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Introduction

Let M be a closed Riemannian manifold whose sectional curvatures
are all negative, and denote by C the set of free homotopy classes
of closed curves in M . Negative curvature implies that in each free
homotopy class, there is a unique closed geodesic. This defines a marked
length spectrum function ` : C → R>0 which assigns to the class g the
length `(g) of this closed geodesic. Burns and Katok asked whether the
function ` determines M , up to isometry [5]. This question remains
open in general, but has been solved completely for surfaces by Otal
[21] and slightly later but in more generality by Croke [6].

In these lectures, I’ll explain in several steps a proof of this marked
length spectrum rigidity for negatively curved surfaces:

Theorem 0.1 (Otal). Let S and S ′ be closed, negatively curved sur-
faces with the same marked length spectrum. Then S is isometric to
S ′.

Remark: The (unmarked) length spectrum is defined to be the set of
lengths {`(g) : g ∈ C}, counted with multiplicity . The length spectrum
does not determine the manifold up to isometry. Examples exist even
for surfaces of constant negative curvature [25, 23].

Remark: There is a connection between length spectrum and spec-
trum of the Laplacian. On hyperbolic manifolds, the Selberg trace for-
mula shows that the spectrum of the Laplacian determines the length
spectrum. For generic Riemannian metrics, the spectrum of the Lapla-
cian determines the length spectrum. The analogous spectral rigidity
question for the spectrum of the Laplacian was posed by Kac. Such
rigidity does not hold in general (one cannot “hear the shape of a
drum”) but does hold along deformations of negatively curved met-
rics [12, 7]. See [11, 24] for a discussion of these and related rigidity
problems.
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1. Lecture 1

1.1. Background on negatively curved surfaces. Let S be a com-
pact, negatively curved surface, and let S̃ be its universal cover. Since
S is a surface, all notions of curvature coincide (sectional, Gauss-
ian, Ricci. . .), and the curvature can thus be expressed as a function
k : S → R<0 which pulls back to a bounded function k : S̃ → R<0. The
Riemann structure defines a Levi-Civita connection ∇, which in turn
defines a notion of parallel translation. A vector field X along a curve
c(t) is parallel if ∇ċ(t)X(c(t)) = 0 for all t.

k = 0

k > 0
k < 0

Figure 1. Parallel transport in negative, positive and
zero curvature.

A curve γ is a geodesic if its velocity curve is parallel along itself:

(1) ∇γ̇ γ̇ ≡ 0.

Regarded in local coordinates, equation (1) is a second-order linear
ODE. A tangent vector v ∈ T S̃ supplies an initial value:

(2) γ̇(0) = v.
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Since the connection is C∞, the initial value problem given by (1)
and (2) has a unique solution. Because the Riemann structure on S̃
is the pullback of a structure on a compact manifold, this solution
is defined for all time. For a tangent vector v ∈ T S̃, we denote by
γv : (−∞,∞) → S̃ this unique geodesic with γ̇v(0) = v. (For back-
ground on the geodesic equation see, e.g. [16]). Solutions to ODEs
depend smoothly on parameters, so the map

(t, v) 7→ γv(t)

from R×T S̃ → S̃ is C∞. As parallel transport preserves the Riemman
structure, the speed ‖γ̇v(t)‖ is constant, equal to ‖v‖. One therefore
obtains a 1 − 1 correspondence between unit-speed geodesics and the
unit tangent bundle T 1S̃ given by v ↔ γv.

The Cartan-Hadamard theorem states in this setting that for any
p ∈ S̃, the exponential map

expp : w ∈ TpS̃ 7→ γw(1)

is a C∞ diffeomorphism onto S̃. Consequently, S̃ is contractible, dif-
feomorphic to the plane R2.

1.2. A key example. A key example is the hyperbolic plane. The
Poincaré disk (or hyperbolic disk) is the domain D = {z : |z| < 1}
with the metric

ds2 =
4|dz|2

(1− |z|2)2
.

The group of orientation-preserving isometries of D is

{
(

α β
β α

)
: |α|2 − |β|2 6= 0},

which acts by Möbius transformations:(
α β
β α

)
: z 7→ αz + β

βz + α
.

