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Introduction '

Discuss the unitarity of minimal principal series

of Mp(2n) and SO(n+ 1,n).

Genuine
complementary series <
of Mp(2n)

Complementary series
of SO(n+1,n)

Union of spherical
complementary series
of certain orthogonal groups




‘ PART 1'

Genuine Complementary Series of Mp(2n)

Genuine
complementary series
of Mp(2n)

Complementary series
of SO(n+1,n)

Union of spherical
complementary series
of certain orthogonal groups




‘ NOTATION '

G := Mp(2n) | the connected double cover of Sp (2n, R)

K:=U (n) | the maximal compact subgroup of G
={lg,21 € U(n) x U(1): det(g) = 27}

go = o @ po

ap := maximal abelian subspace of pg

M = ZK(Clo)

A(go,a0) = {ex e tpi=1..n U {26k} p=1..n type C,

W ~ S, X (Z/2Z)" all permutations and sign changes




‘ The group M and its genuine representations.

M = Zk(ag)| subgroup of K generated by the elements

my = [diag(l,...,1,—kl,1,...,1), i],kzl...n (of order 4)

Genuine M-types| Irreducible repr.s § of M s.t. 6([1,—1]) # +1.

0

my = |I,—1| — each generator my acts by +2
Subsets S C {1...n} k= | 8 k y

S keeps track of which generators act by —i

+2 otherwise 0{2,3y || +1

(55(mk) —




An action of the Weyl group on genuine M -types.

W acts on M« (84 - 0)(m) :=06(c'mo,) Vme M,Vae A

The stabilizer of § in Wis |[W° :={w €€ W: w-6 ~ 6§} |

For all S C {1,...,n}, set ¢ =S|, p=|5¢|.
e Wi ~ W (Cp) X W(Cy) « 53¢, &5c e, k,1in S or S©
o W85 = {67+ |T| = g, |T"| = p}

W -orbits of genuine M-types «~ pairs (p,q): p,q € Nyp+qg=n

| | +1 itk <p
Pick representatives 09 := dgpy1  py. 0P 9(my) =
— if k> p.




The group K and its genuine representations.

Maximal compact subgroup of G: | K = U (n)

parameterized by highest weight (aq,...,

Genuine K-types

with a1 > a2 > --- > a,, and ajGZ—F%,

highest weight restriction to M
— 1y W . 5P

fine K-types
AP(C™) @ det™1/? (3093 =5

\ .
~" ~"

p q

o If we restrict a fine K-type to M, we get one full W-orbit in M

e Each genuine M-type 0 is contained in a unique fine K-type Ls.




Genuine Complementary Series of Mp(2n) I

M A = Levi factor of a minimal parabolic
0:= genuine irreducible representation of M
v:= real character of A

P = M AN:= a minimal parabolic making v weakly dominant.

Minimal Principal Series |Ip(d,v) :=Ind% (0 @ v ® 1)

Langlands Quotient | J(6,v) |:= composition factor of Ip(d,v) D us

d-Complementary Series | CS(G,9) :={v € ag | J(J, V) is unitary}

Problem: Find CS(Mp(2n),6P:9)




‘ THEOREM 1'

Theorem 1: For all v € ag, write v := (vP|v?). The map:

CS(Mp(2n),6P?) — CS(SO(p + 1,p)o, 1) x CS(SO(q +1,9)o, 1)
vi— (VP v9)

is a well defined injection. (1 denotes the trivial M -type)

Spherical complementary series of real split orthogonal groups are
known (Barbasch). Hence this theorem provides explicit necessary

conditions for the unitarity of genuine principal series of Mp(2n).




Example: CS(Mp(6),5%t) — CS(SO(3,2)p,1) x CS(SO(2,1)q,1)

12 Resn
[ ]

C'S(SO(3,2)0,1)

C'S(SO(2,1)0,1)

= CS(Mp(6),5*") embeds into:




‘ A reformulation of THEOREM 1 .

