Complementary Series of Split Real Groups

Alessandra Pantano

joint with Annegret Paul and Susana Salamanca-Riba

(some of the techniques used are joint work with D. Barbasch)

$$CS(Mp(6), \delta^{2,1}) \longleftrightarrow CS(SO(4,3), \delta^{2,1})$$

$$= \bigcup_{15 \text{ os} \text{ o$$

Salt Lake City, July 2009

Introduction

 \mathbf{Aim}

Discuss the unitarity of minimal principal series of Mp(2n) and SO(n+1,n).

Genuine Complementary Series of Mp(2n)

NOTATION

- G := Mp(2n) the **connected double cover** of $Sp(2n, \mathbb{R})$
- $K := \widetilde{U}(n)$ the **maximal compact** subgroup of G= $\{[g, z] \in U(n) \times U(1) : \det(g) = z^2\}$
- $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$
- $\mathfrak{a}_0 := \text{maximal abelian subspace of } \mathfrak{p}_0$
- $\bullet \quad M := Z_K(\mathfrak{a}_0)$
- $\Delta(\mathfrak{g}_0,\mathfrak{a}_0) = \{\pm \epsilon_k \pm \epsilon_l\}_{k,l=1...n} \cup \{\pm 2\epsilon_k\}_{k=1...n}$ type C_n
- $W \simeq S_n \ltimes (\mathbb{Z}/2\mathbb{Z})^n$ all permutations and sign changes

The group M and its genuine representations

 $M = Z_K(\mathfrak{a}_0)$ subgroup of K generated by the elements

$$m_k = \left[\operatorname{diag}(1, \dots, 1, -1, 1, \dots, 1), i \right], k = 1 \dots n \text{ (of order 4)}$$

Genuine M-types | Irreducible repr.s δ of M s.t. $\delta([I,-1]) \neq +1$.

Subsets $S \subset \{1...n\}$ $m_k^2 = [I, -1] \to \text{each generators } m_k \text{ acts by } \pm i$ $S \text{ keeps track of which generators act by } \vdots$

$$\boldsymbol{\delta_S(m_k)} = \begin{cases} -i & \text{if } k \in S \\ +i & \text{otherwise} \end{cases} \qquad \frac{Mp(6)}{\delta_{\{2,3\}}} \begin{vmatrix} m_1 & m_2 & m_3 \\ +i & -i & -i \end{vmatrix}$$

An action of the Weyl group on genuine M-types

W acts on
$$\widehat{M} \leftarrow (s_{\alpha} \cdot \delta)(m) := \delta(\sigma_{\alpha}^{-1} m \sigma_{\alpha}) \quad \forall m \in M, \forall \alpha \in \Delta$$

The **stabilizer** of δ in W is $W^{\delta} := \{w \in W : w \cdot \delta \simeq \delta\}$.

For all $S \subset \{1, ..., n\}$, set $q = |S|, p = |S^c|$.

- $W^{\delta_S} \simeq W(C_p) \times W(C_q) \leftarrow s_{2\epsilon_k} \& s_{\epsilon_k \pm \epsilon_l}, k, l \text{ in } S \text{ or } S^C$
- ullet $W \cdot \delta_S = \{\delta_T \colon |T| = q, \, |T^c| = p\}$

W-orbits of genuine M-types \iff pairs $(p,q): p,q \in \mathbb{N}, p+q=n$

Pick representatives
$$\delta^{p,q} := \delta_{\{p+1,\dots,n\}}$$
. $\delta^{p,q}(m_k) = \begin{cases} +i & \text{if } k \leq p \\ -i & \text{if } k > p. \end{cases}$

The group K and its genuine representations

Maximal compact subgroup of G: K = U(n)

$$K = \widetilde{U}(n)$$

Genuine K-types

parameterized by highest weight (a_1, \ldots, a_n) with $a_1 \geq a_2 \geq \cdots \geq a_n$ and $a_j \in \mathbb{Z} + \frac{1}{2}, \forall j$

fine K -types	highest weight	restriction to M
$\Lambda^p(\mathbb{C}^n)\otimes \det^{-1/2}$	$\underbrace{(\frac{1}{2},\ldots,\frac{1}{2},\underbrace{-\frac{1}{2},\ldots,-\frac{1}{2}}_{q})}_{p}$	$W\cdot \delta^{p,q}$

- If we restrict a fine K-type to M, we get one full W-orbit in M
- Each genuine M-type δ is contained in a unique fine K-type μ_{δ} .

