Special Joint Mathematical Biology/Applied Math Seminar

Doran Levy
Department of Mathematics, Stanford University
Tuesday Nov. 14, 2006
3:00pm in LCB 215
Modeling the Dynamics of the Immune Response to Chronic Myelogenous Leukemia

Abstract: Chronic Mylogenous Leukemia (CML) is a blood cancer with a common acquired genetic defect resulting in the overproduction of malformed white blood cells. The cause of CML is an acquired genetic abnormality in hematopoietic stem cells in which a reciprocal translocation between chromosomes 9 and 22 occurs. It is this abnormality that leads to dysfunctional regulation of cell growth and survival, and consequently to cancer. Treatment and control of CML underwent a dramatic change with the introduction of the new drug, Gleevec, which was shown to be an effective treatment available to nearly all CML patient. Nevertheless, by now it is widely agreed that Gleevec does not represent a true cure for CML, with many patients beginning to relapse despite of continued therapy. The only known treatment that can potentially cure CML is a bone-marrow (or stem-cell) transplant. In this talk we will describe our recent works in modeling the interaction between the immune system and cancer cells in CML patients. One model follows this dynamics after a stem-cell transplant. A second model follows the immune-cancer dynamics in patients treated with Gleevec. Related mathematical questions and possible exciting applications of the models will be discussed. This is a joint work with Peter Kim and Peter Lee (Hematology, Stanford Medical School).