For all p, g € N s.t. p+ ¢ = n, set:

G%"" = SO(p+ 1,p)o X SO(q+ 1,q)o

and note that W (G%"") = W™,

connected real split group whose root system 1is

dual to the system of good roots for oP1.

Theorem 1: The 6P*9-complementary series of Mp(2n)
embeds into the spherical complementary series of G% .

Proof: based on Barbasch’s idea to use calculations on petite

K-types to compare unitary parameters for different groups.




‘ Comparing unitary parameters for Mp(2n) and G°"* I

J (6P v) unitary for Mp(2n)

617:‘1

J(1,v) unitary for G
! !
T(M? 5p,q7 V) A(¢7 1’ V)

pos. semidefinite

Vi € o

0
Ay, 1,v)

pos. semidefinite

—_—

Vi) € WoP? relevant

pos. semidefinite

V,LLE[A{




A matching of operators.

Key Proposition:

V relevant WO “-type 1, 3 a “petite” K-type u s.t.
?(“,577"1’1/2 — 14("70719’/2

~"

operator for Mp(2n) operator for GoP 1

Sketch of the proof:
o T'(u,oP 4 v)is defined on Homp;(p, 6P9)
e This space carries a representation 1, of Wo" «— = W (G°"")
Attached to v, 3 a spherical operator A(¢,,1,v) for GO
If 11 is petite, T'(u, 07, v) = A(Yy, 1,v)

For all ¢ € W relevant, 4 u € K petite such that ¢ = 1,.[]




A matching of relevant W% “-types with petite K-types'

((p—s) X (s)) ® triv

(p — s,8) Q triv

triv® ((g—1r) X (r))

triv® (q —r,r)




J(0P-4, v) unitary for Mp(2n) J(1,v) unitary for (57

11 )
T(p1, 6, v) A, 1,v)

pos. semidefinite pos. semidefinite

Vi e K Vip € W6

I [
T(p, 64, v) Ay, 1,v)
pos. semidefinite pos. semidefinite

Vu € K petite Vi) € WP relevant

Vi € o relevant, 3 p € K petite s.t. A(y, 1, v)=T"(y, 677, 1))




‘ Non-unitarity certiﬁcates.

Let GO = SO(p+1,p)o x SO(q + ¢, q)o. For all v = (vP|v9):

J (679, v) unitary for Mp(2n) ==> J(1,v) unitary for G° .

The spherical unitary dual of split orthogonal groups s known. So

we get non-unitarity certificates for genuine L.Q.s of Mp(2n).

Theorem 1°: If
e the spherical L.Q. J(1,vP) of SO(p + 1,p)o is not unitary, or
e the spherical L.Q. J(1,v7) of SO(q+ 1, q)o is

not unitary

then the genuine L.Q. J(6P9, (vP|v?)) of Mp(2n) is also not unitary.




An example of non-unitarity certiﬁcate.

Let v = (v1,...,v,). We may assume:

v, > ---21,>0 and vy > 2>, >0,

by W -invariance. (Recall W°"" =W (C,) x W(C,).)

If any of the following conditions holds:
v, > 1/2
Vn > 1/2
Vg — Vg+t1 > 1, for some a with 1 <a <p-—-1, or
Vg — Vg4+1 > 1, for some a withp+1<a<n-—1

then the genuine Langlands quotient J(079,v) of Mp(2n) is

not unitary.




‘ An application.

This non-unitarity certificate is a key ingredient in the classification

of the w-regular unitary dual of Mp(2n).

Definition: A representation of Mp(2n) is called w-regular if its
infinitesimal character is at least as regular as the one of the

oscillator representation.

Corollary: The only w-reqular complementary series repr.s of

Mp(2n) are the two even oscillator representations:
T (om (n=2,.. .2, 1)) and J (Snos(n—1,...,2 1))
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‘ NOTATION '

G :=S0(n+1,n)

K == S(O(n + 1) x O(n))

A(go,ag) = {xer L}t U{xer} type B,

W ~ S, X (Z/272)" «—

maximal compact

dual to previous

case

same Weyl group

as before

M = Zk(ag) |= {diag(1,t,, ..

