Characters of Nonlinear Groups Jeffrey Adams

Conference on Representation Theory of Real Reductive Groups Salt Lake City, July 30, 2009

slides: www.liegroups.org/talks www.math.utah.edu/realgroups/conference

Nonlinear Groups

Non Nonlinear Groups

Atlas (lectures last week):

G = connected, complex, reductive, algebraic group $G = G(\mathbb{R})$

 $GL(n, \mathbb{R}), SO(p, q), Sp(2n, \mathbb{R}) \text{ not } \widetilde{Sp}(2n, \mathbb{R})$

Primary reason for this restriction: Vogan Duality

Atlas parameters for representations of real forms of G:

$$\mathcal{Z} \subset \prod_k K_i \backslash G / B \times \prod_j K_j^{\vee} \backslash G^{\vee} / B^{\vee}$$

Vogan duality: $\mathcal{Z} \ni (x, y) \rightarrow (y, x)$

Not known in general for nonlinear groups

Outline

Character/representation theory of:

- (1) $\widetilde{GL}(2)$ (Flicker)
- (2) $\widetilde{GL}(n, \mathbb{Q}_p)$ (Kazhdan/Patterson)
- (3) $\widetilde{GL}(n, \mathbb{R})$ (A/Huang)
- (4) $\widetilde{Sp}(2n, \mathbb{R})$ and SO(2n+1)
- (5) $\widetilde{G(\mathbb{R})}$ (G simply laced)

Characters and Representations

 π = virtual representation of $G(\mathbb{R})$

$$\pi = \sum_{i=1}^{n} a_i \pi_i \ (a_i \in \mathbb{Z}, \pi_i \text{ irreducible})$$

 $\theta_{\pi} = \sum_{i} \theta_{\pi_{i}}$ = virtual character

conjugation invariant function on $G(\mathbb{R})_0$ (regular semisimple elements)

Identify (virtual) characters and (virtual) representations

(4) $\widetilde{Sp}(2n, \mathbb{R})$ and SO(2n+1)

 \mathbb{F} local, characteristic 0

W symplectic/ \mathbb{F} , $Sp(W) = Sp(2n, \mathbb{F})$

(V, Q): SO(V, Q) = special orthgonal group of (V, Q)

Fix $\delta \in \mathbb{F}^{\times}/\mathbb{F}^{\times 2}$

Proposition [Howe $+ \epsilon$] There is a natural bijection

{regular semisimple conjugacy classes in Sp(W)} and

 $\prod_{(V,Q)} \{ \text{ (strongly) regular ss conjugacy classes in } SO(V, Q) \}$

union: dim(V) = 2n + 1, det $(Q) = \delta$

Proposition implies relation on characters/representations of Sp(W), SO(V, Q)?

Naive guess: π representation of SO(V, Q)

Definition: $\operatorname{Lift}_{SO(V,Q)}^{Sp(W)}(\theta_{\pi})(g) = \theta_{\pi}(g') \quad (g \leftrightarrow g')$

= conjugation invariant function on $Sp(W)_0$

Is this the character of a (virtual) representation π' of Sp(W)? If so:

$$\operatorname{Lift}_{SO(V,Q)}^{\widetilde{Sp}(2n,\mathbb{R})}(\theta_{\pi}) = \theta_{\pi'}$$

or

$$\operatorname{Lift}_{SO(V,Q)}^{\widetilde{Sp}(2n,\mathbb{R})}(\pi) = \pi'$$

Obviously not

Less naive guess:

$$\operatorname{Lift}_{SO(V,Q)}^{Sp(W)}(\theta_{\pi})(g) = \frac{|\Delta_{SO}(g')|}{|\Delta_{Sp}(g)|} \theta_{\pi}(g')$$

 $|\Delta_G(g)|$ = Weyl denominator (absolute value is well defined, independent of choice of positive roots)

Less obviously not

$$p: \widetilde{Sp}(W) \to Sp(W)$$
 (metaplectic group)

 $\omega^{\psi} = \omega_{+}^{\psi} \oplus \omega_{-}^{\psi} = \text{oscillator representation}$ (choice additive character ψ , see Savin's lecture... Less naive guess:

$$\operatorname{Lift}_{SO(V,Q)}^{Sp(W)}(\theta_{\pi})(g) = \frac{|\Delta_{SO}(g')|}{|\Delta_{Sp}(g)|} \theta_{\pi}(g')$$