Genuine Complementary Series of Mp(2n)

- MA := Levi factor of a minimal parabolic
- $\delta := genuine$ irreducible representation of M
- ν := real character of A
- P = MAN := a minimal parabolic making ν weakly dominant.

Minimal Principal Series
$$I_P(\delta, \nu) := \operatorname{Ind}_P^G(\delta \otimes \nu \otimes 1)$$

Langlands Quotient
$$J(\delta, \nu) := \text{composition factor of } I_P(\delta, \nu) \supseteq \mu_{\delta}$$

$$\underline{\delta\text{-}Complementary Series} \quad CS(G, \delta) := \{ \nu \in \mathfrak{a}_{\mathbb{R}}^* \mid J(\delta, \nu) \text{ is unitary} \}$$

Problem: Find $CS(Mp(2n), \delta^{p,q})$

THEOREM 1

Theorem 1: For all $\nu \in \mathfrak{a}_{\mathbb{R}}^*$, write $\nu := (\nu^p | \nu^q)$. The map:

$$CS(Mp(2n), \delta^{p,q}) \to CS(SO(p+1, p)_0, 1) \times CS(SO(q+1, q)_0, 1)$$

$$\nu \mapsto (\nu^p, \nu^q)$$

is a well defined injection. (1 denotes the trivial M-type)

Spherical complementary series of real split orthogonal groups are known (Barbasch). Hence this theorem provides explicit necessary conditions for the unitarity of genuine principal series of Mp(2n).

Example: $CS(Mp(6), \delta^{2,1}) \to CS(SO(3,2)_0, 1) \times CS(SO(2,1)_0, 1)$

 $\overline{CS}(SO(3,2)_0,1)$

 $CS(SO(2,1)_0,1)$

 $\Rightarrow CS(Mp(6), \delta^{2,1})$ embeds into:

A reformulation of THEOREM 1

For all $p, q \in \mathbb{N}$ s.t. p + q = n, set:

$$G^{\delta^{p,q}} \equiv SO(p+1,p)_0 imes SO(q+1,q)_0$$

and note that $W(G^{\delta^{p,q}}) = W^{\delta^{p,q}}$.

Theorem 1: The $\delta^{p,q}$ -complementary series of Mp(2n) embeds into the spherical complementary series of $G^{\delta^{p,q}}$.

Proof: based on Barbasch's idea to use calculations on petite K-types to compare unitary parameters for different groups.

Comparing unitary parameters for Mp(2n) and $G^{\delta^{p,q}}$

A matching of operators

Key Proposition:

$$orall \ relevant \ W^{\delta^{p,q}}$$
-type $\psi, \ \exists \ ext{a} \ ext{"petite"} \ extit{K-type μ s.t.}$ $\underline{T(\mu, \delta^{p,q},
u)} = \underbrace{A(\psi, 1,
u)}_{operator \ for \ Mp(2n)} = \underbrace{A(\psi, 1,
u)}_{operator \ for \ G^{\delta^{p,q}}}$

Sketch of the proof:

- $T(\mu, \delta^{p,q}, \nu)$ is defined on $\text{Hom}_M(\mu, \delta^{p,q})$
- This space carries a representation ψ_{μ} of $W^{\delta^{p,q}} \leftarrow = W(G^{\delta^{p,q}})$
- Attached to ψ_{μ} , \exists a spherical operator $A(\psi_{\mu}, 1, \nu)$ for $G^{\delta^{p,q}}$
- If μ is petite, $T(\mu, \delta^{p,q}, \nu) = A(\psi_{\mu}, 1, \nu)$
- For all $\psi \in \widehat{W^{\delta^{p,q}}}$ relevant, $\exists \mu \in \widehat{K}$ petite such that $\psi = \psi_{\mu}.\Box$

