patients 
in remission under imatinib therapy. Furthermore, it proposes a novel concept of an 
‘optimal load zone’ for leukemic cells in which the anti-leukemia immune response is 
most effective.  Imatinib therapy may drive leukemic cell populations to enter and fall 
below this optimal load zone too rapidly to sustain the anti-leukemia T cell response. As 
a potential therapeutic strategy, the model shows that vaccination approaches in 
combination with imatinib therapy may optimally sustain the anti-leukemia T cell 
response to potentially eradicate residual leukemic cells for a durable cure of CML. 
 
Conclusions/Significance. 
The approach presented in this paper accounts for the role of the anti-leukemia specific 
immune response in the dynamics of CML.  By combining experimental data and 
mathematical models we demonstrate that persistence of anti-leukemia T cells even at 
low levels seems to prevent the leukemia from relapsing (for at least 50 months).  
Consequently, we hypothesize that anti-leukemia T cells responses may help maintain 
remission under imatinib therapy. The mathematical model together with the 
experimental data of [1] imply that there may be a feasible, low risk, clinical approach to 
enhancing the effects of imatinib treatment. 
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Author Summary 
 
Recent mathematical models have been developed to study the dynamics of chronic 
myelogenous leukemia (CML) under imatinib treatment.  None of these models 
incorporates the anti-leukemia immune response.  Recent experimental data show that 
imatinib treatment may promote the development of anti-leukemia immune responses as 
patients enter remission.  Using these experimental data we develop a mathematical 
model to gain insights into the dynamics and potential impact of the resulting anti-
leukemia immune response on CML. The mathematical model suggests that anti-
leukemia T cell responses may play a critical role in maintaining CML patients in 
remission under imatinib therapy. Furthermore, it proposes a novel concept of an 
‘optimal load zone’ for leukemic cells in which the anti-leukemia immune response is 
most effective.  Imatinib therapy may drive leukemic cell populations to enter and fall 
below this optimal load zone too rapidly to sustain the anti-leukemia T cell response.  As 
a potential therapeutic strategy, the model shows that vaccination approaches in 
combination with imatinib therapy may optimally sustain the anti-leukemia T cell 
response to potentially eradicate residual leukemic cells for a durable cure of CML. 
 
 
 



 
1. Introduction 
 
Chronic myelogenous leukemia (CML) results from the uncontrolled growth of white 
blood cells due to up-regulation of the abl tyrosine kinase [2].  The standard first-line 
therapy against CML is imatinib, a molecular-targeted drug that inhibits the abl tyrosine 
kinase [3]. Under imatinib, nearly all patients attain hematologic remission1 (HR) [4] and 
75% achieve cytogenetic remission2 (CR) [5].  However, imatinib does not completely 
eliminate residual leukemia cells and patients inevitably relapse after stopping treatment 
[5].  In this paper, we model the dynamics of T cell responses to CML.  Insights gained 
from this model were used to develop a possible combination between imatinib and 
immunotherapy, in the form of cancer vaccines, to enhance the efficacy of imatinib 
treatment and potentially eliminate leukemia for a durable cure. 
 
Various papers have proposed hypotheses concerning the effects of imatinib treatment on 
leukemia cells from a dynamical systems perspective.  In a recent work, Michor et al. 
develop a model for the interaction between leukemia and imatinib [6].  In their model, 
they assume that leukemia cells differentiate through four stages of their life cycle, 
beginning with leukemia stem cells.  Imatinib functions by reducing the rate at which 
leukemia cells pass from one stage to the next, causing a rapid drop in the leukemia 
population.  Based on their assumptions and analysis, they propose that leukemia 
inevitably persists, because imatinib hinders the differentiation of differentiated leukemia 
cells, but does not affect the leukemia stem cells.  In particular, Michor et al. hypothesize 
that there is always a steadily growing population of leukemia stem cells despite imatinib 
treatment. As a result, based on their model, the leukemia population under imatinib 
eventually relapses, regardless of whether the model considers imatinib resistance 
mutations. 
 
In a subsequent paper [7], Roeder et al. develop a similar model of CML and imatinib.  
However, they subdivide the leukemia stem cells into two compartments: proliferating 
and quiescent cells.  Proliferating leukemia stem cells are affected by imatinib, while 
quiescent leukemia stem cells are not affected.  Due to this additional assumption, the 
leukemia population under imatinib does not relapse without the effects of imatinib 
resistance mutations.  Instead, under imatinib treatment, the leukemia stem cell 
population restabilizes at lower equilibrium level and does not continue growing as in the 
Michor model. 
 
Both [6] and [7] propose that imatinib does not eliminate the leukemia stem cell 
population. Consequently, the papers conclude that imatinib therapy should be combined 

                                                
1 For a hematologic remission (also known as complete hematologic response) the 
following must be present: Platelet count 450,000 /µL , WBC count < 10,000 / µL , 
WBC differential: no immature granulocytes and <5% basophils, Spleen nonpalpable. 
2 Cytogenetic remission (or response) is defined with the following sub-categories. None: 
Ph+ cells >95%; Minimal: Ph+ cells 66-95%; Minor: Ph+ cells 36-65%; Partial: Ph+ 
cells 1-35%; Complete: Ph+ cells 0%. 



with an additional treatment that either directly impacts leukemia stem cells or causes 
leukemia stem cells to become vulnerable to imatinib. 
 
As an alternative approach, Komorova and Wodarz develop a model that focuses on the 
drug resistance of leukemia cells [8].  In their model, they implicitly assume that imatinib 
affects all leukemia cells including stem cells and that inevitable relapse is a result of 
acquired imatinib resistance mutations.  Komorova and Wodarz consider the possibility 
of treating patients with multiple drugs to reduce the probability of any leukemia cell 
eventually acquiring resistance-mutations to all drugs.  They determine that a treatment 
strategy consisting of three leukemia-targeted drugs of different specificity might have a 
strong chance of eliminating the disease. 
 
The three approaches discussed above present a variety of hypotheses for the dynamics of 
imatinib treatment on leukemia cells.  These papers also propose potential treatment 
strategies to enhance the effectiveness of imatinib.  However, the difficulty with these 
treatments is that it is unclear what kind of drug could be used to target leukemia stem 
cells or what alternative drugs could be used in addition to imatinib for a multiple-drug 
strategy. 
 
In this paper, we model the anti-leukemia immune response in CML patients on imatinib 
therapy.  Biological insights from the model lead us to propose a novel approach that 
incorporates the leukemia specific immune response into the mathematical models. 
We show that the model of Michor et al. [6], when extended in time, predicts a relapse 
approximately three years after the start of treatment.   However, a three-year relapse 
conflicts with clinical observations as patients under imatinib often remain in cytogenetic 
remission for several years.  The models of Roeder et al. and Komorova and Wodarz 
present alternative models that may explain the long-term remission typically observed in 
patients; however, none of these approaches consider the dynamics and impact of the 
immune response to CML. 
 
Recent experiments by Chen et al.,observe that some CML patients under imatinib-
induced remission develop a robust but transient anti-leukemia immune response 
involving both CD4+ and CD8+ T cells [1]. The results of Chen et al. extend the findings 
of Wang et al. pertaining to antigen-presenting cells and CD4+ T cells in CML [9].  By 
developing a model that combines imatinib and immune dynamics, we formulate an 
alternative hypothesis about how remission is sustained and propose a novel treatment 
strategy to enhance the effectiveness of imatinib. 
 
The paper is organized as follows.  In Section 2 we develop a mathematical model for the 
dynamics of CML, imatinib, and the imatinib-induced immune response to CML.  This 
model is written as a system of delay differential equations (DDEs) where the delay 
accounts for T cell division.  As part of the model presentation, we pay considerable 
attention to discussing the parameter estimates.  This discussion is divided into two parts. 
First we deal with the estimation of the universal parameters, i.e., the parameters for 
which we assume that their range is identical for all patients.  We then proceed to discuss 



the estimation of the three patient specific parameters.  This estimation is done by fitting 
the simulations of the model to the experimental data from [1]. 
 
In Section 3 we use simulations of our model to discuss the brief anti-leukemia immune 
response that occurs during imatinib-induced remission.  We hypothesize that the 
immune response serves to sustain leukemia remission longer than it would last 
otherwise. At the same time, we do point out that this immune response dies off too 
quickly to be effective at completely eliminating CML. 
 
The work of  [1] has also indicated that when an anti-leukemia immune response is not 
detectable, it can be re-stimulated by in vitro incubation with irradiated autologous 
leukemia cells or lysates (available from cryopreserved blood from the patient before 
imatinib therapy).  We hypothesize that a similar stimulation of the anti-leukemia 
immune response can be also obtained in-vivo.  We refer to such a procedure as a “cancer 
vaccine”.   We modify our mathematical model to include terms that account for the 
cancer vaccines.  Through mathematical simulations of this new model we show that if 
indeed a similar response to what was seen in vitro can be also obtained in patients, one 
can possibly use properly timed vaccines to develop an anti-leukemia response that will 
be of sufficient magnitude and duration to eradicate all residual leukemia cells.  The 
timing of the vaccine and the doses are tailored to the specific measurable parameters of 
the immune response of each patient.  We study the number of vaccines, their doses, and 
their timing. We also study the sensitivity of the model to the patient specific parameters. 
A discussion on various aspects of the proposed treatment strategy is provided in Section 
4.   
 
