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1 Gelfand pair

We consider a pair of finite groups G ⊃ G′.

• (G,G′) is called a Gelfand pair if for any (π, V ) ∈ Ĝ, the
dimension of G′-fixed vectors in V is at most one:

dim V G′ ≤ 1.

• Equivalently:
dimHomG′(π, 11G′) ≤ 1,

where 11G′ is the trivial representation of G′.
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The followings are equivalent:

• (G,G′) is a Gelfand pair.

• The G representation C[G/G′] is multiplicity one.

• The algebra C[G′\G/G′] is abelian (with multiplication given
by convolution).
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Gelfand’s observation:

• Suppose that there exists an anti-automorphism σ of G such
that σ(g) ∈ G′gG′ for all g ∈ G. Then C[G′\G/G′] is abelian
and consequently (G,G′) is a Gelfand pair.

Proof: for f1, f2 ∈ C[G′\G/G′], we have

f1 ? f2 = (f1 ? f2)σ = fσ
2 ? fσ

1 = f2 ? f1.
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2 Multiplicity one pair

• (G,G′) is called a multiplicity-one pair (or a strong Gelfand
pair) if for any π ∈ Ĝ, and any ρ ∈ Ĝ′, we have

dimHomG′(π, ρ) ≤ 1.

Remark: (G,G′) is a multiplicity one pair if and only if
(G×G′,∆G′) is a Gelfand pair.
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The followings are equivalent:

• (G,G′) is a multiplicity one pair.

• The G representation IndG
G′(ρ) is multiplicity one, for any

ρ ∈ Ĝ′.

• The algebra of functions on G invariant under conjugation by
G′ is commutative.
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3 Gelfand-Kazhdan criteria

• Adaptation and extension of Gelfand’s idea to various and
more general settings.

• First appeared in I.M. Gelfand and D. Kazhdan,
“Representations of the group GL(n,K), where K is a local
field”.

• We shall state a version for real reductive groups, in terms of
generalized functions.
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We consider real reductive groups, and the following class of
representations:

• smooth, Fréchet, of moderate growth, admissible and finitely
generated.

Suggested terminologies:

• smooth Harish-Chandra representations.

• CW-HC class. CW stands for Casselman-Wallach, HC stands
for Harish-Chandra.
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Let G be a real reductive group.

• Recall that there is a notion of rapidly decreasing functions
(and densities) on G.

• Denote by C−ξ(G) the space of tempered generalized functions
on G, which is the continuous dual of the space of rapidly
decreasing densities on G.

Let S1 and S2 be two closed subgroups of G, with continuous
characters

χi : Si → C×, i = 1, 2.
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(a) Assume that there is a continuous anti-automorphism τ of G

such that for every f ∈ C−ξ(G) which is an eigenvector of
U(gC)G, the conditions

f(sx) = χ1(s)f(x), s ∈ S1, and

f(xs) = χ2(s)−1f(x), s ∈ S2

imply
f(xτ ) = f(x).

Then for any two irreducible smooth Harish-Chandra
representations U∞ and V∞ of G which are contragredient to
each other, one has that

dimHomS1(U
∞,Cχ1) dim HomS2(V

∞,Cχ2) ≤ 1.
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(b) Assume that for every f ∈ C−ξ(G) which is an eigenvector of
U(g)G, the conditions

f(sx) = χ1(s)f(x), s ∈ S1, and

f(xs) = χ2(s)−1f(x), s ∈ S2

imply
f = 0.

Then for any two irreducible smooth Harish-Chandra
representations U∞ and V∞ of G which are contragredient to
each other, one has that

dimHomS1(U
∞,Cχ1) dim HomS2(V

∞,Cχ2) = 0.
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4 Main results

Let (G, G′) be one of the following five pairs of classical Lie groups:

(GLn(R),GLn−1(R)), (GLn(C),GLn−1(C)),

(O(p, q), O(p, q − 1)), (On(C), On−1(C)), (U(p, q), U(p, q − 1)).

Theorem A: (G,G′) is a multiplicity one pair.
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Remarks:

• Theorem A and its p-adic counterpart have been expected (by
Bernstein and Rallis) since the 1980’s.

• For general linear groups, Theorem A is independently due to
Aizenbud and Gourevitch.

• Earlier results on Gelfand pairs by Aizenbud, Gourevitch and
Sayag, and by van Dijk.

• The p-adic counterpart of Theorem A was proved in [AGRS,
2007] by Aizenbud, Gourevitch, Rallis and Schiffmann.