.,tl,tl,...,tn)I tj ::El, V]}




‘ M-types I

is generated by the elements

my, = diag(1,...,1, —1 ,1,...

n+2—k
k=1...n

M-types Subsets S C {1...n}

same parametrization

as before

The set S keeps track of which generators act by —1:

—1 ifkesS

+1 otherwise

ds(my) =

50(4, 3) ma

0f2,3} | +1




W -orbits of M-types.

Just like before, we look at the action of W on M. Then

salne as

W(SS = W(Bp) X W(BCI) ) for q = |S|7 P = ‘SC| —

before

o W.ds={0r:|T|=gq, |T°| =p}

e | W-orbits of M-types «~ pairs (p,q): p,¢ € Nyp+qg=n
I

same parametrization as before

Pick representatives o7 := 0yp4q




‘ K-types (n e’ven)l

K=S50OMm+1) xO(n)), n even

(@1,...,an;by,...,bn) with a;, b; € Z, Vj and
2

K-types

ar>-->an >0;by > >bn >0.

2

2

If bn = 0, there is also a sign e = £1.
2

Fine K-types

realization

res. to M

0,...,0;1,...,1,0,...,0;+)
N—_——’

triv @ AIC™

W - §Pa

triv @ A%C”

W . §p:a

triv @ AIC™

W - §P+4




K-types (n odd)I

K=50(n+1) x0O(n)), n odd

(@1,...,an415b1,...,bp—1) With a;, b; € Z, ¥V j and
2 2

K-types| a1 > - > ant1 >0;01 > --->bp_1 >0.

2 2
If any1 =0, there is also a sign € = £1.
2

Fine K-types realization || res. to M

001,010, ...,0;4) | triv @ AICT || W 6P
N——

triv @ AIC™ W . P-4




‘ Complementary Series of SO(n + 1,n) I

M A: Levi factor of a minimal parabolic

56]/\4\

vV E ap

P = M AN:= a minimal parabolic making v weakly dominant.

Minimal Principal Series | Ip(4,v)

Langlands Quotient | J (4, 1)

d- Complementary Series |CS(SO(n + 1,n),0)={v|J (4, v) unitary}

Problem: Find CS(SO(n+ 1,n),6P9)




THEOREM 2 '

Theorem 2: For all v € af, write v := (vP|v?). The map:

CS(SO(n+1,n),579) — CS(SO(p + 1,p)o, )xCS(SO(q + 1, )0, 1)

vi— (VP v9)

is a well defined injection. (1 denotes the trivial M -type.)
1

same embedding as before




‘ A reformulation of THEOREM 2 .

Salne as

Set: |G = SO(p+1,p)o X SO(q+1,q)o

before

and note that W (G%"") = W™,

connected real split group whose root system 1is

G(spaq -

equal to the system of good roots for oP:4.

Theorem 2: The dP9-complementary series of SO(n + 1,n)

embeds into the spherical complementary series of G .

5p,q

Proof: based on a matching of relevant W-types for G° = with

petite K-types for SO(n+ 1,n).




A matching of relevant W% “-types with petite K-types'

Recall that W = W (B,) x W(B,) and K = S(O(n+1) x O(n)).

((p—s) X (5)) Q triv AS(C™TH) @ ATts(C™)

an irreducible submodule of
triv @ [A*(C") ® A1T5(C™)]
triv® ((g—r) X (r)) AT(C"T) @ AT77(CT)

an irreducible submodule of

triv® [AT(C") Q@ AT~ (C™)]

(p — s,8) Q triv

triv® (q —r,r)
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CS(Mp(6), 6*") CS(SO(4,3), )

- -
Theor. 1 Theor. 2

CS(S04(3,2),1) x CS(SO4(2,1),1)

Are these “proper containments” or “equalities”?

Are the L.QQ.s JMp(6)(52’1, v) and JSO(4,3)(52’1, v) unitary for all
points v of the unit cube and all points v of the 8 line segments?