 $|\Delta_G(g)|$ = Weyl denominator (absolute value is well defined, independent of choice of positive roots)

Less obviously not

$$p: \widetilde{Sp}(W) \to Sp(W)$$
 (metaplectic group)

 $\omega^{\psi} = \omega^{\psi}_{+} \oplus \omega^{\psi}_{-} = \text{oscillator representation}$ (choice additive character ψ , see Savin's lecture...drop it from notation) Definition: $\widetilde{g} \in \widetilde{Sp}(2n, \mathbb{R})_0$:

$$\Phi(\widetilde{g}) = \theta_{\omega_+}(\widetilde{g}) - \theta_{\omega_-}(\widetilde{g})$$

Lemma: $\widetilde{g} \in \widetilde{Sp}(W)_0, g = p(\widetilde{g}) \to g' \in SO(V, Q)$:

$$|\Phi(\tilde{g})| = \frac{|\Delta_{SO}(g')|}{|\Delta_{SP}(g)|}$$
$$= |\det(1+g)|^{-\frac{1}{2}}$$

Digression: $G = Spin(2n), \pi = spin$ representation

$$|\theta_{\pi}(\widetilde{g})| = |\det(1+g)|^{\frac{1}{2}}$$

Stabilize:

Work only with SO(n + 1, n) (split)

 π SO(n + 1, n), θ_{π} is stable if SO(2n + 1, \mathbb{C}) conjugation invariant

Definition: $Sp(2n, \mathbb{R}) \ni g \xleftarrow{st} g' \in SO(n + 1, n)$ if g, g' have the same nontrivial eigenvalues (consistent with [is the stabilization of] earlier definition)

 π = stable virtual character of SO(n + 1, n)

Definition:

$$\operatorname{Lift}_{SO(n+1,n)}^{\widetilde{Sp}(W)}(\theta_{\pi})(\widetilde{g}) = \Phi(\widetilde{g})\theta_{\pi}(g') \quad (p(\widetilde{g}) \stackrel{st}{\longleftrightarrow} g')$$

Theorem (A, 1998) Lift $\frac{\widetilde{Sp}(W)}{SO(n+1,n)}$ is a bijection between

stable virtual representations of SO(n+1,n)

and

stable genuine virtual representations of $\widetilde{Sp}(2n, \mathbb{R})$

Write
$$\widetilde{\pi} = \text{Lift}_{SO(n+1,n)}^{\widetilde{Sp}(2n,\mathbb{R})}(\pi)$$

$$\widetilde{Sp}(W)$$
: stable means $\theta(\widetilde{g}) = \theta(\widetilde{g}')$ if
(1) $p(\widetilde{g})$ is $Sp(2n, \mathbb{C})$ conjugate to $p(\widetilde{g}')$

(2) $\Phi(\widetilde{g}) = \Phi(\widetilde{g}').$

proof: Hirai's matching conditions.

(necessary and sufficient conditions for a function to be the character of a representation)

Problem: Find an integral transform or other natural realization of this lifting.

Note: This result (in fact this entire talk) is consistent with, and partly motivated by, results of Savin (for example his lecture from this conference)

(1)-(3): Lifting from $GL(n, \mathbb{F})$ to $\widetilde{GL}(n, \mathbb{F})$ (Flicker, Kazhdan-Patterson, A-Huang) $G = GL(n, \mathbb{F}) = GL(n) \mathbb{F}$ is p-adic or real $p : \widetilde{GL}(n) \to GL(n)$ non-trivial two-fold cover Definition: $\phi(g) = s(g)^2$ ($s : GL(n) \to \widetilde{GL}(n)$ any section)

Definition: $h \in GL(n), \widetilde{g} \in \widetilde{GL}(n)$

$$\Delta(h, \tilde{g}) = \frac{|\Delta(h)|}{|\Delta(\tilde{g})|} \tau(h, \tilde{g})$$

where $\tau(h, \tilde{g})^2 = 1 \dots$

(1)-(3): Lifting from $GL(n, \mathbb{F})$ to $\widetilde{GL}(n, \mathbb{F})$ (Flicker, Kazhdan-Patterson, A-Huang) $G = GL(n, \mathbb{F}) = GL(n) \mathbb{F}$ is p-adic or real $p : \widetilde{GL}(n) \to GL(n)$ non-trivial two-fold cover Definition: $\phi(g) = s(g)^2$ ($s : GL(n) \to \widetilde{GL}(n)$ any section) Definition: $h \in GL(n), \widetilde{g} \in \widetilde{GL}(n)$

$$\Delta(h, \widetilde{g}) = \frac{|\Delta(h)|}{|\Delta(\widetilde{g})|} \tau(h, \widetilde{g})$$

where $\tau(h, \tilde{g})^2 = 1 \dots$ (a little tricky to define)