A matching of relevant $W^{\delta^{p,q}}$ -types with petite K-types

$$((p-s) imes(s))\otimes triv$$
 $\left(egin{array}{c} rac{1}{2},\ldots,rac{1}{2},rac{1}{2},\ldots,-rac{1}{2},rac{3}{2},\ldots,-rac{3}{2}
ight) \ (p-s,s)\otimes triv$ $\left(egin{array}{c} rac{3}{2},\ldots,rac{3}{2},rac{1}{2},\ldots,rac{1}{2},rac{1}{2},\ldots,-rac{1}{2}
ight) \ (riv\otimes ((q-r) imes(r)) \end{array}
ight)$ $\left(egin{array}{c} rac{3}{2},\ldots,rac{3}{2},rac{1}{2},\ldots,rac{1}{2},rac{1}{2},\ldots,-rac{1}{2}
ight) \ r \end{array}
ight)$ $triv\otimes (q-r,r)$ $\left(egin{array}{c} rac{1}{2},\ldots,rac{1}{2},rac{1}{2},\ldots,-rac{1}{2},\ldots,-rac{1}{2}
ight) \ r \end{array}
ight)$

$J(1,\nu)$ unitary for $G^{\delta^{p,q}}$ $J(\delta^{p,q},\nu)$ unitary for Mp(2n) $T(\mu, \delta^{p,q}, \nu)$ $A(\psi, 1, \nu)$ pos. semidefinite pos. semidefinite $\forall \psi \in \widehat{W^{\delta^{p,q}}}$ $\forall \mu \in \widehat{K}$ $T(\mu, \delta^{p,q}, \nu)$ $A(\psi,1,\nu)$ pos. semidefinite pos. semidefinite $\forall \psi \in \widehat{W^{\delta^{p,q}}} \ relevant$ $\forall \mu \in \widehat{K} \ petite$ $\forall \psi \in \widehat{W^{\delta^{p,q}}} \text{ relevant}, \exists \mu \in \widehat{K} \text{ petite s.t. } A(\psi,1,\nu) = T(\mu,\delta^{p,q},\nu)$

Non-unitarity certificates

Let
$$G^{\delta^{p,q}} = SO(p+1,p)_0 \times SO(q+q,q)_0$$
. For all $\nu = (\nu^p | \nu^q)$:

$$J(\delta^{p,q},\nu)$$
 unitary for $Mp(2n) ==> J(1,\nu)$ unitary for $G^{\delta^{p,q}}$.

The spherical unitary dual of split orthogonal groups is known. So we get **non-unitarity certificates** for genuine L.Q.s of Mp(2n).

Theorem 1': If

- the spherical L.Q. $J(1, \nu^p)$ of $SO(p+1, p)_0$ is not unitary, or
- the spherical L.Q. $J(1, \nu^q)$ of $SO(q+1, q)_0$ is not unitary

then the genuine L.Q. $J(\delta^{p,q}, (\nu^p|\nu^q))$ of Mp(2n) is also not unitary.

An example of non-unitarity certificate

Let $\nu = (\nu_1, \dots, \nu_n)$. We may assume:

$$\nu_1 \ge \dots \ge \nu_p \ge 0$$
 and $\nu_{p+1} \ge \dots \ge \nu_n \ge 0$,

by $W^{\delta^{p,q}}$ -invariance. (Recall $W^{\delta^{p,q}} = W(C_p) \times W(C_q)$.)

If any of the following conditions holds:

- $\nu_p > 1/2$
- $\nu_n > 1/2$
- $\nu_a \nu_{a+1} > 1$, for some a with $1 \le a \le p-1$, or
- $\nu_a \nu_{a+1} > 1$, for some a with $p+1 \le a \le n-1$

then the genuine Langlands quotient $J(\delta^{p,q},\nu)$ of Mp(2n) is not unitary.

An application

This non-unitarity certificate is a key ingredient in the classification of the ω -regular unitary dual of Mp(2n).

Definition: A representation of Mp(2n) is called ω -regular if its infinitesimal character is at least as regular as the one of the oscillator representation.