 
2. Materials & Methods 
 
A Mathematical Model of the Immune Response to CML 
 
In [1] Chen et al. conducted an experimental study involving fourteen patients under 
imatinib treatment.  During the course of treatment, they conducted IFN-!  ELISPOT 
analysis at multiple time points to measure the evolution of the anti-leukemia T cell 
responses of each patient. All patients achieved HR within 1-3 months.  Ten patients 
achieved complete CR, and 4 achieved major CR. All patients also achieved at least 
major molecular responses3, and sustained molecular as well as cytogenetic responses 
over time (up to 60 months), except patient 9 (P9), who relapsed after 3 years, and P13, 
who relapsed after 4 years (after stopping treatment due to imatinib intolerance). 
 
To study the dynamics of the imatinib-induced immune response, we formulate a 
mathematical model for leukemia cells and anti-leukemia T cells.  The leukemia growth 
and the response to imatinib follows [6] to which we add interactions with anti-leukemia 

                                                
3 A complete molecular response is when the BCR-ABL transcript is non-detectable and 
non-quantifiable.  A major molecular response is defined as BCR-ABL/control gene ratio 
0.001. 



T cells. Leukemia cells may be killed by interactions with T cells.  Also, T cells 
interacting with leukemia cells may be stimulated to proliferate or to become anergic and 
die.  The T cell interactions are modeled in the same way as in our previous paper [10]. 
 
The mathematical model is formulated as a system of DDEs as follows: 
 

 
!y
0
= [ry (1! u) ! d0 ]y0 ! qC p(C,T )y0 , 

 
!y
1
= ayy0 ! d1y1 ! qC p(C,T )y1 , 
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= byy1 ! d2y2 ! qC p(C,T )y2 , 
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3
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p(C,T ) = p
0
e
!cnCkT  ,  C = yi

i=0

3

! + zi
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3
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C
n!
= C(t " n! ) ,  T

n!
= T (t " n! ) . 

 
A state diagram that corresponds to equations (2.1)-(2.2) is shown in Figure 1.  The 
system (2.1) is a modification of the model of [6] for which in each question we added a 
term that accounts for the death of leukemic cells as a result of an interaction with T cells. 
The variables y

0
, y

1
, y

2
, and y

3
 denote the concentrations of leukemia hematopoietic 

stem cells (SC), progenitors (PC), differentiated cells (DC), and terminally differentiated 
cells (TC) without resistance mutations to imatinib.  The variables z

0
, z

1
, z

2
, and z

3
 

denote the respective concentrations of leukemia cells with resistance mutations.  The 
rate constants a , b , and c  are given with indices corresponding to non-resistant and 
resistant leukemia populations.  The death rates of the four cell categories are given by 
d
0

, d
1
, d

2
, and d

3
, respectively.  The constant u  is the rate of resistance mutation per 

cell division.   
 
The variable C  denotes the total concentration of all leukemia cells with and without 
resistance mutations.  The variable T  denotes the concentration of anti-leukemia T cells. 
The final terms in each of the equations in (2.1) are of the form qC p0e

!cnCkTyi  
(orqC p0e

!cnCkTzi ).  We assume the law of mass action, stating that two cell populations 
interact at a rate proportional to the product of their concentrations.  Hence, the 
component kTyi  (or kTz

i
) is the rate of interaction between T cells and the leukemia 

subpopulation y
i
 (or z

i
) where k  is the kinetic coefficient. 



 
The coefficient p

0
 is the probability that a T cell engages the cancer cell upon 

interaction, and qC  is the probability that the cancer cell dies from the T cell response.  
Furthermore, leukemia cells suppress anti-leukemia immune responses, and while the 
precise mechanism is unknown, we assume that the level of down-regulation depends on 
the current cancer population4.  In particular, we model the probability that a T cell 
engages a cancer cell decays exponentially as a function of the cancer concentration, i.e., 
the probability of a productive T cell interaction with a cancer cell is p

0
e
!cnC  where c

n
 is 

the rate of exponential decay due to negative pressure. 
 
In (2.2), s

T
 denotes the constant supply rate of T cells into the system from stem cells.  

The second term is the natural death rate of T cells.  The third term is the rate at which T 
cells engage leukemia cells and commit to n  rounds of division.  The final term 
represents the population increase due to n  divisions of stimulated T cells where ! is the 
average duration of one division, and C

n!
 and T

n!
are the time delayed cancer and T cell 

concentrations respectively.  The coefficient q
T

is the probability that a T cell survives 
the encounter with an activated leukemia cell. 
 
The method of modeling T cell proliferation in (2.2) is similar to what we have 
previously used in [10].  Once a T cell is stimulated, it exits the collection of interacting 
T cells and reenters the system n!  time units later after n  divisions.  This approach 
ensures that the T cell population does not double faster than once every n!  days.  It is 
an alternative to using the Michaelis-Menten expression or other saturating terms. 
 
 
Parameter Estimates 
 
A considerable amount of effort is devoted to estimating the parameters that appear in our 
mathematical model (2.1)-(2.2).  The discussion is divided into two parts.  First, we 
present the methods for estimating the universal parameters, i.e., the parameters we 
assume have ranges of values that are similar for all patients.  Following the work of [6] 
we  assume that the time-dynamics of cancer is universal, i.e., we describe the evolution 
of the cancer cells in their various stages of development using parameters that are 
assumed to be identical for all patients.  Clearly, there is no reason to believe that the 
dynamics of cancer is identical for all patients (as commonly done in mathematical 
models).  Nevertheless, it does serve, in our case, as a way of simplifying the 
computations in addition to a way to connect between our work and previous works. 

                                                
4 It is now well established that cancer suppresses the host immune system in various 
ways [11].  Leukemia is particularly immunosuppressive as leukemic cells grow within 
the bone marrow, and can directly suppress both growth and function of normal blood 
cells. As such, leukemia patients are known to be at higher risk for infections and other 
cancers [12,13].  While the mechanisms are varied, we recently showed that cancer 
patients may have a defect in the interferon signaling pathway [14].  Interferon is an 
important cytokine in driving immune responses. 



 
We then proceed to describe the methods we used for estimating the remaining three 
model parameters. These parameters characterize the individual immune response.  
Consequently they are allowed to vary from patient to patient. 
 
 
Universal Parameters 
 
The values of the parameters pertaining to the growth, differentiation, and mutation rates 
of leukemia cells are taken from [6] without modification.  These parameters are ry , ay , 
by , cy , r

z
, !ay , !by , !cy , a

z
, b

z
, c

z
, and u . The death rates from [6] correspond to the 

natural death rates of the leukemia populations under imatinib. However, in our model, 
we distinguish between the natural death rate of leukemia and the death rate due to the 
cytotoxic T cell response.  Hence, our natural death rates, d

i
, should be a fraction, ! , of 

the combined death rates estimated in [6]. 
 
Determining what fraction !  of the leukemia death rates from [6] result from non-
immune versus immune causes is difficult and requires some assumptions.  First, we 
assume that !  is greater than 0.5, so that the anti-leukemia immune response contributes 
to less than half of the decline in leukemia under imatinib treatment.  Due to the lack of 
data on ! we set it as ! = 0.75.  A discussion on the sensitivity of the results to the choice 
of ! will follow. 
 
For the kinetic coefficient k , we use the same value of 1 (k / µL)!1day!1 which was 
originally drawn in [10] from the rate constant of virus elimination in [15]. For T cell-
cancer interactions, we apply the following assumptions from [10]: 20% of the time 
nothing happens, and both cells survive and depart; 20% of the time cancer lives, and the 
T cell becomes anergic or dysfunctional; 40% of the time cancer dies, and the T cell 
survives and moves on; 20% of the time both cancer and the T cell die. From these 
assumptions, we deduce that the probability of any sort of interaction is p

0
 = 0.8, the 

probability of cancer dying is p
0
qC  = 0.6, and the probability of a T cell surviving is 

p
0
q
T

 = 0.4.  Hence, qC = 0.6/0.8 = 0.75 and q
T

= 0.4/0.8 = 0.5. 
 
In [15], Luzyanina et al. estimate that T cell divisions take between 0.4 to 2 days, and 
their best fit estimate is 0.6 days.  Also, Janeway estimates that primed T cells divide 2 to 
4 times per day [16], which corresponds to a duration of 0.25 to 0.5 days.  Combining 
these sources, we conclude that T cell divisions take between 0.25 and 2 days. Since the 
anti-leukemia T cells are emerging from an environment of immune down-regulation, we 
assume they divide at the more conservative rate of one division per day. 
 
A summary of the estimated parameters is provided in Table 1. 
 
 
Patient-Dependent Parameters 
 



The data from [1] for three patients, P1, P4, and P12, each consists of at least five time 
points per patient.  Hence, we focus on these patients when fitting the model to patient 
data.  Tables 2-3 summarize the data from [1] for P1, P4, and P12.  Since the duration 
and the magnitude of the immune responses vary greatly across the three patients, we fit 
the parameters s

T
, d

,T
, c

n
, n , y

0
(0) to each patient independently and do not attempt to 

come up with universal estimates of these values.  These five parameters denote the 
supply rate of anti-leukemia T cells, the death rate of anti-leukemia T cells, the level of 
immune down-regulation by leukemia cells, the average number of T cell divisions upon 
stimulation, and the initial concentration of leukemia stem cells, respectively.  
 
Since even for these three patients only few data points are available, we do not apply a 
formal method to fit the five patient-dependent parameters to the data.  Rather, we use 
certain features of the data sets, such as the peak height of the T cell response, to estimate 
the patient-dependent parameters. 
 
