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Our knowledge of H∗(Out(Fn);Q) and H∗(Aut(Fn);Q)

1 Virtual cohomological dimension

1 vcd(Out(Fn)) = 2n − 3 (Culler-Vogtmann)
2 vcd(Aut(Fn)) = 2n − 2

2 Stable computations

1 Hk(Aut(Fn);Q)
∼=−→ Hk(Aut(Fn+1);Q) if n >> k .

(Hatcher-Vogtmann)

2 Hk(Aut(Fn);Q)
∼=−→ Hk(Out(Fn);Q) if n >> k.

(Hatcher-Wahl-Vogtmann)
3 Hk(Aut(Fn);Q) = Hk(Out(Fn);Q) = 0 if n >> k. (Galatius)
4 cf. Mod(S)!
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Our knowledge of H∗(Out(Fn);Q) and H∗(Aut(Fn);Q)

1 Unstable computations

1 Hk(Out(Fn);Q) = 0 = Hk(Aut(Fn) for k ≤ 7 except
H4(Aut(F4);Q) = H4(Out(F4);Q) = Q and H7(Aut(F5);Q) = Q.
(Hatcher-Vogtmann, Gerlits)

2 H8(Aut(F6);Q) 6= 0, H8(Aut(F6);Q) = Q,
H12(Aut(F8);Q) 6= 0 6= H12(Out(F8);Q), H11(Aut(F7);Q) 6= 0
(Ohashi, C.-Kassabov-Vogtmann, Gray)

2 Orbifold Euler characteristic (If G0 < G is of index n and is of finite
cohomological dimension, then χorb(G ) := 1

nχ(BG0))

1

n 2 3 4 5 6
χorb(Out(Fn)) − 1

24 − 1
48 − 161

5760 − 367
5760 − 120257

580608

2 A generating function for these orbifold Euler characteristics is known.
(Kontsevich, Smillie-Vogtmann)
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Hk(Aut(Fn);Q)

k\n 2 3 4 5 6 7 8 9 10 11

2 vcd 0 0 stable | | | | | |
3 0 0 0 0 stable | | | |
4 vcd µ1 0 0 0 stable | | |
5 0 0 0 0 0 0 stable |
6 vcd 0 0 0 0 0 0 stable

7 ε1 0 0 0 0 0 0
8 vcd µ2 ? ? ? ? ?
9 ? ? ? ? ? ?

10 vcd ? ? ? ? ?
11 ε2 ? ? ? ?
12 vcd µ3 ? ? ?
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1 µk ∈ H4k(Out(F2k+2);Q) (Morita). It is unknown if µk 6= 0 unless
k = 1, 2, 3.

2 εk ∈ H4k+3(Aut(F2k+3);Q) (CKV). It is unknown if εk 6= 0 unless
k = 1, 2. We could call these Eisenstein classes.

3 Let S2k be the space of cusp forms for SL(2,Z) of weight 2k . (This
can be defined as follows. Spaces of all modular forms of weight 2k ,
M2k , are defined by Q[x4, x6] ∼= ⊕kMk . Then
dim(S2k) = dim(M2k)− 1 for k ≥ 2.) There is an embedding∧2

S∗2k ↪→ Z4k−2(Out(F2k+1);Q).

The first potential class lies in Z46(Out(F25))!
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The main goal of this talk is to give an idea how these classes are
produced.
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The Lie operad

Lie((5)) = Q


0

3

1 4

2

 /IHX + AS

1 IHX: = −

2 AS:

J1

J2J3

= (−1)|σ|

Jσ(1)

Jσ(2)Jσ(3)
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1 Ln(V ) := Lie((n + 1))⊗Σn V⊗n.

0

v3

v1 v4

v2

The free Lie algebra over the vector space V is

L(V ) =
⊕
n

Ln(V ).

2 hV [[d ]] := Lie((d + 2))⊗Σd+2
V⊗(d+2).

v0

v3

v1 v4

v2

hV :=
⊕
d≥1

hV [[d ]]
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1 If V = (V , ω) has a nondegenerate antisymmetric form (symplectic),
then hV is itself a Lie algebra.

2 hV is remarkably ubiquitous in low-dimensional topology.