Corollary: The only ω -regular complementary series repr.s of Mp(2n) are the two even oscillator representations:

$$J\left(\delta_{0,n},\left(n-\frac{1}{2},\ldots,\frac{3}{2},\frac{1}{2}\right)\right)$$
 and $J\left(\delta_{n,0},\left(n-\frac{1}{2},\ldots,\frac{3}{2},\frac{1}{2}\right)\right)$.

PART 2

Complementary Series of SO(n+1,n)

NOTATION

$$\bullet \mid G := SO(n+1,n) \mid$$

•
$$K := S(O(n+1) \times O(n))$$
 maximal compact

•
$$\Delta(\mathfrak{g}_0,\mathfrak{a}_0) = \{\pm \epsilon_k \pm \epsilon_l\} \cup \{\pm \epsilon_k\}$$
 type $B_n \leftarrow$

dual to previous

case

•
$$W \simeq S_n \ltimes (\mathbb{Z}/2\mathbb{Z})^n \leftarrow$$
 same Weyl group as before

•
$$M := Z_K(\mathfrak{a}_0) = \{ \text{diag}(1, t_n, \dots, t_1, t_1, \dots, t_n) : t_j = \pm 1, \forall j \}$$

M-types

M is generated by the elements

$$m_k = \text{diag}(1, \dots, 1, -1, 1, \dots, 1, -1, 1, \dots, 1)$$

 $k = 1 \dots n$ (of order 2).

$$M$$
-types \Leftrightarrow Subsets $S \subset \{1 \dots n\}$ \leftarrow same parametrization as before

The set S keeps track of which generators act by -1:

$$\delta_S(m_k) = egin{cases} -1 & ext{if } k \in S \ +1 & ext{otherwise} \end{cases} egin{array}{c|c} SO(4,3) & m_1 & m_2 & m_3 \ \hline \delta_{\{2,3\}} & +1 & -1 & -1 \ \hline \end{cases}$$

W-orbits of M-types

Just like before, we look at the action of W on \widehat{M} . Then

•
$$W^{\delta_S} \simeq W(B_p) \times W(B_q)$$
, for $q = |S|, p = |S^c| \leftarrow$ before

- $W \cdot \delta_S = \{\delta_T : |T| = q, |T^c| = p\}$
- W-orbits of M-types \iff pairs $(p,q): p,q \in \mathbb{N}, p+q=n$

 \uparrow

same parametrization as before

Pick representatives
$$\delta^{p,q} := \delta_{\{p+1,\dots,n\}}$$
. $\delta^{p,q}(m_k) = \begin{cases} +1 & \text{if } k \leq p \\ -1 & \text{if } k > p. \end{cases}$

K-types (n even)

$$K = S(O(n+1) \times O(n)), n \text{ even}$$

 $(a_1, \ldots, a_{\frac{n}{2}}; b_1, \ldots, b_{\frac{n}{2}})$ with $a_j, b_j \in \mathbb{Z}, \forall j$ and

K-types $a_1 \geq \cdots \geq a_{\frac{n}{2}} \geq 0; b_1 \geq \cdots \geq b_{\frac{n}{2}} \geq 0.$

If $b_{\frac{n}{2}} = 0$, there is also a sign $\epsilon = \pm 1$.

	Fine K -types	realization	res. to M
$q < \frac{n}{2}$	$(0,\ldots,0;\underbrace{1,\ldots,1},0,\ldots,0;+)$	$triv \otimes \Lambda^q \mathbb{C}^n$	$W \cdot \delta^{p,q}$
	q		
$q = \frac{n}{2}$	$(0,\ldots,0;1,\ldots,1)$	$triv \otimes \Lambda^{\frac{n}{2}}\mathbb{C}^n$	$W \cdot \delta^{p,q}$
$q > \frac{n}{2}$	$(0, \ldots, 0; \underbrace{1, \ldots, 1}_{}, 0, \ldots, 0; -)$	$triv \otimes \Lambda^q \mathbb{C}^n$	$W \cdot \delta^{p,q}$
	n-q		

K-types $(n \ odd)$

$$K = S(O(n+1) \times O(n)), n odd$$

$$(a_1,\ldots,a_{\frac{n+1}{2}};b_1,\ldots,b_{\frac{n-1}{2}})$$
 with $a_j, b_j \in \mathbb{Z}, \forall j$ and

K-types
$$a_1 \ge \dots \ge a_{\frac{n+1}{2}} \ge 0; b_1 \ge \dots \ge b_{\frac{n-1}{2}} \ge 0.$$

If $a_{\underline{n+1}} = 0$, there is also a sign $\epsilon = \pm 1$.