We use known information from the literature to determine reasonable ranges for n  and 
d
T

.  To determine an upper bound for the average number of T cell divisions, n , we 
consider that when naïve CD8+ T cells are primed for the first time, they go through 
several cycles of division.  An analysis of experimental data by Antia et al.  showed that 
stimulation of naïve CD8+ cells result with up to 8 divisions in vitro [17]. In addition, 
Janeway estimates that the proliferation of primed CD8+ cells leads to about 103 daughter 
cells [16, p. 19], which implies about 10 divisions.  Primed CD8+ T cells continue to 
divide as long as they receive stimulus, but not as many times as during the initial 
stimulation.  Hence, we conclude that primed CD8+ T cells divide fewer than 10 times 
and most likely fewer than 8 times per stimulation. 
 
To estimate the range of the T cell death rate, d

T
, we consider the observations and 

calculations from [18] that primed CD4+ T cells peak nine days after stimulation, initially 
die with a half-life of 3 days, and slow down to a half-life of 35 days, eight days after the 
peak of the response.  These numbers yield an initial death rate of 0.23/day and an 
eventual death rate of 0.02/day.  In addition, in [18] it is estimated that primed CD8+ T 
cells die with a half-life of 1.7 days, yielding a death rate of about 0.4 /day.   The half-
lives of memory CD4+ and CD8+ T cells are much higher, i.e. 500 days to lifelong 
respectively.  Since we are looking at data points that were measured over several years, 
most of the lingering T cells in the anti-leukemia response are probably CD4+ effector 
cells or memory CD4+ and CD8+ cells.  Since we are examining time-scales of several 
months to a few years, for convenience, we assume that the T cell death rate is constant at 
0.02/day or lower and do not take into account the biphasic switch that probably occurs 
around seventeen days after the beginning of the immune response. 
 
The characteristics of the five patient-dependent parameters are summarized in Table 4. 
 
The initial concentration of leukemia stem cells, y

0
(0) , is the most straightforward 

parameter to estimate, since its value can be derived directly from the initial leukemia 
load measured in [1]. 
 



If we assume that all populations start in their steady states, we can calculate the initial 
concentrations of all leukemia cell compartments in terms of y

0
(0)  and the universal 

parameters given in Table 1.  (Likewise, we can calculate the initial concentration of T 
cells in terms of the T cell supply and death rates.) 
 
If we assume that there are no resistant cells at the start of treatment, the initial 
concentration of imatinib resistant stem cells is 0.   Note that Michor et al. also consider a 
scenario, in which the initial resistant stem cell count is 10 cells [6].  Assuming that an 
average person has 6L of blood, this initial count corresponds to an initial concentration 
of 

 
10 / 6L ! 10

!9
k / µL .   Clearly, this is a very crude estimate as the leukemic cells are 

distributed within the bone marrow, spleen, and blood.  However, as will be shown in the 
sensitivity study below, the initial concentration plays a rather limited role in the 
emerging dynamics, and thus even such a crude estimate will suffice.  See Table 5 for a 
list of initial concentrations. 
 
To calculate y

0
(0) , we set the pre-treatment leukemia loads listed in Table 2 equal to the 

expression for the total initial leukemia concentration, y
i
(0)

i=0

3

! + z
i
(0)

i=0

3

! , and solve 
for y

0
(0) . 

 
The T cell death rate, d

T
, is estimated from the rate of decline of the anti-leukemia T cell 

populations after their peak.  Hence, the last three data points for P1, the last five data 
points for P4, and the last five data points for P12 are used to estimate the rate of T cell 
death d

T
. 

 
If we assume that the T cell population is at steady state before treatment, the 
concentration of anti-leukemia T cells at time 0 is s

T
/ d

T
.  By setting this ratio equal to 

the initial T cell concentrations obtained from the data in Table 3, we can determine s
T

in 
terms of d

T
. 

 
The rate c

n
 of the decay of the immune response due to negative pressure is difficult to 

estimate.  However, the value of c
n

 affects the number of T cells that are stimulated 
during the course of imatinib treatment and how soon T cell expansion initiates. 
Specifically, we can use the data points before the T cell peak to estimate the time of 
initiation of the anti-leukemia T cell response for each patient.  From the data, it is 
apparent that the T cell response does not initiate immediately, indicating a lingering 
immunosuppressive effect from the leukemia cells.  We assume that the T cell responses 
start approximately 2.5, 3, and 2 months after the start of imatinib treatment for patients 
P1, P4, and P12, respectively. 
 
Given the T cell death rate d

T
, we can determine the range of cancer concentrations 

where the T cell growth rate, p
0
ke

!cnCC , exceeds the T cell death rate, d
T

.  Before the T 
cell response starts, the leukemia concentration falls solely based on its natural death rate, 
since there is no active T cell response.  Thus, we can further determine the time that the 



cancer concentration first reaches the point where the T cell growth rate exceeds the T 
cell death rate.  Hence, we can approximate the value of c

n
 that causes the T cell 

responses of P1, P4, and P12 to begin expanding around months 2.5, 3, and 2, 
respectively.  We examine this idea more thoroughly when we introduce the `optimal 
load zone' for T cell stimulation. 
 
The remaining parameter n , which represents the average number of T cell divisions per 
stimulation, is estimated by matching the results of the simulation to the data points.   
In particular, the peak height of the T cell response is a strong indicator of the value of n , 
since higher n  lead to higher T cell peaks. 
 
To fit the patient-dependent parameters, we convert the data from [1] into units of 
concentration, namely thousands of cells per microliter (k / µL) .  The data in [1] is 
originally given in SFCs/well and 105  PBMCs were used in each well.  However, only a 
fraction of the PBMCs are T cells, and measurements of TNF-!  and IFN-!  in [1] imply 
that the standard procedure of measuring the IFN-!  response using the ELISPOT assay 
may underestimate the strength of a T cell response.  Due to these uncertainties, we 
assume the measurements from the ELISPOT assay indicate relative magnitudes among 
T cell responses at various time points, but we do not convert the SFCs/well 
measurements directly into units of concentration (k / µL) .  
 
In [1], Chen et al. conducted TNF-!  and INF-! ELISPOT analyses to measure T cell 
activity.  From this data (in particular the data of patient P4), it is seen that roughly 4% of 
CD4+ T cells and 1% of CD8+ respond to leukemia at the peak of the T cell response.  
Hence, we scale the ELISPOT data down by 2500 to obtain T cell concentrations.  This 
corresponds to about 1% of T cells from P4 responding to leukemia at the peak of the 
response.  Furthermore, we use the scaled values for the initial ELISPOT measurements 
at time 0 to set the steady state T cell concentration, s

T
/ d

T
.  The cancer-related 

parameters are given in Table 1.  For our first study, we assume that there are no 
resistance mutations, so we set the mutation rate, u , and the initial concentration of 
imatinib-resistant stem cells, z

0
(0) , to 0.  The remaining parameters for each of the three 

patients are given in Table 6. 
 
 
3. Results 
 
Imatinib-Induced Immune Dynamics 
 
Graphs of the solutions of the mathematical model that correspond to patients P1, P4, 
P12, along with the measured data points are displayed in Figure 2.  The cases labeled 
“no immune response” in Figure 2 are taken from [6] and correspond to setting the T cell 
concentrations in (2.1) to 0, i.e., without the immune response.  In comparison to the no-
immune-response cases, the T cell response contributes to driving the leukemia 
population lower than with imatinib alone.  Furthermore, the persistence of anti-leukemia 
T cells at low levels keeps the leukemia population from relapsing for up to several years, 



whereas in the no-immune-response cases, cancer rebounds are noticeable after 15 to 24 
months.  See Figure 2. 
 
We estimate the approximate concentration corresponding to complete cytogenetic 
remission, based on [19]. According to [19], there are 1012  leukemia cells prior to 
imatinib treatment.  As a general medical assumption, there are three layers of remission, 
hematological, cytogenetic, and molecular, and each layer corresponds to a 2 log, or 100-
fold, difference from the previous one.  Hence, hematological remission corresponds to 
roughly 1010  cells, and cytogenetic remission corresponds to roughly 108  cells.  If the 
average person has 6L of blood, cytogenetic remission corresponds to a blood 
concentration of 10

8
/ 6L = 1 / 60 k / µL .  The cytogenetic remission level is shown as 

dashed lines in Figure 2. 
 
Regarding the no-immune-response case, Michor et al. demonstrate that imatinib 
significantly reduces the populations of differentiated leukemia cells, but does not 
eliminate leukemia stem cells [6].  As a result, the leukemia population decreases rapidly 
at the beginning of treatment, while the stem cell population continues to rise 
exponentially at a much slower rate of ry ! d0 .  This phenomenon occurs even in the 
absence of resistance mutations, making an eventual relapse unavoidable. 
 
On the other hand, our model including the anti-leukemia T cell response predicts a 
substantially slower relapse and provides a fit to the immunological data.  Hence, it is 
possible that a combination of imatinib and an immune response keeps the leukemia 
population under control and allows patients to remain in cytogenetic remission for 
several years.  Indeed, the model predicts that the patients remain in cytogenetic 
remission beyond month 50. 
 
