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Nonlinear Groups
Non Nonlinear Groups
Atlas (lectures last week):

G = connected, complex, reductive, algebraic group
G =G[R)

GL(n,R), SO(p, ), Sp(2n, R) not Sp(2n, R)
Primary reason for this restriction/ogan Duality

Atlas parameters for representations of real form&of

Z c[[K\G/B x [[K/\G"/BY
k j

Vogan duality:Z > (X, y) — (Y, X)

Not known in general for nonlinear groups



Outline
Character/representation theory of:

(1) GL(2) (Flicker)

(2) GL(n, Qp) (Kazhdan/Patterson)
(3) GL(n, R) (A/Huang)

(4) Sp(2n, R) andSO(2n + 1)

(5) G(R) (G simply laced)



Characters and Representations
r = virtual representation d&(R)
T =i ,ani (& € Z, xi ireducible)
0, = > i b, = virtual character

conjugation invariant function oG (R)o (regular semisimple
elements)

Identify (virtual) characters and (virtual) represerdas



(4) Sp(2n, R) andSO(2n + 1)
IF local, characteristic 0
W symplecticF, Sp(W) = Sp(2n, F)
(V, Q): SO(V, Q) = special orthgonal group @, Q)

Fix 6 € F*/F*2

Proposition[Howe +¢] There is a natural bijection

{regular semisimple conjugacy classessSm(W)}

and

H { (strongly) regular ss conjugacy classess@(V, Q)}
(V.Q)

union: dmV) =2n+1, defQ) =



Proposition implies relation on characters/represematiof Sp(W),
SO(V, Q)?

Naive guessr representation 080(V, Q)
Definition:  Lift3 o, 0:)(@) = 6:(@) (9 9)
= conjugation invariant function o8p(W)g

Is this the character of a (virtual) representatioiof Sp(W)? If so:
Lift 2% 6,) = 6,
or

e Sp(2n,R
Lift spo((C,Q))(”) =’

Obviously not



Less naive guess:

[Aso(9)]
|ASp(g)|

|Ag(g)| = Weyl denominator (absolute value is well defined,
independent of choice of positive roots)

Lift 2 06 (9) = 0, (9)

Less obviously not
p: Sp(W) — Sp(W) (metaplectic group)

oV = oY ® o’ = oscillator representation
(choice additive character, see Savin’s lecture. ..



Less naive guess:

[Aso(9)]
|ASp(g)|

|Ag(g)| = Weyl denominator (absolute value is well defined,
independent of choice of positive roots)

Lift 2 06 (9) = 0, (9)

Less obviously not
p: Sp(W) — Sp(W) (metaplectic group)

oV = oY ® o’ = oscillator representation
(choice additive character, see Savin’s lecture. .. drop it from
notation)



Definition: § € Sp(2n, R)o:
qJ(@) = 0w+ (g) - ea)_ (g)
Lemma:§ € Sp(W)o, g = p(@) — g € SO(V, Q):

[Aso(9)]
® — 17501
@) [Asp(9)

= |det(1 + g)| 2

G = Spin(2n), = = spin representation

16, (@) = | det(1 + g)|?



Stabilize:
Work only with SO(n + 1, n) (split)
r SO(n+ 1, n), 8, is stableif SO(2n + 1, C) conjugation invariant

Definition: Sp(2n, R) 3 g <> g € SO(n + 1, n) if g, g’ have the
same nontrivial eigenvalues
(consistent with [is the stabilization of] earlier defioit)

r = stablevirtual character oSO(n + 1, n)

Definition:

Lit2W) | 0@ = 2@0:(@) (p@ < ¢)




Theorem(A, 1998)

Lift Syms.1.ny IS @ bijection between

‘ stablevirtual representation®f SO(n+1,nj

and

stablegenuine virtual representationsf Sp(2n, R)

Write 7 = Lift 2% ()

Sp(W): stablemeans(§) = 6(§) if
(1) p(@) is Sp(2n, C) conjugate top(q’)
(2) ©(9) = ©(@).



proof: Hirai’s matching conditions.