Definition:

$$\operatorname{Lift}_{GL(n)}^{\widetilde{GL}(n)}(\theta_{\pi})(\widetilde{g}) = c \sum_{p(\phi(h))=p(\widetilde{g})} \Delta(h, \widetilde{g}) \theta_{\pi}(h)$$

next result: Flicker: n = 2, all \mathbb{F} Kazhdan and Patterson: all n, \mathbb{F} p-adic A-Huang: all n, $\mathbb{F} = \mathbb{R}$

Theorem: π = virtual representation of GL(n)

(1) $\operatorname{Lift}_{GL(n)}^{GL(n)}(\theta_{\pi})$ is (the character of) a virtual representation or 0

(2) If π is irreducible and unitary then $\text{Lift}_{GL(n)}^{\widetilde{GL}(n)}(\theta_{\pi})$ is \pm irreducible and unitary or 0

(3) Lift $_{GL(n)}^{GL(n)}(\mathbb{C}) = \tilde{\pi}_0$: a small, irreducible, unitary representations with infinitesimal character $\rho/2$ [Huang's thesis, Wallach's talk (n=3)]

Remark: Lift commutes with the Euler characteristic of cohomological induction (surprising)

Remark: Renard and Trapa have an example where π is irreducible (but not unitary) and Lift(π) is reducible.

(5) Lifting for simply laced real groups (joint with R. Herb)

G: complex, connected, reductive, simply laced for this talk assume G_d simply connected (ρ exponentiates to G_d suffices)

 $G(\mathbb{R})$ real form of G

 $p: \widetilde{G(\mathbb{R})} \to G(\mathbb{R})$: admissible two-fold cover of $G(\mathbb{R})$ (admissible: nonlinear cover of each simple factor for which this exists)

Recall (Wallach's talk): nonlinear covers almost always exist

Definition:

$$\phi(g) = s(g)^2$$
 $(g \in G(\mathbb{R}), s : G(\mathbb{R}) \to \widetilde{G(\mathbb{R})}$ any section)

Lemma:

(1) ϕ is well defined (independent of *s*)

(2) ϕ induces a map on conjugacy classes

(3) $g \in H(\mathbb{R}) = \text{Cartan} \Rightarrow \phi(g) \in Z(H(\mathbb{R}))$ proof:

- (1) obvious
- (2) obvious

(3) obvious

Lemma:

(1) ϕ is well defined (independent of *s*)

(2) ϕ induces a map on conjugacy classes

(3)
$$g \in H(\mathbb{R}) = \text{Cartan} \Rightarrow \phi(g) \in Z(H(\mathbb{R}))$$

proof:

(1) obvious

(2) obvious

(3) obvious $(\phi(g) \in \widetilde{H(\mathbb{R})^0} \subset Z(\widetilde{H(\mathbb{R})}))$

[Suppressing for this talk: replace $G(\mathbb{R})$ by $\overline{G}(\mathbb{R})$ for an (allowed) quotient \overline{G} of G - still true, less obvious, need stable in (2)]

 $\widetilde{\pi}$ genuine representation of $\widetilde{G(\mathbb{R})}$,

 $\widetilde{g} \in \widetilde{H(\mathbb{R})} =$ Cartan

Lemma (originally in Flicker)

$$\widetilde{g} \notin Z(\widetilde{H(\mathbb{R})}) \Rightarrow \theta_{\widetilde{\pi}}(\widetilde{g}) = 0$$
proof: $\widetilde{h} \notin Z(\widetilde{H(\mathbb{R})})$

$$\widetilde{g}\widetilde{h}\widetilde{g}^{-1} \neq \widetilde{h} \quad (\widetilde{g} \in \widetilde{H(\mathbb{R})})$$
projecting to $H(\mathbb{R})$ implies
$$\widetilde{g}\widetilde{h}\widetilde{g}^{-1} = z\widetilde{h} (p(z)=1)$$
 $\theta_{\pi}(\widetilde{h}) = \theta_{\pi}(\widetilde{g}\widetilde{h}\widetilde{g}^{-1}) = \theta_{\pi}(z\widetilde{h}) = -\theta_{\pi}(\widetilde{h})$
[Heisenberg group over $\mathbb{Z}/2\mathbb{Z}$]