In all three patients, the leukemia cells are not eliminated completely by imatinib 
treatment.  In fact, the lowest concentrations obtained by the cancer populations in Figure 
2 for P1, P4, and P12, are 1.3!10"4 , 7.8 !10"5 , and 2.2 !10"4  k / µL ,respectively, 
which correspond to half a million to a million cells remaining in the body, assuming that 
an average person has 6L of blood.   As can be observed in Figure 2C, it seems that 
leukemia starts increasing again about 24 months after the start of treatment.  This 
observation stresses an important point, namely that our model does not predict that CML 
is eliminated by imatinib treatment alone.  It does, however, predict that it takes 
significantly more time for the disease to relapse (when compared with the Michor 
model). 
 
Nonetheless, leukemia drops to such a low level that the T cells are no longer stimulated 
and begin to contract.  As a result, the immune response does not expand sufficiently to 
eliminate the leukemia cells.  Unfortunately, although imatinib drives the cancer 
population to low levels, it does not eliminate the leukemia stem cells [6].  Hence, the 
low population of leukemia stem cells remain below immune surveillance and out of 
reach of imatinib, escaping complete elimination.   
 



In Figure 3 we show simulations for the three patients that demonstrate what happens 
when the imatinib treatment is stopped at month 12.   Similar results are observed for all 
three patients. The removal of imatinib leads to a resurgence of the leukemia population 
which causes an initial increase in the T cell response; however, the T cell response is 
never strong enough to overcome the rapidly growing leukemia population. This result is 
consistent with clinical observations that patients taken off imatinib invariably relapse 
[6].   For the purposes of this paper, we assume that the patients are always treated by 
imatinib. The strong immune responses in Figure 3 are induced by imatinib.  Indeed, in 
the absence of any imatinib treatment, no immune response initiates, a scenario that is 
shown in Figure 4. 
 
We would now like to further elaborate on the various aspects regarding the stimulation 
of the immune response as reflected in our model (2.1)-(2.2).  From (2.2) the balance 
between immune down-regulation and T cell stimulation by leukemia cells is given by 
the term p

0
e
!cnCC .  Hence, the optimal level of T cell stimulation occurs at C = 1 / c

n
. 

We define the optimal load zone to be the range of leukemic concentrations where the T 
cell stimulation rate is faster than the T cell death rate, i.e., p

0
ke

!cnCC > dT ,  where k  is 
the mass-action coefficient and d

T
is the T cell death rate.  Figure 5 shows the optimal 

load zones and stimulus levels of T cells as functions of the leukemia concentrations for 
the three patients.  The anti-leukemia T cell populations begin expanding when the 
leukemia concentration drops into the optimal load zone and begin contracting when the 
leukemia concentration drops below the optimal load zone. 
 
Figure 5 shows that if the cancer concentrations grow beyond approximately 101 (for the 
three patients) the perceived stimulus is so low that the anti-leukemia T cell response 
begins to contract, allowing the cancer population to expand more rapidly.  The 
expanding cancer population then further suppresses the T cell response, leading to an 
uncontrolled relapse.  Hence, we can say that the relapses in Figure 3 are complete, and 
the immune responses do not recover. 
 
The level of immune down-regulation, c

n
, by leukemia cells is a key parameter that 

governs how well the immune response can function against the relapse following the 
removal of imatinib.  (See Figure 3).  If c

n
 is high, the leukemia provides less stimulus 

for the T cells and passes through the optimal load zone faster during relapse.  This 
makes it less likely for T cells to be able to multiply to sufficient levels to hinder the 
growth of cancer.  However, if c

n
 is low enough, it is possible that the T cells have 

proliferated enough during the first imatinib-induced response to stall cancer growth, 
provided that imatinib is removed near the time of the T cell peak.  Nonetheless, as we 
have seen in Figure 4, the immune response against a relapsing cancer population is 
expected to be ineffective. The quantity c

n
, which varies from patient to patient, 

measures the ability of cancer cells to down-regulate the anti-cancer immune response.  It 
is unknown whether all leukemias exert roughly the same negative pressure or whether 
this parameter can vary widely.  
 
A Combined Treatment Strategy 



 
As shown previously at the beginning of treatment, imatinib causes the leukemia 
population to drop into the optimal load zone, stimulating an immune response.  
However, under continued treatment, the leukemia population quickly drops below the 
optimal load zone, and the T cell population contracts due to lack of stimulus.  A strategy 
to maintain the leukemia population within the optimal load zone or to surrogately 
stimulate anti-leukemia T cells may help in driving the leukemia population to zero. 
 
The experimental results of [1] suggest that autologous leukemia cells may be collected 
from a patient, inactivated, and strategically reintroduced to enhance the anti-leukemia T 
cell response. Ideally, these vaccinations stimulate the immune system enough to drive 
the residual leukemia population to zero. We assume that imatinib is administered 
throughout the entire course of the therapy. 
 
To study the feasibility of this approach, we introduce inactivated leukemia cells into our 
model (2.1)-(2.2).  Inactivated leukemia cells (whose number is denoted by V ) die or 
decay at a constant rate d

V
 and are supplied into the system in vaccination boosts at rate 

s
V
(t) . All leukemia cells may be killed by interactions with T cells.  T cells interacting 

with leukemia cells may be stimulated to proliferate or become dead or anergic.  These 
interactions are also modeled in the same way as in [10]. We modify the original model 
by adding (3.1) and replacing (2.2) with (3.2): 
 
 

 
!V = !dVV ! qC p(C,T )V + sV (T ) ,     (3.1) 

 
 
!T = sT ! dTT ! p(C,T )(C +V ) + 2

n
p(Cn" ,Tn" )(qTCn" +Vn" ) .  (3.2) 

 
Here V  denotes the concentration of inactivated leukemia cells and V

n!
= V (t " n! ) .  We 

assume that T cells always survive encounters with inactivated leukemia cells, so that 
there is no coefficient q

T
 before the variable V

n!
 in (3.2). 

 
The leukemia cells used in vaccinations can be inactivated via irradiation.  Since they are 
in the process of dying, we estimate that they do not survive much longer than 24 to 72 
hours, so we set the decay rate d

V
= 0.35, which corresponds to a half life of 2 days.  The 

supply rate s
V
(t)  of inactivated leukemia cells will be 0 except when the vaccination is 

being delivered.  During vaccination, we estimate that a total quantity q
V

 of inactivated 
leukemia cells is delivered at rate 100q

V
 for a duration of 0.01 days, which is slightly 

under 15 minutes. 
 
Since it is unclear how many vaccinations will be required to eliminate the cancer, we 
will optimize the treatment strategy according to the following method: 
 

1. Imatinib. Begin imatinib treatment at time 0 and continue treatment throughout 
immunotherapy. 



2. Timing. For a given dosage, assume that there is only one vaccination and find 
the optimal timing such that the resulting minimum cancer concentration is as low 
as possible.  This will determine the timing of the first vaccination. 

3. Pacing. Continue delivering vaccinations of the same dosage at fixed time 
intervals until eliminating leukemia (according to the elimination criterion (3.3), 
defined below). 

 
At the end, we select the vaccination strategy that attains the lowest minimum leukemia 
concentration with the fewest vaccinations. We implement this optimization strategy, 
because it is more efficient than attempting to globally optimize several vaccinations of 
varying dosage and irregular time intervals at once.  Indeed, it is a one-dimensional 
search problem, as opposed to a higher dimensional problem.  For this assessment, we 
also assume that there are no mutations, i.e. u = 0 . Results of relaxing this assumption 
are discussed below. 
 
We numerically solve the system given by (2,1), (3.1), and (3.2) using the DDE solver 
‘dde23’ from Matlab 7.0.  For each run, we evaluate the solution up to day 400. We use 
parameter sets from Table 6 and examine vaccination dosages of 0.1 to 1 k / µL . 
 
For each fixed dosage, we find optimal vaccination delivery times (up to a day), and our 
goal is to drive the cancer below 1cell/6L 

 
! 10

!10
k / µL , i.e. 

 
 Total cancer concentration < 10!10

k / µL .    (3.3) 
 
We assume that the criterion (3.3) represents cancer elimination.  Since this model is a 
continuous deterministic system, in reality, the equations (2.1) never allow the cancer 
population to actually reach 0. 
 
Using the aforementioned method of optimization, we optimize the timing of a series of 
vaccinations of varying dosages. We measure dosages in units of concentration (k / µL) , 
referring to the average concentration of inactivated leukemia cells in the patient's body.  
Since the average person has about 6L of blood, a vaccination of 1 k / µL  corresponds to 
6 !10

9  inactivated leukemia cells.  For the parameters from Table 6 corresponding to P4, 
the optimal delivery times and minimum cancer concentrations for up to five vaccinations 
of varying dosages are given in Table 8. 
 
On one hand, five vaccinations of dosage 0.1 k / µL  can eliminate cancer in P4.  On the 
other extreme, one vaccination of dosage 1.0 k / µL  works as well.  Depending on 
whether it is more important to eliminate cancer as fast as possible or to minimize the 
total dosage of irradiated cancer cells, different strategies may be preferable.  Also, it 
may be advantageous to vary vaccination dosages over time and consider dosages below 
0.1 k / µL , but a thorough analysis of this optimization problem lies beyond the scope of 
this paper. 
 



The time evolution of the cancer and T cell populations for the treatment strategy in row 
1 of Table 8 are shown in Figure 6.  Repeated stimulation of T cells by the five 
vaccinations causes the T cell level to multiply to over 10 times the T cell peak with 
imatinib alone in Figure 2B.  As a result, the leukemia population is completely 
eliminated. 
 
In addition, analogous tables of vaccination strategies for P1 and P12 are shown in Tables 
9 and 10.  The T cells of P1 and P12 seem to be less responsive than those of P4, since 
they require higher dosages to eliminate the leukemia cells. 
 