	Fine K -types	realization	ightharpoonup res. to M
$q < \frac{n}{2}$	$(0,\ldots,0;\underbrace{1,\ldots,1}_{r},0,\ldots,0;+)$	$triv\otimes \Lambda^q\mathbb{C}^n$	$W \cdot \delta^{p,q}$
$q > \frac{n}{2}$	$(0,\ldots,0;\underbrace{1,\ldots,1}_{n-q},0,\ldots,0;-)$	$triv\otimes \Lambda^q\mathbb{C}^n$	$W \cdot \delta^{p,q}$

Complementary Series of SO(n+1,n)

- MA: Levi factor of a minimal parabolic
- $\delta \in \widehat{M}$
- $\nu \in \mathfrak{a}_{\mathbb{R}}^*$
- P = MAN := a minimal parabolic making ν weakly dominant.

Minimal Principal Series $I_P(\delta, \nu)$

Langlands Quotient $J(\delta, \nu)$

 δ -Complementary Series $CS(SO(n+1,n),\delta)=\{\nu|J(\delta,\nu) \ unitary\}$

Problem: Find $CS(SO(n+1,n),\delta^{p,q})$

THEOREM 2

Theorem 2: For all $\nu \in \mathfrak{a}_{\mathbb{R}}^*$, write $\nu := (\nu^p | \nu^q)$. The map:

$$CS(SO(n+1,n),\delta^{p,q}) \to CS(SO(p+1,p)_0,1) \times CS(SO(q+1,q)_0,1)$$

$$\nu \mapsto (\nu^p,\nu^q)$$

is a well defined injection. (1 denotes the trivial M-type.)

same embedding as before

A reformulation of THEOREM 2

Set:
$$G^{\delta^{p,q}} \equiv SO(p+1,p)_0 \times SO(q+1,q)_0$$
 \leftarrow same as before

and note that $W(G^{\delta^{p,q}}) = W^{\delta^{p,q}}$.

Theorem 2: The $\delta^{p,q}$ -complementary series of SO(n+1,n) embeds into the spherical complementary series of $G^{\delta^{p,q}}$.

Proof: based on a matching of relevant W-types for $G^{\delta^{p,q}}$ with petite K-types for SO(n+1,n).

A matching of relevant $W^{\delta^{p,q}}$ -types with petite K-types

Recall that $W^{\delta^{p,q}} = W(B_p) \times W(B_q)$ and $K = S(O(n+1) \times O(n))$.

$((p-s) imes(s))\otimes triv$	$\Lambda^s(\mathbb{C}^{n+1})\otimes \Lambda^{q+s}(\mathbb{C}^n)$
$(p-s,s)\otimes triv$	an irreducible submodule of
	$triv\otimes [\Lambda^s(\mathbb{C}^n)\otimes \Lambda^{q+s}(\mathbb{C}^n)]$
$triv \otimes ((q-r) imes (r))$	$\Lambda^r(\mathbb{C}^{n+1})\otimes \Lambda^{q-r}(\mathbb{C}^n)$
$triv\otimes (q-r,r)$	an irreducible submodule of
	$triv\otimes [\Lambda^r(\mathbb{C}^n)\otimes \Lambda^{q-r}(\mathbb{C}^n)]$

An example: n = 3

Are these "proper containments" or "equalities"?

Are the L.Q.s $J_{Mp(6)}(\delta^{2,1}, \nu)$ and $J_{SO(4,3)}(\delta^{2,1}, \nu)$ unitary for all points ν of the unit cube and all points ν of the 8 line segments?