Transfer Factors

Assume *G* is semisimple, simply connected (\Rightarrow *G*(\mathbb{R}) is connected) *H*(\mathbb{R}) = Cartan, Φ^+ positive roots

$$\Delta(g, \Phi^+) = e^{\rho}(g) \prod_{\alpha \in \Phi^+} (1 - e^{-\alpha}(g))$$

Definition: $h \in H(\mathbb{R})^0$, $\tilde{g} \in \widetilde{H(\mathbb{R})}$, $p(\tilde{g}) = h^2 \in H(\mathbb{R}) \cap G(\mathbb{R})_0$

$$\Delta(h, \tilde{g}) = \frac{\Delta(h, \Phi^+)}{\Delta(g, \Phi^+)} \frac{\phi(h)}{\tilde{g}}$$

 $p(\phi(h)/\tilde{g}) = h^2/p(\tilde{g}) = 1$: $\phi(h)/\tilde{g} = \pm 1$, genuine function in \tilde{g}

Obvious: $\Delta(h, \tilde{g})$ is independent of choice of Φ^+ ($h \in H(\mathbb{R})^0$ here)

Punt: It is possible to extend the previous construction to general

 $G(\mathbb{R})$, and to put conditions on $\Delta(h, \tilde{g})$ so that the number of allowed extensions to $H(\mathbb{R}) \cap G(\mathbb{R})_0$ is acted on simply transitively by $G(\mathbb{R})/G(\mathbb{R})^0$.

(hard: reduction to the maximally split Cartan subgroup, Cayley transforms, need to make the Hirai conditions hold...)

So: fix transfer factors $\Delta(h, \tilde{g})$

Definition: π = stable virtual representation of $G(\mathbb{R})$:

$$\operatorname{Lift}_{G(\mathbb{R})}^{\widetilde{G(\mathbb{R})}}(\theta_{\pi})(\widetilde{g}) = c \sum_{p(\phi(h)) = p(\widetilde{g})} \Delta(h, \widetilde{g}) \theta_{\pi}(h)$$

Theorem: (joint with R. Herb)

(1) $\operatorname{Lift}_{\widetilde{G(\mathbb{R})}}^{\widetilde{G(\mathbb{R})}}(\theta_{\pi})$ is the character of a virtual genuine representation $\widetilde{\pi}$ of $\widetilde{\widetilde{G(\mathbb{R})}}$ or 0

Theorem: (joint with R. Herb)

(1) $\operatorname{Lift}_{G(\mathbb{R})}^{\widetilde{G(\mathbb{R})}}(\theta_{\pi})$ is the character of a virtual genuine representation $\widetilde{\pi}$ of $\widetilde{G(\mathbb{R})}$ or 0 - write $\operatorname{Lift}(\pi) = \widetilde{\pi}$

(2) Infinitesimal character: $\lambda \rightarrow \lambda/2$

(3) Every genuine virtual character of $\widetilde{G(\mathbb{R})}$ is a summand of some $\operatorname{Lift}_{\widetilde{G(\mathbb{R})}}^{\widetilde{G(\mathbb{R})}}(\pi)$

(4) Lift takes (stable) standard modules to (sums of) standard modules

More on (4):

 $I^{st}(\chi) = \text{stabilized standard module defined by character } \chi \text{ of } H(\mathbb{R})$ $I^{st}(\chi) = \sum_{w} I(w\chi) \quad (w \in W(M) \backslash W_i)$

$$\operatorname{Lift}(I^{st}(\chi)) = \sum_{w} I(\operatorname{Lift}_{H(\mathbb{R})}^{\widetilde{H}(\mathbb{R})}(w\chi))$$

proof: Hirai's matching conditions

Very subtle point: need stability for the matching conditions to hold.

Remark:

- (1) Some terms on the RHS are 0.
- (2) The non-zero terms on the RHS have distinct central characters.