In all cases, the first vaccinations are given before the peak of the T cell responses to 
boost the response.  The peaks of the T cell populations fall between months 9 and 10 
(see Figure 2), and in all cases, the first vaccinations fall around months 7 to 8.  It is 
optimal to give the first vaccination before the T cell response begins to contract. 
 
Thereafter, the following vaccinations serve to sustain the immune response over an 
extended time, so the gaps between these vaccinations depend on how long it takes for 
the previous vaccination to clear out of the system. 
 
In the data of [1] there were 2 patients with no detectable immune response (P10 and 
P14).  The leading hypothesis there was that the immune response was present but that it 
was below the detection level. In the mathematical model, low-level immune responses 
can be obtained when immune down-regulation from leukemic cells is high or when T 
cell division is low.  In these cases, vaccinations still boost the immune response and 
eliminate leukemia, but dosages must be higher or they must be administered for longer 
periods.  In addition, if the level of immune down-regulation from leukemia cells is very 
high, the timing of the first vaccination will be much later than for P1, P4, and P12, since 
it will take longer for the leukemia population to pass into the optimal load zone.  
Because these immune responses are too low to detect using ELISPOT, we do not have 
data points to fit the model.  Hence, any vaccination strategy for P10, P14, or any of the 
other patients with no detectable response will be highly speculative.  For such patients 
we forgo any quantitative conclusions and instead state that strategic vaccinations are 
likely to enhance any anti-leukemia T cell response, even when the anti-leukemia 
response is low. 
 
Importance of Timing and Pacing 
 
The timing and pacing of the vaccination strategies are critical to the success of the 
outcome.  For example, consider the alternative vaccination strategies in Tables 11, 12, 
and 13.  These are deviations from the optimized vaccination strategies in Tables 9, 8, 
and 10, respectively. 
 
Note that if vaccinations are initiated within 30 days of the start of imatinib treatment, the 
effect of the vaccinations is insignificant.  There is hardly any anti-leukemia immune 
response, and the decline in the leukemia population is mainly due to natural death under 
imatinib.  This happens since within the first 30 days, the leukemia population is still well 



above the optimal load zone, and in general, vaccinations are ineffective when the 
leukemic load is above the optimal load zone (where the immune suppression is too 
strong). However, once the leukemic population is sufficiently low, the optimal load is no 
longer an issue, since inactivated leukemic cells that have no immunosuppressive effects 
are used for vaccinations.   
 
On the other hand, administering vaccinations too late (e.g. at 300 days) is not entirely 
ineffective, since leukemia has already passed into remission and no longer exerts a great 
immuno-suppressive effect.  However, 300 days after the start of treatment, the initial 
anti-leukemia T cell response has started to decline, so the response to vaccination is not 
as strong.  By considering early and late vaccinations, we see that optimizing vaccination 
delivery times depends on a balance between minimizing the immuno-suppressive effect 
of leukemia and maximizing the available anti-leukemia T cells to respond to the 
stimulus. 
 
In the same way, in multiple vaccination strategies, there is an optimal pacing between 
vaccinations that will optimally maintain the immune stimulation over time.  As we can 
see from Tables 11-13, excessively low and high intervals of 1 and 20 days lead to less 
effective vaccination strategies.  Hence, by fitting patient data and modeling various 
vaccination strategies, we can predict the most effective ways to utilize the available 
resources for a maximal impact. 
 
Overloading vaccination strategies and sensitivity to d

T
, c

n
, and n  

 
In general, the vaccination strategies for each patient will still work if T cells die at 
slower rates, if the immune-suppression is lower, or if T cells divide more after 
stimulation.  These scenarios correspond to decreasing d

T
, decreasing c

n
, and increasing 

n .  In these cases, the vaccination strategies should not only continue to work, but should 
also become more effective. 
 
However, our optimization strategy seeks to find the lowest dosage or smallest number of 
vaccinations necessary to eliminate cancer.  Hence, these strategies are sensitive to 
underestimates of d

T
, underestimates of c

n
, and overestimates of n .  To allow a buffer 

for a more robust vaccination plan, we can develop an optimal strategy for overloading 
the optimal vaccination strategies. For example, we can give P4 one vaccination of 
dosage 2.0 k / µL  rather than 1.0 k / µL .  Alternatively, we can give P4 10 vaccinations 
of dosage 0.1 k / µL  instead of 5 vaccinations.  This will allow the vaccinations to be 
much more reliable and robust to errors in the parameter estimates. 
 
A full treatment on the optimal way to overload a vaccination strategy leads to more 
complex optimization problems, which we leave for future work.  However, in Tables 14-
16, we consider the effect of doubling the vaccination dosages or the number of 
vaccinations for P1, P4, and P12.  For each overloaded vaccination strategy, we report the 
amount that c

n
 and n  can vary from their original values without rendering the strategy 

ineffective.  For convenience, variabilities are reported as ± (some percentage), but in 



reality, these variabilities only correspond to upper bounds for c
n

 and lower bounds of 
n .  Since the parameter d

T
 is more readily measured from T cell decay rates, we exclude 

it from the sensitivity analysis. 
 
From this preliminary analysis, it appears that doubling is more effective for strategies 
consisting of vaccine low dosages administered multiple times.  It is unclear whether it is 
more effective to double the dosages or to double the number of times vaccinations are 
administered, since the relative efficacies of each approach vary from patient to patient.  
In any case, overloading vaccinations seems to be an effective method for increasing the 
robustness of vaccination strategies against uncertainties in parameter values. 
 
Sensitivity analysis 
 
The analysis in the previous sections focused on three particular patients and proposed 
three different treatment strategies for each case. However, to extend out findings to a 
general approach, we would like to examine which scenarios favor one vaccination 
regime over another.  Indeed, from Tables 8-10, we notice that patient P4 requires a much 
lower vaccination dosage than patients P1 and P12 to obtain an adequate immune 
response.  This observation implies that the immune response of P4 is more active than 
the immune response of P1 and P12.  We would thus like to understand which 
measurable parameters and initial conditions can be correlated to the effectiveness of 
vaccination therapy.  Furthermore, we would like to understand how the treatment 
strategies can be adapted to the individual patients based on the measured strength of 
their immune responses. 
 
To study the correlation between parameters and the effectiveness of proposed 
vaccination strategies, we apply the Latin Hypercube sampling (LHS) method [20].  This 
method provides means of simultaneously sampling a wide range of dynamical 
parameters and is useful for statistically determining which parameters correlate highly to 
certain desired outcomes. LHS involves numerically simulating the model multiple times 
with randomly sampled sets of parameters. The samples are chosen such that each 
parameter is well distributed over its range of possible values. 
 
For each LHS simulation, we test one vaccination strategy over a range of 500 randomly 
sampled parameter sets.  The parameters are sampled uniformly over the ranges indicated 
in Table 18.  As indicated in the table, we vary every parameter and initial condition 
except the decay rate of dead cancer cells (which are used only in vaccinations). 
 
From Tables 8-10, we see that the optimal start times for our vaccination strategies are 
between around 200 and 240.  Furthermore, the optimal pacing between vaccinations is 
between around 5 and 10 days.  Using these numbers as guides, we test several variations 
of vaccination strategies with start times at either 200 or 240 days and pacings of 5, 10, 
20, or 40 days.  Furthermore, we try vaccination dosages of 0.1 and 0.2 k / µL .  The 
results are shown in Table 17.  In this table, alongside the tested vaccination strategies, 
we include the fraction of 500 LHS samples that result in cancer elimination.  The first 
eight strategies consist of five vaccinations with dosage 0.1 k / µL .  Hence, these 



strategies require a total dosage of 0.5 k / µL .  If we assume that the average person has 
6L of blood, this total dosage corresponds to 0.5 k / µL  ! 6 !10

6µL  = 3!109  leukemia 
cells. 
 
Among these first eight vaccination strategies with a total dosage of 0.5 k / µL , we see 
that vaccination strategies that start on day 240 are more effective than those that start 
earlier on day 200.  In addition, it seems that a pacing of 20 days between vaccinations 
performs better than the alternative pacings of 5, 10, and 40 days.  Observing the trend in 
the eight tested strategies, it seems that the optimal pacing would fall between 10 and 40 
days. 
 
Among the ten strategies with total dosage 1.0 k / µL , it seems again that starting 
vaccinations on day 240 is better than starting too early on day 200.  Furthermore, it 
seems that spreading the vaccinations out among ten small doses is more effective than 
grouping them into five larger doses or one very large dose. 
 
In this work we only examined a limited set of possible vaccination strategies.  Indeed, 
there is no reason to require that all vaccinations will be of the same size or that the 
pacing will remain uniform.  However, generalizing our survey of possible strategies 
poses a challenging optimization problem that is beyond the scope of the current paper. 
 
On the other hand, LHS sampling allows us to determine the statistical correlations 
between the treatment outcomes and a wide range of model parameters.  For each LHS 
simulation, we measure the correlations between the varied parameters and two indices: 
the minimum cancer concentration attained during the course of simulation (600 days) 
and the success of the treatment strategy. For our correlations, we use the Pearson and 
Spearman rank-order coefficients, and consider a treatment to be successful if it causes 
the cancer concentration to drop below 10!10

k / µL , which is approximately the 
concentration of half a cancer cell in the blood. 
 