1 If V = H1(Sg ,1;Q), then hV is the target of the (associated graded)
Johnson homomorphism on Mod(Sg ,1) and on 3-dimensional homology
cylinders. (Johnson, S. Morita, J. Levine)

2 If V = Qm then hV parameterizes Milnor invariants of m-component
links in S3. (Over Z, hV measures the failure of the Whitney move in 4
dimensions. (C.-Schneiderman-Teichner))

3 If V is a direct limit of finite-dimensional symplectic vector spaces, then

PH∗(hV )Sp =
⊕
r≥2

H∗(Out(Fr );Q).(Kontsevich)

PH∗(hV ; L(V ))Sp =
⊕
r≥2

H∗(Aut(Fr );Q).(Gray)
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Lie graph homology

1 Informally, one obtains a Lie graph by gluing elements of the Lie
operad into the vertices of a template graph:

1

2

3

4 7→
1

2

3

4

2 More formally, for every template graph G , define

GG =

 ⊗
v∈V (G)

Lie((val(v)))


Aut(G)
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1 G(n)
k :=

⊕
G GG , where G ' ∨ni=1S1, has k vertices, and all vertices

have valence ≥ 3.

2 Boundary operator: ∂ : G(n)
k → G(n)

k−1

1

2

3

4
∂7→

1

2

3 −
1

2

3

− 1
2 3 − 1

2 3 +
1

2

3

+
1

2

3

+
1

2

3
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Theorem

Hk(G(n)
• ) ∼= H2n−3−k(Out(Fn);Q)

1 This was observed by Kontsevich. It is proven using double complex
spectral sequence applied to the spine of Outer space. That the signs
match up is very surprising. (C.-Vogtmann has a complete proof.)

2 This is how the isomorphism to the homology of hV is proven.
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The LieV operad and LieV -graphs

1

LieV ((3)) = Q


0

1

v1 v2

2

 /IHX + AS

2 A hairy Lie graph is a LieV -graph.

v2

v1

v3
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The hairy graph complex

1 The hairy graph complex HV is spanned by all (not necessarily
connected) hairy Lie graphs. PHV is the subspace spanned by
connected graphs.

2 HV
∼= S(PHv ) (free graded commutative algebra on PHv )

3 ∂ : HV → HV is defined similarly to before.

4 G ⊂ HV is a subcomplex.
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1 Let (V , ω) be a finite-dimensional symplectic vector space with
symplectic basis B.

2 Define a chain map S : HV → HV

v2

v1

v3

v4

7→
∑
x∈B

v2

v1

v3

v4

x∗

x
+ v2

v1

v3

v4

x x∗

3 The chain map

exp(S) =
n∑

i=0

S i

i !
: HV → HV

∼= Q[PHV ]

is a sum over snipping some subset of the black edges of a hairy
graph and labeling the new ends by paired vectors x , x∗.
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The cohomological assembly map

1 Dualizing the restriction to G ⊂ HV , we get a degree-preserving
assembly map

exp(S)∗ : S(PH∗(HV ))→ H∗(G)

which glues together “small” classes to make bigger ones.

2 From now on we restrict to the simplest piece H1(HV ) or H1(HV ).
(Note PH1(HV ) = H1(HV ).)

3 H1(HV ) is graded by first Betti number:

H1(HV ) ∼=
∞⊕
k=0

H1(HV )(k)
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Theorem (CKV)

1

H1(HV )(0) ∼=
∧3

V

2

H1(HV )(1) ∼=
∞⊕
k=0

S2k+1V

3

H1(HV )(r) ∼= H2r−3(Out(Fr ); S(Qr ⊗ V )) for r ≥ 2.

Here Out(Fr ) acts on Qr via the standard GL(r ,Z) action twisted by
the determinant.
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So we get an assembly map that takes formal products of homology
classes in lower rank groups (with twisted coefficients) and produces
homology classes with rational coefficients.

S

(∧3
V ⊕

∞⊕
k=0

S2k+1V ⊕
∞⊕
r=2

H2r−3(Out(Fr ); S(Qr ⊗ V ))

)
Sp

↓
∞⊕
r=2

H∗(Out(Fr );Q)
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Theorem

(CKV)

H1(HV )(2) ∼= H1(Out(F2); S(Q2 ⊗ V )) ∼=
⊕

k>`≥0

S(k,`)V ⊗W(k,`)

where W(k,`) =


Sk−`+2 if k , ` are even.

Mk−`+2 if k , ` are odd.

0 if k + ` is odd.

Recall that Sr are cusp forms of weight r and Mr is one higher
dimension, including the Eisenstein series.

SλV := Pλ ⊗Σn V⊗n, where λ is a partition of n and Pλ is the
irreducible Σn-representation corresponding to λ.