Unitarity of Jy;,6)(6%",v) for v in the unit cube

Theorem.The Langlands quotient J(6,v) of Mp(2n) is unitary
for all v in the unit cube {z € ag | 0 < |z;| < 1/2, Vj}.

Proof. Note that:
e For v = 0, all the operators T'(u, d, v) are positive definite.

e The signature of T'(u,d, ) can only change along the
reducibility hyperplanes:
(v,8) € 2Z+1  for some root 3 which is good for &
(v,8) € 2Z\ {0} for a root 8 which is bad for §.
e Away from these hyperplanes, I(9,v) is irreducible (= J(6,v)),

and the operators T'(u, d,v) have constant signature. In
particular, J(J,v) is unitary throughout the unit cube. [




Unitarity of JMp(6)(52’1,V) for v = (_ 1

Theorem.The repr. J(0P9,v) of Mp(2n) is unitary Vv=(vP|v?) s.t.
e v € CS(SO(p+1,p)o, 1), with 0 < |a;| <3/20r a; € Z+ 5
e 1€ CS(SO(q+1,9)o,1), with 0 < |a;| < 3.

— q
Proof. Let P; be a parabolic with My Ay := Mp(2p) X (GL(l, ]R))

By double induction, J (679, v) is the Langlands quotient of
I(v9) := Indy P ((J(8P0,0P) © 6% @ 1T @ 1) .

Here J(6PY, vP) is a pseudopsherical repr. of Mp(2p). By results of
ABPTV, J(6PY vP) is unitary VP € CS(SO(p + 1p)g, 1). Then
the repr. I(v?) of Mp(2n) is unitary at v9=0 (unitarily induced).
For all v of interest, I(v?) is irreducible, hence it stays unitary by

the principle of unitary deformation. [J




Corollary I

CS(Mp(6), 8*") < > CS(SO(4,3), 6*")
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CS(SO,(3,2),1) x CS(SO,(2,1),1)




More generally. .. I

For all n < 4 and for all 6 = dP°9, the following equalities hold:

CS(Mp(2n), oP49) > CS(SO(n+1,n), oP9)

N




‘ PART4'

A natural conjecture

CS(Mp(2n), oP9) |©

X
\

4

FEqualities hold for all n

and all choices of P14

> CS(SO(n+1,n), oP9)

‘/

CS(SOu(p+1,p),1) x CS(SO,(g+1,9),1)




‘ Conjectures 1 and 2.

CS(Mp(2n), oP9) CS(SO(n+1,n), oP9)

Y. ~
v Conj.1 Conj.2 -
C . C C /,’ C
Theor. 1 e Theor. 2

CS(SOo(p+1,p), 1) x CS(SO(g+1,9),1)

Remark. We may assume p > ¢, because
® JMp(Zn)<5p’qa (Vp|Vq)) — JMp(Qn)wq’p: <Vp‘Vq))*

¢ JSO(n+1,n) <5p,q7 (Vp|Vq)) — JSO(n—I—l,n) (5q,p’ <Vq‘yp)) X X




‘ (More) evidence for these conjectures'

The case (p,q) = (n,0)

If (p,q) = (n,0), the conjectures hold for all n. This is the
pseudospherical case for Mp(2n) and the spherical case for

SO(n+ 1,n). (For Mp(2n), the result is due to ABPTV; for
SO(n + 1,n), it is an empty statement.)

A large family of examples

Assume p > q. The conjectures hold for all v = (pP|v9) with

* pP = (p — %,p — %, el %, %) = the infinitesimal character of

the trivial representation of SO(p + 1, p)o,

* v1e CS(SO(q+1,q9),1).




‘ PART 5'

( NEXT

CS(Mp(2n), 8P9) «------->CS(SO(n+1,n), 59

L ~
. Conj. 1 Conj.2 -
g N g g /,’ g
Theor. 1 AN 7 Theor. 2




Conjecture 3 I

For all n and all choices of 0P°4:

CS(Mp(2n),6P1) =CS(SO(n+1,n),6P9).