(necessary and sufficient conditions for a function to bectteacter
of a representation)

Problem:Find an integral transform or other natural realizationtos$ t
lifting.

Note: This result (in fact this entire talk) is consistent withdgmartly
motivated by, results of Savin (for example his lecture frits
conference)



(1)-(3): Lifting from GL(n, F) to GL(n, F)
(Flicker, Kazhdan-Patterson, A-Huang)

G =GL(n,F) = GL(n) F is p-adic or real

p: @I:(n) — GL(n) non-trivial two-fold cover

Definition: ¢ (g) = s(g)? (s : GL(n) — GL(n) any section)
Definition:h € GL(n), § € ﬁ(n)

1A(h)]

2 ™9

A(h,@)—

wherer(h,§)?2=1...



(1)-(3): Lifting from GL (n, F) to GL(n, F)
(Flicker, Kazhdan-Patterson, A-Huang)

G =GL(n,F) = GL(n) F is p-adic or real

p: GL(n) — GL(n) non-trivial two-fold cover

Definition: ¢(g) = s(g)? (s : GL(n) — GL(n) any section)
Definition:h € GL(n), § € ﬁ(n)

1A

A Q)]
wherez (h, §)2 = 1...(a little tricky to define)

A(h,@)— z(h,9)

Definition:

Litgr @)@ =c > A, G0 ()
p(#()=p(@




next result:

Flicker:n =2, allF

Kazhdan and Patterson: allIF p-adic
A-Huang: alln,F = R

Theorem:z = virtual representation d&L (n)

Q) Liftgvtg;(@ﬂ) is (the character of) a virtual representation or O

(2) If = isirreducibleandunitary then Liftgm;(@”) is & irreducible
and unitary or O

3) LifthEQ;((C) = 7o: a small, irreducible, unitary representations
with infinitesimal charactep /2 [Huang's thesis, Wallach’s talk (n=3)]

Remark:Lift commutes with the Euler characteristic of
cohomological induction (surprising)

Remark:Renard and Trapa have an example wheie irreducible
(but not unitary) and Liftz ) is reducible.



(5) Lifting for simply laced real group§oint with R. Herb)

G: complex, connected, reductive, simply laced
for this talk assum&y simply connectedd exponentiates t&y
suffices)

G(R) real form of G

p: 6(71(@&) — G(R): admissiblewo-fold cover of G(R)
(admissible nonlinear cover of each simple factor for which this
exists)

Recall (Wallach’s talk): nonlinear covers almost alwaysex

Definition:

#(9) =s(9)® (g€ G(R),s: GR) - G(R) any section



Lemma:
(1) ¢ is well defined (independent &j

(2) ¢ induces a map on conjugacy classes

(3)g € H(R) = Cartan= ¢(g) € Z(H(R))
proof:
(1) obvious

(2) obvious

(3) obvious



Lemma:
(1) ¢ is well defined (independent &j

(2) ¢ induces a map on conjugacy classes

(3)g € H(R) = Cartan= ¢(g) € Z(H(R))
proof:
(1) obvious

(2) obvious

(3) obvious §(g) < H(R)° C Z(H(R))

[Suppressing for this talk: replacg(R) by G(R) for an (allowed)
quotientG of G - still true, less obvious, neextablein (2)]



7 genuine representation G/‘(TR/@&)

g € H(R) = Cartan

Lemma(originally in Flicker)

§¢ Z(HR)) = 6:(@ =0

proof: h ¢ Z(H (R))

ghg ' #h (G HR)

projecting toH (R) implies

ghg—* = zh (p(2)=1)

0r (h) = 0, @G ™) = 6, (zh) = 6, ()
[Heisenberg group ovet/27]



Transfer Factors

AssumeG is semisimple, simply connectedy( G(R) is connected)

H (R) = Cartan,®* positive roots

INCROECAC)N | FEECR )

aecdt

Definition: h € H(R), § € H(R), p(g) = h? € H(R) N G(R),

A(h, %) p(h)

A9 =3 on 3

p(¢(h)/9) =h?/p(@) =1. ¢(h)/g = £1, genuine function ig



Obvious: A (h, §) is independent of choice @ (h € H(R)° here)
Punt: It is possible to extend the previous construction to gdnera

G(R), and to put conditions on (h, §) so that the number of allowed
extensions tdH (R) N G(R)q is acted on simply transitively by
G(R)/G(R)°.