In Table 18, we show the Pearson and Spearman rank-order coefficients for the fifth 
vaccine with total dosage 0.1 k / µL .  (This is the strategy with dosage 0.1 k / µL  per 
vaccination with vaccinations scheduled every10 days between day 240 and 330).  Figure 
7 shows scatter plots of simulation results for this vaccination strategy with respect to 
(d

T
,n)  and (c

n
,!) . The correlations obtained from all other tested strategies are 

comparable. 
 
We see from the correlation table that the most sensitive parameter is the average number 
of T cell divisions per stimulation, n .  This result makes sense because n  is a direct 
measurement of the inclination of T cells to proliferate.  More responsive T cells will 
perform much better under vaccinations.  This observation implies that the T cell activity 
of a patient, and especially its inclination to proliferate, should be measured (probably in 
vitro) before and during the imatinib treatment to gauge the intensity of the vaccination 
treatment that is needed to ensure sufficient T cell expansion. 
 



There are three additional parameters that have some influence on the outcome. These are 
the T cell death rate, d

T
, the level of immune downregulation, c

n
, and the fractional 

adjustment constant for cancer death rates, ! .  The T cell death rate is relevant, because 
T cells that die faster require a prolonged stimulation to remain at effective levels.  This 
is one reason why spreading vaccinations out across many smaller doses seems largely 
more effective than combining vaccinations into larger doses.  The latter strategy would 
only be preferable if the average T cell death rate is low enough to allow the T cell 
response to persist for a long time without stimulus.  The parameter !  directly affects the 
time it takes for cancer to enter remission.  If !  is low, it means that imatinib is less 
effective, so it takes longer for a patient to enter remission.  Furthermore, the level of 
immune downregulation, c

n
, affects the time that downregulation becomes low enough 

to make the vaccinations effective.  The combined effects of !  and c
n

 affect the optimal 
start time of vaccination treatment.  Low !  and high c

n
 would require the start time of 

the vaccination to be postponed until downregulatory effects have diminished. While it 
may be difficult to measure these parameters directly, the ambient level of immune 
downregulation can be deduced by tracking T cell activity during the course of imatinib 
treatment. 
 
All the parameters other than the four discussed above have little influence on the 
outcome of the treatment. We especially point out that the mutation rate per cell division, 
u , and the initial leukemia load, C(0) , are among the irrelevant parameters.   
While the initial loads will vary by at most a factor of three or so, remission time is much 
more strongly affected by the exponential decay rate of cancer under imatinib, which 
pertains more to the parameter !  than anything else. Ultimately, the sensitivity analysis 
shows that n , which measures the T cell responsivity upon stimulation, is the key 
parameter to predicting the effectiveness of vaccination strategies. As a potential clinical 
application, relevant dynamical parameters can be measured in vitro before and during 
the course of treatment to devise or adjust a vaccination strategy to optimize anti-
leukemia T cell stimulation. 
 
 
4. Discussion 
 
Among all mathematical models of CML, our approach is unique in the sense that the 
experimentally observed anti-leukemia immune response is incorporated into the model.  
With the addition of the T cell response in our model, persistence of anti-leukemia T cells 
even at low levels seems to prevent the leukemia from relapsing (for at least 50 months).  
We therefore hypothesize that anti-leukemia T cells responses may help maintain 
remission under imatinib therapy.  Therapy with imatinib (and other targeted therapies 
being developed) has the advantage to target leukemic cells more selectively than non-
specific therapies such as chemotherapy and radiation.  As such, host immune function, 
including antigen presentation, may be restored more rapidly than after chemotherapy, 
due to alleviation of leukemia-induced immune suppression.  Importantly, normalization 
of host immune function, while leukemia antigens are still present, may optimally drive 
anti-leukemia immune responses. 



 
Our model suggests that the balance between immune down-regulation and T cell 
stimulation by leukemic cells determines the effectiveness of the anti-leukemia T cell 
response. Studying the optimal level of stimulation led us to define the novel concept of 
an “optimal load zone” as the range of leukemic cell concentrations where the T cell 
stimulation rate is optimal.  In general, imatinib causes the leukemic cell population to 
fall into the optimal load zone, stimulating a T cell response most efficiently and to the 
highest amount before it drops out of this zone.  At a certain threshold below the optimal 
load zone, leukemic cells become essentially invisible to T cells due to low interaction 
rates, and the immune response contracts.  At this point, one would need exogenous 
stimulation to maintain T cell proliferation. 
 
This led us to hypothesize that cryopreserved autologous leukemic cells, inactivated by 
irradiation, may be given to patients in remission as vaccines to enhance T cells 
responses.  To study this approach, we added inactivated leukemic cells (unable to 
proliferate or exert immune suppression) to our model.  A strategy of immunotherapy and 
imatinib treatment for each patient was constructed using an optimization algorithm.  Our 
model predicts that the timing and pacing of the vaccinations are crucial. 
 
Although vaccination optimizations are presented for particular patients, it may be 
possible to devise a more general strategy that works most of the time.  Furthermore, the 
parameter fitting can be more refined to consider several likely parameter sets, and the 
optimization problem can be expanded to consider variable vaccination dosages 
q
V ,1

,  q
V ,2

,...,  q
V ,n  under the constraint qv,i! = constant.  

 
Another question is whether the effects of vaccination can be clinically observed.  Since 
most leukemia patients taking imatinib undergo cytogenetic remission, but not molecular 
remission [21], it is possible to observe whether vaccinations can further drive the 
leukemia to molecular remission.  The thresholds for cytogenetic and molecular 
remission are 108  and 106  leukemia cells in the body, respectively.  Assuming that an 
average person has 6L of blood, these counts correspond to leukemia concentrations 
around 10!2  and 10!4  k / µL , respectively.  Thus, the model predicts that a series of 
vaccinations will not only drive the leukemia population below the molecular remission 
level, but will actually drive it to extinction. 
 
To clinically implement these treatments, one would also need to have a criterion for 
starting the vaccinations.  From the model, we observed that vaccinations are best 
administered just prior to the peak of the T cell response; however, in practice, it may be 
hard to determine the T cell peak times.  We observe that for all patients, the T cell peaks 
occurred around 10 months after starting the imatinib treatment, while they entered 
complete and major cytogenetic remissions a few months earlier.  Determining whether 
there is a correlation between remission times and T cell peak times will prove useful in 
carrying out treatments, and may be the goal of future studies.  Such a study would 
require simultaneously measuring the T cell and the leukemia levels over time, perhaps at 
the molecular level. 
 



An important issue is whether stem cells are immunologically privileged. In principle,  
T cells are known to have the capacity of killing leukemia stem cells as evidenced by the 
success of allogeneic bone marrow transplants.  It is unknown whether the autologous 
immune response can produce similar results.  It is also possible that leukemia cells may 
down-regulate target molecules for the anti-leukemia T cells.  However, this rate is 
probably much slower than the rate of acquiring imatinib resistance.  In any case, even if 
stem cells or mutated leukemia cells were immunologically privileged, what we propose 
may still substantially delay the leukemia relapse.  Indeed, [22] and [23] show that an 
active immune response in conjunction with imatinib plays a significant role in the 
elimination of leukemia.  These papers describe experiments in which imatinib was given 
to CML patients who relapsed after allogenic bone marrow transplants, resulting in 
sustained remission.  
 
We also observe that the more demanding vaccination strategies for each patient P1, P4, 
and P12 require total doses of 2.3 k / µL , 1.0 k / µL , and 2.0 k / µL , respectively.  
These samples can be obtained from 6L ! 2.3 / 73 = 190mL , 6L ! 1.0 / 23.1 = 260mL ,  
6L ! 2.0 /116.8 = 100mL  of pre-treatment blood from P1, P4, and P12, respectively.  
Since we are only interested in collecting leukemia cells prior to imatinib treatment, these 
samples can be gathered by filtering the white blood cell component of the patient's 
blood.  For reference, we point out that one US pint is about 500mL , and this quantity of 
whole blood is routinely collected from healthy individuals.   
 
An issue that was not investigated directly in this study is the functional form of immune 
downregulation.  In our model, we chose to use the form e!cnC , i.e., an exponential decay.  
It will be difficult to conduct a sensitivity analysis with respect to the function form.  
However, as implied by the previous discussion, the functional form does not greatly 
affect outcome of vaccination strategies as long as there is very low residual 
downregulation after cancer remission.  In other words, when leukemia drops below 
remission, immune cells are no longer effectively downregulated.  Since downregulation 
is usually hypothesized to be the result of contact-dependent mechanisms or suppression 
by negative cytokine signaling, it follows that the effects of downregulation will most 
likely disappear or at least become greatly reduced once the source of downregulation is 
removed. 
 
As a final point, we note that in the Michor model leukemia relapses at 15 to 24 months 
despite continued imatinib therapy with the Michor model [6]. This results from 
imatinib’s inability to control leukemic stem cells - a conclusion of this previous work 
[6]. However, this contradicts clinical observations in imatinib-treated patients [24], who 
generally remain in remission well beyond 30-40 months. With the addition of the T cell 
response in our model, persistence of anti-leukemia T cells even at low levels prevented 
leukemia from relapsing for up to 50 months. We therefore hypothesize that anti-
leukemia T cell responses may help maintain remission under imatinib therapy. Therapy 
with imatinib (and other targeted therapies being developed) has the advantage to target 
leukemic cells more selectively than non-specific therapies such as chemotherapy and 
radiation [25].  As such, host immune function may be restored more rapidly than after 
chemotherapy, due to alleviation of leukemia-induced immune suppression. Importantly, 



normalization of host immune function, while leukemia antigens are still present, may 
optimally drive anti-leukemia immune responses. It should be noted that imatinib was 
shown to have some immunomodulatory activity in a mouse arthritis model [26]. 
 