The proof uses the Eichler-Shimura computation
H1(SL(2,Z); S2k(Q2)) ∼=M2k+2 ⊕ S2k+2.
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Morita classes

(∧2
S2k+1V

)Sp ∼= Q{µk}

v2

v1

v3

←→ v1v2v3 ∈ S3V

←→ µ1 ∈
(∧2

S2k+1V
)Sp
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Eisenstein classes

...

v0

v2k
•

←→ V ⊗ V 2k ↪→ S(2k+1,1)V

(
S (2k+1)V ⊗ (V ⊗ V 2k)

)Sp ∼= Q{εk}

•

←→ ε1 ∈
(

S (2k+1)V ⊗ (V ⊗ V 2k)
)Sp
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Doubled cusp form classes

1 [∧2
(S(2m,0)V ⊗ S2m+2)

]Sp ∼= ∧2
S2m+2

2 dimS2m+2 ≈ m/6. The first time the dimension is ≥ 2 is m = 11.

1 This will give a class in H46(Out(F25Q). Too large to test by
computer. :(

2 This gives a growing family of cycles in dimension vcd − 1. If these
survive in homology, it would contradict a conjecture of
Church-Farb-Putman that the homology stabilizes in fixed codimension.
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Dihedral homology

1 Let A be an algebra with involution, a 7→ ā.

2 There is a chain complex CDk(A) = [A⊗k ]D2k
, where D2k acts with

certain signs, imagining a copy of A at each corner of a k-gon.

a1

a2 a3

a4

a5a6

←→ a1 ⊗ · · · ⊗ a6 ∈ V⊗6

1 a1 ⊗ · · · ⊗ an 7→ (−1)n−1an ⊗ a1 ⊗ · · · ⊗ an−1

2 a1 ⊗ · · · ⊗ an 7→ (−1)n+(n
2)ān ⊗ · · · ⊗ ā1

3 Boundary operator: ∂ : CDk(A)→ CDk−1(A). This is induced by
multiplication of algebra elements along edges of the polygon.

4 (twisted) Dihedral homology is defined as

HDk(A) = Hk(CD•(A), ∂). (Loday)
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Dihedral homology

Consider the algebra A = S(V ), the free commutative algebra on V ,
with involution defined on generators v 7→ −v .

Theorem

Hk(HV )(1) = HDk(S(V ))

So dihedral homology class could combine with other hairy graph
homology classes to produce classes in Out(Fn).
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On a Conjecture of Morita

Morita, who was studying hV in connection with the Johnson
homomorphisms of mapping class groups, constructed a trace
homomorphism:

TrM : hV →
∞⊕
k=1

S2k+1V .

v1

v2

v3 v4

v5

v6

7→ ω(v2, v6)

v1

v3 v4

v5

+ · · · 7→ ω(v2, v6)v1[v3, v4]v5 + · · ·

hV → T (V )Z2 → S(V )Z2

Jim Conant Univ. of Tennessee joint w/ Martin Kassabov and Karen Vogtmann ()Hairy Graphs and the Homology of Out(Fn) July 11, 2012 26 / 29



On a Conjecture of Morita

Morita conjectured that the trace homomorphism (the range being
abelian) induces an isomorphism on the abelianization:

habV
∼=
∧3

V ⊕ S(V )Z2?

We recognize that the middle term in the above trace map definition
is an element of a hairy graph complex, and lift TrM to a map
T : hV → HV defined by summing over contractions:

v1

v2

v3 v4

v5

v6

T7→ ω(v2, v6)

v1

v3 v4

v5

+ · · ·
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On a Conjecture of Morita

Theorem (CKV)

1 Tr = exp(T ) induces an monomorphism habV ↪→ H1(HV ).
(dim V =∞)

2 Let V + < V be a Lagrangian subspace. There is a natural projection
π : H1(HV )→ H1(HV+). Then π ◦ Tr is an epimorphism. (Note that
H1(HV ) ∼= H1(HV+) as GL-modules!)

Corollary

habV
∼=
⊕∞

k=0 h
ab
V [k], where habV [0] ∼=

∧3 V , habV [1] = S(V )Z2 , and habV [k] is
a “large” subspace of H2k−3(Out(Fk); S(Q2 ⊗ V )). In particular, it
contains infinitely many irreducible Sp-modules when k = 2, contradicting
Morita’s conjecture.
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Questions

1 Are all µk , εk , · · · nontrivial?

2 How (non)-trivial is the cohomological assembly map?

3 Does the assembly map have a more direct definition/interpretation?

4 What is H1(HV )(k) for k ≥ 3? We know it is highly nontrivial for
k = 3, and can describe it fairly explicitly. We don’t know for k ≥ 4.
Likely these are related to modular and automorphic forms.

5 Construct new elements of the cokernel of the Johnson filtration?
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