(hard reduction to the maximally split Cartan subgroup, Cayley
transforms, need to make the Hirai conditions hold. . .)



So: fix transfer factorg\ (h, 9)

Definition: z = stablevirtual representation o&(R):

G([R)
Lift S ®)

0:)(@ =c

>

p(¢(h)=p(@)

A(h, 9)0, (h)




Theorem:(joint with R. Herb)

() Liftg% (6,) is the character of a virtual genuine representaion

—~

of G(R) or 0



Theorem:(joint with R. Herb)

() Liftggﬁg (6,) is the character of a virtual genuine representaion

—_~—

of G(R) or O - write Lift(z) = 7

(2) Infinitesimal characteri — 1/2

3 Every genuine virtual character G/‘(TR/O is a summand of some
Lift 5 (7)

(4) Lift takes (stable) standard modules to (sums of) stahaedules



More on (4):
It(y) = stabilizedstandard module defined by characteof H (R)
1) =2, 1 wy)  (w e WM)\W)

Lift (1)) = > 1(Lift B8 (wy))

proof: Hirai’s matching conditions
Very subtle pointneedstability for the matching conditions to hold.

Remark:
(1) Some terms on the RHS are 0.

(2) The non-zero terms on the RHS have distinct central clers



Remark:The notion ofstability is probably not interesting fdg(\ﬁq
in the simply laced casét-packets”are (close to) singletons.

Question:lrreducibility of Lift (z)?



Remark:The notion ofstability is probably not interesting fdg(\ﬁq
in the simply laced casét-packets”are (close to) singletons.

Question:lrreducibility of Lift (z)? Unitarity?



Application to small representations

Related to lectures here by: Savin, Wallach, Kobayashi, éjow



Application to small representations

Related to lectures here by: Savin, Wallach, Kobayashi, éjow
Work by Friedberg, Loke, Sanchez, Trapa, Vogan, Weissmhn, Z
many others. ..

Corollary: 7o = Lift GE%;(C) is a (non-zeropmallvirtual genuine

character oG/(VR) of infinitesimal charactep /2.

Usually (always?)zg is irreducible or the sum of a very small number
of irreducible representations, with distinct central rettiers

Smalt If 7 is irreducible, it has Gelfand-Kirillov dimension
< 3(AI=1A)D
A(5) = {a|(5,a") € Z} (integral roots defined by)



Character formula I:
(Roughly):

ZweW(A(p/Z)) sgn(w)e”’/2(g)

07,(0) = NG

(can be made precise)

Direct application of the lifting formula



Character formula Il:

Fo= > I(H®), )
(H®),7)
where the sum runs over &l (R) and most (all?) genuine irreducible
representationg of ﬁZfRS withdy = p/2

proof: Lift the Zuckerman character formula far



Other results
Better: replaces(R) with G(R)

Example:Lift pag (o, is better than Lifg 53):

e SL2R 3
Lift Sng,Rg((C) = o} + o}

P éT_(Z,R) R
Lift oo L2) (C) = @y

Point: ¢ (H (R)) is a bigger subset o (H(R))
Hard work in A-Herb to allow (certain}

Two root length case (work in progress with R. Herb); Liftwgl be
from real form of GY (R) (generalizingSp(2n, R)/SO(n+ 1, n) case)



Vogan Duality for nonlinear groups

Closely related to Lifting, and to tht.-group (?)” for nonlinear
groups.

1) Sp(2n, R): D. Renard, P. Trapa
2) C/affR/) in type A: Renard, Trapa

3) §|5i/n(2n + 1): S. Crofts

4) 6(71(@&) for G simpy laced: A, Trapa

Long term goal:

‘ Bring nonlinear groups into the Langlands progr‘am

or as a first step:

‘ Bring nonlinear groups into the Atlas progr#m