Multiplicity one 14

'

&

$

%

Theorem B: Suppose that f ∈ C−∞(G) satisfies

f(gxg−1) = f(x), ∀ g ∈ G′.

Then we have
f(xσ) = f(x),

where σ is the anti-involution of G given by

xσ =





xt, G general linear,

x−1, G orthogonal,

x̄−1, G unitary.



Multiplicity one 15

'

&

$

%

5 A uniform set-up

(A, τ): a (semisimple) commutative involutive algebra over R.

E: a hermitian A-module, with its isometry group U(E).

Every simple (A, τ) is isomorphic to

(R, 1), (C, 1), (C, ), (R× R,↔), (C× C,↔).
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Its hermitian A-module is isomorphic to

(Rp+q, 〈 , 〉O(p,q)), (Cn, 〈 , 〉O(n)), (Cp+q, 〈 , 〉U(p,q)),

(Rn ⊕ Rn, 〈 , 〉R,n), (Cn ⊕ Cn, 〈 , 〉C,n).

The group U(E) is isomorphic to

O(p, q), On(C), U(p, q), GLn(R), GLn(C).
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Introduce Ǔ(E) (an extension of U(E) of index two):

{1} → U(E) → Ǔ(E)
χE→ {±1} → {1}.

Elements of Ǔ(E) ⊂ GLR(E)× {±1} consist of pairs (g, δ) such
that either

δ = 1 and g ∈ U(E),

or
δ = −1, g is conjugate linear and anti-isometry.

Remark: The group Ǔ(E) appeared implicitly in the work of
Moeglin, Vigneras and Waldspurger (which established p-adic
Howe correspondence, for p 6= 2).
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Ǔ(E) acts on U(E) by

(g, δ)x := gxδg−1,

and on E by
(g, δ)v := δgv.

We will show

C−∞χE
(U(E)× E) = 0.
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It may be derived from the Lie algebra version:

C−∞χE
(u(E)× E) = 0.

By a result of Aizenbud and Gourevitch, it suffices to show

C−ξ
χE

(u(E)× E) = 0.
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6 Reduction of support to the null set

and within the null set

NE ⊂ u(E): the cone of nilpotent elements.

The null cone of E:

ΓE := {v ∈ E | 〈v, v〉E = 0}.
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Proposition: Assume that A is simple, sdimA(E) ≥ 1, and for all
commutative involutive algebra A′ and all hermitian A′-module E′,

sdimA′(E′) < sdimA(E) implies C−ξ
χE′

(u(E′)× E′) = 0.

Then every f ∈ C−ξ
χE

(u(E)× E) is supported in (z(E) +NE)× ΓE .

Idea: Harish-Chandra, and also Jacquet and Rallis. Our set-up
and formulation make the argument easier.
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Let
NE = N0 ⊃ N1 ⊃ · · · ⊃ Nk = {0} ⊃ Nk+1 = ∅

be a filtration of NE by its closed subsets so that each difference

Oi := Ni \ Ni+1, 0 ≤ i ≤ k,

is a U(E)-adjoint orbit.
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Proposition: Assume that A is simple, sdimA(E) ≥ 1, and that
every element of C−ξ

χE
(u(E)× E) is supported in (z(E) +Ni)× ΓE ,

for some fixed 0 ≤ i ≤ k. Then every element of C−ξ
χE

(u(E)× E) is
supported in (z(E) +Ni+1)× ΓE .

This is complicated, and is at the heart of the matter.
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7 In the null cone: the easier part of

reduction

Definition: A submanifold Z of a pseudo Riemannian manifold M

is said to be metrically proper if for all z ∈ Z, the tangent space
Tz(Z) is contained in a proper nondegenerate subspace of Tz(M).

Lemma: Let Z be a metrically proper submanifold of M , and let
∆ be a Laplacian type differential operator on M . Then if
f ∈ C−∞(M) is supported in Z and is annihilated by some power
of ∆, then f = 0.
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Remarks:

• Notion first appeared in Jiang-Sun-Zhu (Archimedean
uniqueness of the Ginzburg-Rallis models).

• Upshot: Laplace type operators are transversal to any
metrically proper submanifold.

• Lemma may be viewed as a form of uncertainty principle.
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Denote
s := su(E).

We shall view s as a non-degenerate real quadratic space via the
real trace form. Note that the null cone NE is contained in the null
cone of s as a real quadratic space.