An alternative model of CML dynamics was recently published by Roeder et al. [7].  In 
this model, stem cells exist in non-proliferating or proliferating states. The likelihood for 
a stem cell to proliferate and differentiate or to return to dormancy is determined by an 
internal mechanism, called the affinity function. After imatinib treatment, which in this 
model can target proliferating but not non-proliferating stem cells, most remaining stem 
cells are dormant, resulting in a much longer remission and a slower relapse than the 
Michor model [6].  In view of our present work, it is important to note that the model in 
[7] does not include the immune response. However, quantitative data for the non-
proliferating or proliferating states are not available.  In either case, the models do not 
significantly diverge for the first few years and our analysis focuses within this time 
period when the anti-leukemia immune response is still active.  Hence, the anti-leukemia 
immune response that we observed experimentally and modeled is consistent with both 
models.  
 
5. Conclusions 
 
The approach presented in this paper accounts for the role of the anti-leukemia specific 
immune response in the dynamics of CML.  By combining experimental data and 
mathematical models we demonstrate that persistence of anti-leukemia T cells even at 
low levels seems to prevent the leukemia from relapsing (for at least 50 months).  
Consequently, we hypothesize that anti-leukemia T cells responses may help maintain 
remission under imatinib therapy.   
 
The mathematical model together with the experimental data of [1] imply that there may 
be a feasible, low risk, clinical approach to enhancing the effects of imatinib treatment.  
These conclusions rest on the hypotheses that imatinib induces an innate immune 
response and that the patient's immune system functions alongside imatinib to sustain 
cytogenetic remission for up to several years.   
 
The mathematical modeling of experimental data provides insights, suggesting that these 
responses may play a critical role in maintaining remission. Our model suggests that 
properly timed vaccinations with autologous leukemic cells, in combination with 
imatinib, can sustain the T cell response and potentially eradicate leukemic cells. It also 
shows that vaccinations must be optimally timed in relation to host anti-leukemia T cell 
responses. A key assumption in the model is that anti-leukemia T cells can target all 
leukemic cells (including stem cells and cells that develop resistance to imatinib). Such 
an assumption is supported by the graft-versus-leukemia response of allogeneic stem cell 
transplantation [27,28] suggesting that leukemic stem cells can be eliminated by the 
immune response. Resistance to imatinib, such as via abl mutations, could render a 
leukemic cell even more susceptible to immune targeting. Even if this is not the case, the 
proposed therapeutic strategy could still potentially result with a substantial increase of 
the expected time to a relapse.  Combining imatinib with optimally timed vaccinations 



could lead to a potential cure of CML.  While cancer vaccines is not a new concept, the 
importance of optimal timing of vaccinations in relation to the underlying endogenous 
immune response (which the vaccine attempts to boost) is novel and not previously 
suggested in the field of cancer immunotherapy.  This approach may be transferable to 
other cancers, as other molecular targeted therapies become available. 
 
While it is still too early to begin human clinical trials with our novel immunotherapy 
strategies, our immediate goal is to refine and validate our model predictions with 
additional patient measurements, and only then propose a clinical trial.  There is still no 
good animal model of CML to validate our model predictions or test various vaccination 
conditions. As such, we are continuing to analyze samples from additional patients - at 
higher resolution time points guided by our results thus far.  We will particularly focus on 
patients that relapse on imatinib to study their immune responses before, during, and after 
the relapse period. Such patients are now being put on next generation molecular targeted 
drugs such as dasatinib, which will bring 80% of patients with imatinib-resistant 
leukemia back into remission.  We will analyze the immune responses in these patients.  
At all time points, we will obtain accurate measurements of the leukemia load via real-
time PCR.  This will allow us to validate our predictions for the optimal load zone. 
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Table 1: Estimates of universal parameters 
 
Parameter Description Estimate Source 
!  fractional adjustment constant 0.75 estimate 
d
0

 SC death rate 0.003! /day [6] 
d
1
 PC death rate 0.008!   

d
2

 DC death rate 0.05!   
d
3
 TC death rate !   

r
y  Growth rate for nonresistant cells 0.008 / day [6] 
a
y  Rates without imatinib treatment 1.6  
by   10  
c
y   100  
!ay  Rates during imatinib treatment a

y  / 100 [6] 
!by   by  / 750  
!cy   c

y   
r
z
 Growth rate for resistant cells 0.023 / day [6] 

a
z
 Rates for resistant cells a

y   
b
z
  by   

c
z
  c

y   
u  Mutation rate per division 4 !10

"8 / division  
k  Kinetic coefficient 1 (k / µL)!1day!1  [10,15] 
p
0

 Prob. T cell engages cancer cell 0.8 [21] 
qC  Prob. cancer cell dies from encounter 0.75  
q
T

 Prob. T cell survives encounter 0.5  
!  Duration of one T cell division 1 day [15,16] 
 
 



Table 2: Pre-treatment leukemia load  
 
Patient P1 P4 P12 
Pre-treatment leukemia load (k / µL)  73.0 23.1 116.8 
  



Table 3:  Patient data from ELISPOT assay from [1] for P1, P4, and P12: SFCs/well for 
leukemia bearing + remission PBMCs.  The measurement for time 0 corresponds to pre-
treatment leukemia bearing PBMCs.  (See Figure 2 for plots of the data points.) 
 

Time (months) 0 5 30 35 46    P1 
SFCs/well 3 29 25 25 9    
Time (months) 0 6 9 18 24 32 34 42 P4 
SFCs/well 1 16.5 33 30 26 11 15 12 
Time (months) 0 2 5 9 13 15 24 30 P12 
SFCs/well 11 42 39 71 36.5 43 5 6 

 



Table 4: Estimated ranges of patient-dependent parameters 
 
 
Parameter Description Estimate Source 
n  Average # of T cell divisions 1 < n < 8  [17] 
d
T

 Anti-leukemia T cell death rate < 0.02 / day  [18] 
s
T

 Anti-leukemia T cell supply rate ?  (k / µL) / day

 
Based on d

T
and 

patient data 
c
n

 Decay rate of immune responsivity ?  (k / µL)
!1  Based on patient 

data 
y
0
(0)  Initial concentration of leukemia stem 

cells 
?  k / µL  Based on patient 

data 
 



Table 5: Initial concentrations 
 
 
Population Value (k / µL)  Reason 
y
0
(0)  ? Determined by patient data 

y
1
(0)  ayy0 / d1  Steady state 

y
2
(0)  byy1 / d2  Steady state 

y
3
(0)  cyy2 / d3  Steady state 

z
0
(0)  0 or 10!9  Correspond to values in [6] 

z
1
(0)  a

z
z
0
/ d

1
 Steady state 

z
2
(0)  b

z
z
1
/ d

2
 Steady state 

z
3
(0)  c

z
z
2
/ d

3
 Steady state 

T (0)  s
T
/ d

T
 Steady state 

 



Table 6:  The parameters for Figure 2.  For any given d
T

, s
T

 is chosen such that the 
steady state T cell concentration, s

T
/ d

T
, coincides with the ELISPOT measurement at 

time 0, (scaled by 2500 as in Figure 2). 
 
 
 Pre-treatment leukemia load ! y

0
(0)  n  d

T
 s

T
 c

n
 

P1 73! 7.6 "10
#6  1.2 0.001 1.2 !10

"6  1 
P4 23.1! 2.4 "10

#6  2.2 0.0022 9 !10
"7  7 

P12 116.8! 1.2 "10
#5  1.17 0.007 3.08 !10

"5  0.8 
 



Table 7: Parameter estimates for inactivated leukemia cells 
 
Parameter Description Estimate 
V (0)   Presumably vaccinations begin after time 0 
q
V

 Vaccination dosage To be optimized 
t
V

 Duration of delivery 0.01 day 
s
V

 Vaccination supply rate q
V
/ t

V
t ![T

i
,T
i
+t

V
]

0 otherwise

"
#
$

 

where T
i
 are vaccination delivery times 

 
 



Table 8: Vaccination strategies for P4.  For each dosage, the timing indicates the day on 
which the first vaccination is given, and the Pacing indicates the number of days between 
subsequent vaccinations.  The Number indicates the number of vaccinations 
administered, and the final column indicates the base 10 logarithm of the minimum 
cancer concentration attained after the final vaccination.  Values of less than 10!10  
correspond to fewer than one cell in the body and denote cancer elimination 
 
 
Dose (k / µL) , (# of cells) Timing Pacing Number log10 [Min cancer load] 
0.1, 6.0 !108  233 10 5 -10.5 
1.0, 6.0 !109  240 - 1 -10.4 
 
 



Table 9: Vaccination strategies for P1 
 
 
 
Dose (k / µL) , (# of cells) Timing Pacing Number log10 [Min cancer load] 
0.1, 6.0 !108  202 5 12 -10.7 
2.3, 6.0 !1010  209 - 1 -10.2 
 
 
 



Table 10: Vaccination strategies for P12 
 
 
 
Dose (k / µL) , (# of cells) Timing Pacing Number log10 [Min cancer load] 
0.1, 6.0 !108  195 4 11 -10.1 
2.0, 1.2 !1010  199 - 1 -10.4 
 
 



Table 11: Alternative vaccination strategies for P1 
 
 
 