Unitarity of $J_{Mp(6)}(\delta^{2,1},\nu)$ for ν in the unit cube

Theorem. The Langlands quotient $J(\delta, \nu)$ of Mp(2n) is unitary for all ν in the unit cube $\{\underline{x} \in \mathfrak{a}_{\mathbb{R}}^* \mid 0 \leq |x_j| \leq 1/2, \forall j\}$.

Proof. Note that:

- For $\nu = 0$, all the operators $T(\mu, \delta, \nu)$ are positive definite.
- The signature of $T(\mu, \delta, \nu)$ can only change along the reducibility hyperplanes:

$$\begin{cases} \langle \nu, \beta \rangle \in 2\mathbb{Z} + 1 & \text{for some root } \beta \text{ which is } good \text{ for } \delta \\ \langle \nu, \beta \rangle \in 2\mathbb{Z} \setminus \{0\} & \text{for a root } \beta \text{ which is } bad \text{ for } \delta. \end{cases}$$

• Away from these hyperplanes, $I(\delta, \nu)$ is irreducible $(= J(\delta, \nu))$, and the operators $T(\mu, \delta, \nu)$ have constant signature. In particular, $J(\delta, \nu)$ is unitary throughout the unit cube. \square

Unitarity of $J_{Mp(6)}(\delta^{2,1},\nu)$ for $\nu = (\frac{3}{2},\frac{1}{2}|t), t \in [0,\frac{1}{2}]$

Theorem. The repr. $J(\delta^{p,q}, \nu)$ of Mp(2n) is unitary $\forall \nu = (\nu^p | \nu^q)$ s.t.

- $\nu^p \in CS(SO(p+1,p)_0,1)$, with $0 \le |a_j| \le 3/2$ or $a_j \in \mathbb{Z} + \frac{1}{2}$
- $\nu^q \in CS(SO(q+1,q)_0,1)$, with $0 \le |a_j| \le \frac{1}{2}$.

Proof. Let P_1 be a parabolic with $M_1A_1 := Mp(2p) \times \left(\widetilde{GL}(1,\mathbb{R})\right)^q$. By double induction, $J(\delta^{p,q},\nu)$ is the Langlands quotient of

$$I(\nu^q) := \operatorname{Ind}_{M_1 A_1 N_1}^{Mp(2n)} \left((J(\delta^{p,0}, \nu^p) \otimes \delta^{0,q}) \otimes \nu^q \otimes 1 \right).$$

Here $J(\delta^{p,0}, \nu^p)$ is a pseudopsherical repr. of Mp(2p). By results of ABPTV, $J(\delta^{p,0}, \nu^p)$ is unitary $\forall \nu^p \in CS(SO(p+1p)_0, 1)$. Then the repr. $I(\nu^q)$ of Mp(2n) is unitary at $\nu^q=0$ (unitarily induced). For all ν of interest, $I(\nu^q)$ is irreducible, hence it stays unitary by the principle of unitary deformation. \square

Corollary

More generally...

For all $n \leq 4$ and for all $\delta = \delta^{p,q}$, the following equalities hold:

PART 4

A natural conjecture

Equalities hold for all n and all choices of $\delta^{p,q}$

Conjectures 1 and 2

Remark. We may assume $p \geq q$, because

- $J_{Mp(2n)}(\delta^{p,q},(\nu^p|\nu^q)) = J_{Mp(2n)}(\delta^{q,p},(\nu^p|\nu^q))^*$
- $J_{SO(n+1,n)}(\delta^{p,q}, (\nu^p|\nu^q)) = J_{SO(n+1,n)}(\delta^{q,p}, (\nu^q|\nu^p)) \otimes \chi$ ($\chi = \text{a unitary character}$).

(More) evidence for these conjectures

• The case (p,q) = (n,0)

If (p,q) = (n,0), the conjectures hold for all n. This is the pseudospherical case for Mp(2n) and the spherical case for SO(n+1,n). (For Mp(2n), the result is due to ABPTV; for SO(n+1,n), it is an empty statement.)