Lemma: Let O ⊂ NE be a nilpotent orbit which is not
distinguished, i.e., it commutes with a nonzero semisimple element
of s. Then O is metrically proper in s.
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Proof of reduction for non-distinguished nilpotent orbits:

• The partial Fourier transform Fs (along s) commutes with the
action of Ǔ(E) on C−ξ(s× E);

• Every element f of C−ξ
χE

(s× E) is supported in Ni × ΓE , so is
Fs(f);

• Some positive power of the partial Laplacian ∆s annihilates f ;

• Its restriction f̄ to Oi × ΓE (open in Ni × ΓE) must be zero, by
the metrical properness of Oi and the associated lemma.
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8 In the null cone: exploiting the

“extra” symmetry, a la [AGRS]

For x ∈ s, one can associate a closed subset E(x) ⊂ E, which has
the following properties.

Fact 1: If every element of C−ξ
χE

(s×E) is supported in Ni × ΓE for
some i, then its support must be contained in

(Ni+1 × ΓE) ∪ (
⊔

e∈Oi

{e} × (E(e) ∩ ΓE)).

Fact 2: For e nilpotent and v ∈ E(e), we have

〈ejv, v〉E = 0, for j > 0.
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Remark: this says that for the open part Oi of Ni, the Lie algebra
and vector components of the support must satisfy additional
constraints.

Moral: as a guiding principle, one should do reduction to the joint
null cone, rather than NE × ΓE . The joint null cone satisfies
additional conditions such as

〈ejv, v〉E = 0, for j > 0.
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9 In the null cone: the eigenvalue

bound on s× E

For a nilpotent orbit O ⊂ NE , denote by

Vs×E,O ⊂ C−ξ(s× E;O × E)U(E)

the subspace consisting of those f such that the supports of both f

and its partial Fourier transform FE(f) (along E) are contained in
⊔

e∈O
{e} × (E(e) ∩ ΓE)

This is the piece that we wish to drop!
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The key is the following

Proposition: Assume that A is simple, sdimA(E) ≥ 1, and O is
distinguished. Then the Euler vector field εs acts semisimply on
Vs×E,O, and all its eigenvalues are real numbers < − 1

2 dimR s.

This implies reduction for distinguished nilpotent orbits, as follows.
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• Vs×E,Oi is a module for the standard triple

εs +
1
2

dimR s, −1
2
qs,

1
2
∆s.

• Eigenvalue bound + sl2 theory imply the injectivity of

∆s : Vs×E,Oi → Vs×E,Oi .

• If every element f of C−ξ
χE

(s×E) is supported in Ni × ΓE , then
some positive power of the partial Laplacian ∆s annihilates f .

• Its restriction f̄ to Oi × ΓE (open in Ni × ΓE) belongs to
Vs×E,Oi

.

• f̄ = 0, by injectivity of ∆s on Vs×E,Oi .
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10 How to achieve the eigenvalue bound

of εs

We work in a real quadratic space F . For two closed subsets Z1 and
Z2, denote by C−ξ(F ;Z1, Z2) the space of all f ∈ C−ξ(F ) such that

• f is supported in Z1, and

• FF (f) is supported in Z2.

This is a module for the Weyl algebra of F .
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For a nilpotent element e ∈ NE , define

VE,e := C−ξ(E; E(e) ∩ ΓE , E(e) ∩ ΓE)Z(E).

Let h, e, f be a standard triple, i.e.,

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h.
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The eigenvalue bound on εs = εs,I on Vs×E,O is implied by

• the following eigenvalue bound of εE,h on VE,e, and

• an (rather easy) eigenvalue bound of εsf ,I−ad(h/2) on
C−ξ(sf ; {0}).

Proposition: Assume that e is distinguished. Then the vector
field εE,h acts semisimply on VE,e, and all its eigenvalues are
nonnegative integers.
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The proof of the final proposition depends on

• classification of distinguished nilpotent orbits;

• rigidity properties of certain Weyl algebra modules
C−ξ(F ;Z1, Z2); in particular,

• an explicit basis of C−ξ(F ;F ′, F ′), where dimR F = 2r and F ′

is a totally isotropic subspace of dimension r.
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11 Summary of approach

• Reduction to the null sets, analogous to Harish-Chandra’s
method of descent.

• Reduction for nondistiguished nilpotent orbits, by tranversality
reasons.

• Reduction for distinguished nilpotent orbits, by rigidity and
representation theoretical reasons (use of sl2 triple).
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Similar (in spirit) to

• Harish-Chandra’s proof of regularity of invariant
eigendistributions.

(C.f. work of Atiyah-Schmid, Varadarajan, Wallach)

• AGRS’s proof of p-adic multiplicity one theorems.
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Thank you !