Remark: The notion of stability is probably not interesting for $\widetilde{G(\mathbb{R})}$ in the simply laced case; "L-packets" are (close to) singletons.

Question: Irreducibility of $Lift(\pi)$?

Remark: The notion of stability is probably not interesting for $\widetilde{G(\mathbb{R})}$ in the simply laced case; "L-packets" are (close to) singletons.

Question: Irreducibility of Lift(π)? Unitarity?

Application to small representations

Related to lectures here by: Savin, Wallach, Kobayashi, Howe;

Application to small representations

Related to lectures here by: Savin, Wallach, Kobayashi, Howe; Work by Friedberg, Loke, Sanchez, Trapa, Vogan, Weissman, Zhu, many others...

Corollary: $\widetilde{\pi}_0 = \operatorname{Lift}_{G(\mathbb{R})}^{\widetilde{G(\mathbb{R})}}(\mathbb{C})$ is a (non-zero) small virtual genuine character of $\widetilde{G(\mathbb{R})}$ of infinitesimal character $\rho/2$.

Usually (always?) $\tilde{\pi}_0$ is irreducible or the sum of a very small number of irreducible representations, with distinct central characters

Small: If $\tilde{\pi}_0$ is irreducible, it has Gelfand-Kirillov dimension $\leq \frac{1}{2}(|\Delta| - |\Delta(\frac{\rho}{2})|)$ $\Delta(\frac{\rho}{2}) = \{\alpha \mid \langle \frac{\rho}{2}, \alpha^{\vee} \rangle \in \mathbb{Z}\}$ (integral roots defined by $\frac{\rho}{2}$)

Character formula I:

(Roughly):

$$\theta_{\tilde{\pi}_0}(\tilde{g}) = \frac{\sum_{w \in W(\Delta(\rho/2))} \operatorname{sgn}(w) e^{w\rho/2}(\tilde{g})}{\Delta(\tilde{g})}$$

(can be made precise)

Direct application of the lifting formula

Character formula II:

$$\widetilde{\pi}_0 = \sum_{(\widetilde{H(\mathbb{R})}, \widetilde{\chi})} \pm I(\widetilde{H(\mathbb{R})}, \chi)$$

where the sum runs over all $H(\mathbb{R})$ and most (all?) genuine irreducible representations χ of $H(\mathbb{R})$ with $d\chi = \rho/2$

proof: Lift the Zuckerman character formula for $\ensuremath{\mathbb{C}}$

Other results

Better: replace $G(\mathbb{R})$ with $\overline{G}(\mathbb{R})$ Example: $\operatorname{Lift}_{PGL(2,\mathbb{R})}^{\widetilde{SL}(2,\mathbb{R})}$ is better than $\operatorname{Lift}_{SL(2,\mathbb{R})}^{\widetilde{SL}(2,\mathbb{R})}$:

$$\operatorname{Lift}_{SL(2,\mathbb{R})}^{\widetilde{SL}(2,\mathbb{R})}(\mathbb{C}) = \omega_{+}^{\psi} + \omega_{+}^{\overline{\psi}}$$

$$\operatorname{Lift}_{PGL(2,\mathbb{R})}^{\widetilde{SL}(2,\mathbb{R})}(\mathbb{C}) = \omega_{+}^{\psi}$$

Point: $\phi(\overline{H}(\mathbb{R}))$ is a bigger subset of $Z(\widetilde{H}(\mathbb{R}))$

Hard work in A-Herb to allow (certain) \overline{G}

Two root length case (work in progress with R. Herb); Lifting will be from real form of $G^{\vee}(\mathbb{R})$ (generalizing $\widetilde{Sp}(2n, \mathbb{R})/SO(n+1, n)$ case)

Vogan Duality for nonlinear groups

Closely related to Lifting, and to the "L-group (?)" for nonlinear groups.

- 1) $\widetilde{Sp}(2n, \mathbb{R})$: D. Renard, P. Trapa
- 2) $\widetilde{G(\mathbb{R})}$ in type A: Renard, Trapa
- 3) $\widetilde{Spin}(2n+1)$: S. Crofts
- 4) $\widetilde{G(\mathbb{R})}$ for G simpy laced: A, Trapa

Long term goal:

Bring nonlinear groups into the Langlands program

or as a first step:

Bring nonlinear groups into the Atlas program