• A large family of examples

Assume p > q. The conjectures hold for all $\nu = (\rho^p | \nu^q)$ with

- * $\rho^p = \left(p \frac{1}{2}, p \frac{3}{2}, \dots, \frac{3}{2}, \frac{1}{2}\right)$ = the infinitesimal character of the trivial representation of $SO(p+1,p)_0$,
- $\star \ \nu^q \in CS(SO(q+1,q)_0,1).$

PART 5

Conjecture 3

Conjecture 3

For all n and all choices of $\delta^{p,q}$:

$$CS(Mp(2n),\delta^{p,q})=CS(SO(n+1,n),\delta^{p,q}).$$

$$CS(Mp(2n), \delta^{p,q}) \leftarrow CS(SO(n+1,n), \delta^{p,q})$$

$$Conj. 1 \qquad Conj. 2 \qquad \subseteq$$

$$Theor. 1 \qquad CS(SO_o(p+1,p),1) \times CS(SO_o(q+1,q),1)$$

- Conjecture 3 is true for n = 2, 3, and 4.
- Conjecture 3 is independent of Conjectures 1 and 2. $\leftarrow tools!$

θ -correspondence

Consider $G = Sp(2n, \mathbb{R}), G' = O(m+1, m) \subset Sp(2n(2m+1), \mathbb{R}).$ Let \tilde{G} and \tilde{G}' be their preimages in Mp(2n(2m+1)):

$$\tilde{G} = Mp(2n)$$
 $\tilde{G}' = \tilde{O}(m+1,m)$ linear cover.

- (G, G') is a dual pair in $Sp(2n(2m+1), \mathbb{R})$ (mutual centralizers)
- The θ -correspondence gives a bijection between certain genuine irreducible representations of \tilde{G} and \tilde{G}' .

We can re-interpret this correspondence as a map:

$$\pi \in \widehat{Mp(2n)}_{gen} \leftrightarrow \pi' \in \widehat{SO(m+1,m)}.$$

Some results of Adams, Barbasch and Li

For all $k \geq 0$, let $\rho_k = (k - \frac{1}{2}, \dots, \frac{1}{2})$. The θ -correspondence maps:

$$J_{Mp(2n)}(\delta^{p,q},\nu) \to J_{SO(n+k+1,n+k)}(\delta^{p+k,q},(\rho_k|\nu))$$

$$J_{Mp(2n+2k)}(\delta^{p+k,q},(\rho_k|\nu)) \leftarrow J_{SO(n+1,n)}(\delta^{p,q},\nu)$$

for all $p \geq q$.

If $k \geq n+1$, both arrows preserve unitarity. (Stable Range)

Remark: If k = 0, the correspondence

$$J_{Mp(2n)}(\delta^{p,q},\nu) \leftrightarrow J_{SO(n+1,n)}(\delta^{p,q},\nu)$$

is not known to preserve unitarity.

Conj.3

$$J_{Mp(2n)}(\delta^{p,q},\nu)$$
 unitary $\Leftrightarrow J_{SO(n+1,n)}(\delta^{p,q},\nu)$ unitary

THEOREM 3

Theorem 3: Conjecture 3 holds in each of the following cases:

- (i) Conj.s A1 & A2 hold (ii) Conj.s A1 & B1 hold
- (iii) Conj.s A2 & B2 hold (iv) Conj.s B1 & B2 hold.

Conjecture A

$$(\rho_{n+2}|\nu) \in CS(Mp(4n+4), \delta^{p+n+2,q})$$
 $Conj. A1 \uparrow \quad \Downarrow Conj. A2$
 $\nu \in CS(Mp(2n), \delta^{p,q})$

Conjecture B

THEOREM 3 (a sketch of the proof)

The idea of the proof is similar to the one in ABPTV. We show that:

Key ingredients:

- Results on θ -correspondence (Adams, Barbasch, Li, Przebinda).
- Non-unitarity certificates for both Mp(2n) and SO(n+1,n).

Conclusions

- Conj. $1 \Rightarrow$ Conj. A.
- Conj. $2 \Rightarrow$ Conj. B.

If either Conj. 1 (alone) or Conj. 2 (alone) holds, then the 3 parameter sets are all equal.