Dose (k / µL) , (# of cells) Timing Pacing Number log10 [Min cancer load] 
0.1, (6.0 !108 )  1-30 

300 
233 
233 

5 
5 
1 
20 

12 
12 
12 
12 

-3.3 
-6.2 
-8.0 
-5.4 

2.3, (1.4 !1010 )  1-30 
300 

- 
- 

1 
1 

-3.3 
-7.3 

 
 



Table 12: Alternative vaccination strategies for P4 
 
 
Dose (k / µL) , (# of cells) Timing Pacing Number log10 [Min cancer load] 
0.1, (6.0 !108 )  1-30 

300 
233 
233 

10 
10 
1 
20 

5 
5 
5 
5 

-3.2 
-7.6 
-6.7 
-9.4 

1.0, (1.2 !1010 )  1-30 
300 

- 
- 

1 
1 

-3.2 
-8.6 

 
 



Table 13: Alternative vaccination strategies for P12 
 
 
Dose (k / µL) , (# of cells) Timing Pacing Number log10 [Min cancer load] 
0.1, (6.0 !108 )  1-30 

300 
195 
195 

4 
4 
1 
20 

11 
11 
11 
11 

-3.1 
-5.9 
-8.3 
-5.9 

2.0, (1.2 !1010 )  1-30 
300 

- 
- 

1 
1 

-3.1 
-6.7 

 
 
 



Table 14: Overloaded vaccination strategies for P1 
 
 
Dose (k / µL)  Timing Pacing Number Allowed variability for c

n
& n  

2 ! 0.1  
0.1 

202 5 12 
2 !12  

±10%  
±10%  

2 ! 2.3  209 - 1 ±4%  
 



 
Table 15: Overloaded vaccination strategies for P4 
 
 
Dose (k / µL)  Timing Pacing Number Allowed variability for c

n
& n  

2 ! 0.1  
0.1 233 10 5 

2 ! 5  
±10%  
±12%  

2 !1.0  240 - 1 ±5%  
 



 
Table 16: Overloaded vaccination strategies for P12 
 
 
Dose (k / µL)  Timing Pacing Number Allowed variability for c

n
& n  

2 ! 0.1  
0.1 195 4 11 

2 !11  
±7%  
±8%  

2 ! 2.0  199 - 1 ±4%  
 



Table 17: Tested vaccination strategies and fraction of LHS samples that result in 
successful treatments.  (Assuming the average person has 6L of blood, the total number 
of leukemia cells needed for each vaccination strategy is (Total dosage) ! 6 !10

6µL ) 
 
 
Total 
dosage 
(k / µL)  

Dosage 
(k / µL)  

Schedule (# of 
successes)/500 

0.5 0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 

200, 205, 210, 215, 220 
200, 210, 220, 230, 240 
200, 220, 240, 260, 280 
200, 240, 280, 320, 360 
240, 245, 250, 255, 260 
240, 250, 260, 270, 280 
240, 260, 280, 300, 320 
240, 280, 320, 360, 400 

0.474 
0.490 
0.502 
0.488 
0.510 
0.514 
0.520 
0.472 

1.0 0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 

200, 205, 210, 215, 220, 225, 230, 235, 240, 245 
200, 210, 220, 230, 240, 250, 260, 270, 280, 290 
200, 220, 240, 260, 280, 300, 320, 340, 360, 380 
240, 245, 250, 255, 260, 265, 270, 275, 280, 285 
240, 250, 260, 270, 280, 290, 300, 310, 320, 330 
240, 260, 280, 300, 320, 340, 360, 380, 400, 420 
200, 210, 220, 230, 240 
240, 250, 260, 270, 280 
200 
240 

0.578 
0.622 
0.610 
0.630 
0.642 
0.616 
0.570 
0.624 
0.482 
0.532 

 
 



Table 18: Parameter ranges to be used for Latin Hypercube sampling. Also, shown are 
correlations between parameters and minimum cancer concentrations.  Correlation 
coefficients are as follows: Pearson product-moment correlation (PPMC), Spearman 
rank-order correlation (SROC) 
 
 
 Description Estimate Range PPMC SROC 
!  fractional adjustment 

constant 
0.75 0.5 to 1 -0.2152 -0.1395 

d
0

 SC death rate 0.003! /day ±25%  -0.0354 -0.0123 
d
1
 PC death rate 0.008!  ±25%  -0.0643 -0.0066 

d
2

 DC death rate 0.05!  ±25%  -0.1497 -0.0130 
d
3
 TC death rate !  ±25%  0.0206 0.0080 

r
y  0.008 / day ±25%  0.0242 0.0174 
a
y  1.6 ±25%  -0.0366 -0.0259 
by  10 ±25%  0.0372 0.0087 
c
y  

Growth rate for 
nonresistant cells 
without imatinib 
treatment 

100 ±25%  0.0419 0.0411 
!ay  a

y  / 100 Same as ay / 100  - - 
!by  by  / 750 Same as by / 750  - - 
!cy  

Rates during imatinib 
treatment 

c
y  Same as cy  - - 

r
z
 Growth rate for 

resistant cells 
0.023 / day ±25%  0.0036 0.0158 

a
z
  a

y  Same as ay  - - 
b
z
  by  Same as by  - - 

c
z
  c

y  Same as cy  - - 
u  Mutation rate per 

division 
4 !10

"8 / 
division 

±100%  -0.0156 0.0252 

k  Kinetic coefficient 1 (k / µL)!1day!1  ±25%  -0.1241 -0.1287 
p
0

 Prob. T cell engages 
cancer cell 

0.8 ±25%  -0.1328 -0.1606 

qC  Prob. cancer cell dies 
from encounter 

0.75 ±25%  0.0084 0.0105 

q
T

 Prob. T cell survives 
encounter 

0.5 ±25%  -0.0947 -0.1419 

!  Duration of one T cell 
division 

1 day 12-24 hrs 0.0676 0.0301 

n  Avg # of cell divisions 1.17 to 2.2 1 to 3 -0.4681 -0.6889 
d
T

 T cell death rate 1! 7 "10
!3 / day 1E-3 to 1E-2 0.1786 0.2523 

d
V

 Inactivated leukemia 
cell decay rate 

0.35/day Not varied - - 

s
T

 T cell supply rate 1E-5 to 1E-6 1E-5 to 1E-6 -0.0412 -0.0557 



k / µL / day  
c
n

 Decay rate of immune 
responsivity 

0.8 to 7 / day 0 to 10 0.1785 0.2623 

C(0)

 
Pre-treatment cancer 
load 

23.1-116.8 
k / µL  

20 to 200 0.1819 0.0717 

 



Captions to Figures 
 
Figure 1: A State diagram for the model (2.1)-(2.2).  (A) Cancer cells.  The parameters 
a
y , by , cy  correspond to the rates of differentiation of leukemia cells without imatinib 

treatment, whereas the parameters !ay , !by , !cy  correspond to the rates of differentiation 
under imatinib treatment.  In the case of imatinib-resistant cancer cells, the growth and 
differentiation rates in the diagram are replaced by r

z
a
z
, b

z
, c

z
.  (B) T cells. 

 
Figure 2:  Model solutions fit to data measurements for patients P1 (A), P4 (B), and P12 
(C).  The measurements of SFCs/well from [1] are scaled down by 2500 to show relative 
magnitudes and are shown as black squares.  The dashed lines show the approximate 
level of complete cytogenetic remission.  “No immune response” correspond to the 
predictions of [6].  “Leukemia” correspond to the results of our model (2.1)-(2.2). The “T 
cells” curve is obtained with our model after fitting the parameters to the experimental 
data (shown in blank squares). 
 
Figure 3: A predicted relapse when imatinib is removed at month 12.  The T cell 
response is never sufficient without imatinib and the removal of imatinib leads to full 
relapse.  (A) P1.  (B) P4.  (C) P12. 
 
Figure 4:  Solving the model equations without an imatinib treatment.  The T cell 
responses are fully suppressed and stay flat at their steady state concentrations while 
cancer grows rapidly.  (A) P1.  (B) P4.  (C) P12. 
 
Figure 5: Stimulation levels of anti-leukemia T cells versus logs of the cancer 
concentrations]{Stimulation levels of anti-leukemia T cells versus logs of the cancer 
concentrations.  Optimal loads are the cancer concentrations C  for which the perceived 
stimulus, p

0
e
!cnCC , is maximized.  Optimal load zones are the range of leukemic 

concentrations where the T cell stimulation rate is faster than the T cell death rate, i.e. 
p
0
ke

!cnCC > dT .  (A) P1.  (B) P4.  (C) P12. 
 
Figure 6:  Graphs corresponding to treatment strategy in row 1 of Table 3.2.  (A) Time 
evolution of cancer and T cell populations.  Vaccinations are delivered on days 233, 243, 
253, 263, and 273.  (B) Time evolution of the four types of leukemia cells: stem cells 
(SC), progenitors (PC), differentiated cells (DC), and terminally differentiated cells (TC). 
Concentrations are shown on a logarithmic scale. 
 
Figure 7:  (A) Scatter plot of LHS simulation results with respect to the T cell death rate, 
d
T

, and the average number of T cell divisions upon stimulation, n .  As apparent from 
the figure, the treatment outcomes are highly correlated to the values of n . (B) Scatter 
plot of LHS simulation results with respect to the immune downregulation, c

n
, and the 

fraction adjustment for cancer death rates, ! . 
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Figure 3.2
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Figure 3.3
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Figure 3.4
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