Conjecture 3

CS(Mp(2n), oP9) < -5~ 7 GS(S0(n+1,n), 679)

Y. P
. Conj. 1 Conj.2 -
g N g g /,’ g
Theor. 1 AN L Theor. 2

CS(SOo(p+1,p),1) X CS5(SO,(g+1,9),1)

e Conjecture 3 is true for n = 2, 3, and 4.

e Conjecture 3 is independent of Conjectures 1 and 2.




‘ 0-correspondence I

Consider G = Sp(2n,R), G' = O(m +1,m) C Sp(2n(2m + 1), R).
Let G and G’ be their preimages in Mp(2n(2m +1)):
G = Mp(2n) G’ = O(m +1,m) linear cover.
e (G,G")is a dual pair in Sp(2n(2m+1),R)

e The O-correspondence gives a bijection between certain genuine

irreducible representations of G and G'.

We can re-interpret this correspondence as a map:

L e

me Mp(2n), <« 7 € SO(m-+1,m).

gen




‘ Some results of Adams, Barbasch and Li.

For all kK > 0, let pk:(k — %, e %) . The 6-correspondence maps:

JMp(zn)(CSp’q, V) — JSO(n+k+1,n+k)(5p+k’qa (pr|v))

JMp(2n+2k)(5p+k’qa (Prlv)) < JSO(n+1,n)(5p’qa V)

for all p > q.
If £ > n+ 1, both arrows preserve unitarity. (Stable Range)

Remark: If k=0, the correspondence

JMp(Zn) <5p,q’ V) — JSO(n+1,n) (5p,q’ V)

1$ not known to preserve unitarity.

Conj.3 || Jyrpan) (09, v) unitary J50(n+1.n) (0P, V) unitary




THEOREM 3 '

Theorem 3: Conjecture 3 holds in each of the following cases:

(¢) Conj.s A1 & A2 hold (72) Conj.s Al & B1 hold
(22¢) Conj.s A2 & B2 hold (7v) Conj.s B1& B2 hold.

(Pnt2|v) € CS(Mp(4n + 4), 6P+ +29)
Conjecture A Conj. A1 A I Cony. A2
v e CS(Mp(2n),6P9)

(pna2lv) € CS(SO(2n + 3,2n + 2), fPTn+24)

Conjecture B Cony. B1 1 I Conjy. B2
v e CS(SO(n+1,n),6P19)




THEOREM 3 (a sketch of the proof) I

The idea of the proof is similar to the one in ABPTYV.
We show that:

Conj. B2 or A1

Conj.B1 or A2

Key ingredients:

e Results on f-correspondence (Adams, Barbasch, Li, Przebinda).

e Non-unitarity certificates for both Mp(2n) and SO(n + 1,n).




Jrip(2n) (0774, V) unitary Jso(n+1,n) (079, V) unitary

Js0(2n+3,2n+2)(0P9,(p"+2]v)) unit.

<
N
Q
X
&

JMp(Zn)(ép'q,V) un |t.




Jrip(2n) (0774, V) unitary Jso(n+1,n) (079, V) unitary

Low Rank (Howe)

Js0@n+3,2n+2) (079, (pn+2|v)) unit.

A 44
;!
;1!

by non-unitary
certificates for Mp(2n) ' &
/ Ql

/

//Q.JCO/

/B/

rD/

o

4
/

Jso(n+1,n)(079,v) unit.

by non-unitary
certificates for SO(n+1,n)




‘ Conclusions .

Conj. A or Conj.B

CS(Mp(2n), >9) < -3~ 7> CS5(S0(n+1,n), 6>9)

Y hl
. Conj. 1 Conj.2 -
C W C C /,’ C
Theor. 1 AN L7 Theor. 2

CS(SOu(p+1,p),1) x CS(SO,(g+1,9),1)

e Conj. 1 = Conj. A.
e Conj. 2 = Conj. B.

If either Conj. 1 (alone) or Conj. 2 (alone) holds,

then the 3 parameter sets are all equal.




