This statement is true:

$$
\sqrt{5} \neq \sqrt{2}
$$

This statement is false:

$$
\sqrt{5}=\sqrt{2}
$$

This statement is true:

$$
\sqrt{5} \neq \sqrt{2}
$$

This statement is false:

$$
\sqrt{5}=\sqrt{2}
$$

This statement is true:

$$
\sqrt{5} \neq \sqrt{2}
$$

This statement is false:

$$
\sqrt{5}=\sqrt{2}
$$

That is it!
What happens when we have long equations in inline math? Here is an example: $a=b=c=d=e=f=g=h=i=j=k=l=m=n=o=p=$ $q=r=s=t=u=v=w=x=y=z$.

Here is the same in display math?

This statement is true:

$$
\begin{equation*}
\sqrt{5} \neq \sqrt{2} \tag{1}
\end{equation*}
$$

This statement is false:

$$
\begin{equation*}
\sqrt{5}=\sqrt{2} \tag{2}
\end{equation*}
$$

This is a displayed equation:

$$
a=\sqrt{b+c} / \sqrt[3]{\alpha+\beta+\gamma}
$$

We continue our remarks in the same paragraph.
Here is an example of the align environment from the amsmath package:

$$
\begin{align*}
a & =b \tag{3}\\
& =c+d \tag{4}\\
& =e+f+g \tag{5}
\end{align*}
$$

Here is its unnumbered companion:

$$
\begin{aligned}
a & =b \\
& =c+d \\
& =e+f+g
\end{aligned}
$$

Here is an example of multiple alignment points:

$$
\begin{aligned}
a & =b & & <A \\
& =c+d & & \ll B+D \\
& =e+f+g & & \gg+\delta
\end{aligned}
$$

$$
\aleph_{0} \equiv \aleph_{1} \equiv \aleph_{2} \equiv \cdots \equiv \aleph_{\infty}
$$

Another conjecture:

$$
\mho^{0} \equiv \mho^{1} \equiv \mho^{2} \equiv \cdots \equiv \mho^{\infty}
$$

This is how multiple equations should be punctuated:

$$
\begin{aligned}
& a=b \\
& c=d \\
& e=f \\
& g=h
\end{aligned}
$$

Here is another example that shows the absence of commas in continued right-hand sides:

$$
\begin{aligned}
a & =b \\
& =c \\
& =d \\
e & =f \\
g & =h
\end{aligned}
$$

Here is a display decorated with right-aligned comments:

$$
\begin{array}{rlr}
a & =b & \text { same as } b \\
& =c & \text { also same as } c \\
& =d, & \text { and } d \text { too } \\
e & =f, & \text { same as } f \\
g & =h . & \text { same as } g
\end{array}
$$

Here is the same display, but decorated with left-aligned comments:

$$
\begin{aligned}
a & =b & & \text { same as } b \\
& =c & & \text { also same as } c \\
& =d, & & \text { and } d \text { too } \\
e & =f, & & \text { same as } f \\
g & =h . & & \text { same as } g
\end{aligned}
$$