The hyperbolic disk is isometric via a Möbius transformation to the
upper-half plane H = Im(z) > 0 with the metric

ds2 =
|dz|2

c(Imz)2

(find c). The isometry group of H is

PSL(2,R) = {
(

a b
c d

)
: ad− bc = 1}/{±I},
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also acting by Möbius transformations. The curvature of H is constant,
equal to −c. We will refer to the D and H models interchangeably.

Hyperbolic geodesics in D are Euclidean circular arcs, perpendicular
to ∂D = {|z| = 1}. In H, hyperbolic geodesics in H are Euclidean
(semi) circular arcs, perpendicular to Im(z) = 0 (where lines are Eu-
clidean circles with infinite radius).

The stabilizer of a point under this left action is the compact sub-
group K = SO(2)/{±I}, which gives an identification of H with the
coset space of K:

H = PSL(2,R)/K.

The derivative action of PSL(2,R) on the unit tangent bundle T 1H
is free and transitive, and gives an analytic identification between T 1H
and PSL(2,R). The action of PSL(2,R) on T 1H by isometries corre-
sponds to left multiplication in PSL(2,R).

If S is a closed orientable surface with S̃ = H, then π1(S) acts
by isometries on H and hence embeds as a discrete subgroup Γ <
PSL(2,R). We thus obtain the following identifications:

S = Γ\H = Γ\PSL(2,R)/K,

and

T 1S = Γ\PSL(2,R).

Endowing PSL(2,R) with a suitable left-invariant metric gives an isom-
etry between PSL(2,R)/K and H. This metric on PSL(2,R) also in-
duces a metric on T 1H, called the Sasaki metric (see the next sec-
tion). In this metric, the lifts of geodesics in H via γ 7→ γ̇ gives Sasaki
geodesics in T 1H (there are other Sasaki geodesics that do not project
to geodesics in H but project to curves of constant geodesic curvature:
for example, the orbits of the SO(2) subgroup.)

Exercise 1.1. If you have never done so before, verify these assertions
about hyperbolic space. Useful fact: the curvature of a conformal met-
ric ds2 = h(z)2|dz|2 (where h is real-valued and positive) on a planar
domain is given by the formula:

k = −∆ log h

h2
,

where ∆ is the Euclidean Laplacian.
To verify the assertion about geodesics, it suffices to show that the

curve t 7→ iet is a geodesic in H and then apply isometries. (note that
this vertical ray in H is fixed pointwise by the (orientation-reversing)
hyperbolic isometry z 7→ −z...). One can also find a formula for hy-
perbolic distance using this method.
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To identify T 1H with PSL(2,R), start by identifying the unit verti-
cal tangent vector based at i with the identity matrix. It is helpful to
understand the orbit of this vector under one-parameter subgroups that
together generate PSL(2,R), for example, the groups in the Iwasawa
(KAN) decomposition.

Any closed orientable surface of genus 2 or higher admits a metric
of constant negative curvature. There are a variety of methods to
construct such a metric. One way is to find a discrete and faithful
representation ρ : π1(S)→ PSL(2,R), and set

S = Γ\PSL(2,R)/K

as above, with Γ = ρ(π1(S)). Using algebraic methods, one can find
arithmetic subgroups (and so arithmetic surfaces) in this way.

A highly symmetric, hands-on way to construct a genus g surface is
to take a regular hyperbolic 4g-gon with sum of vertex angles equal to
2π and use hyperbolic isometries to glue opposite sides. Much more
generally, hyperbolic structures are constructed by gluing together 2g
hyperbolic “pairs of pants” of varying cuff lengths. There are 6g − 6
degrees of freedom in this construction (cuff lengths of pants and twist
parameters in gluing). The space of all such structures is a 6g − 6-
dimensional space diffeomorphic to a ball called Teichmüller space, and
the space of of such structures modulo isometry is a 6g−6 dimensional
orbiford called Moduli space.

1.3. Geodesics in negative curvature. In the sequel, S is a closed,
orientable negatively curved surface. Henceforth, all geodesics are unit
speed, unless otherwise specified. To fix concepts, we endow the tan-
gent bundle TS with a fixed Riemann structure called the Sasaki met-
ric, which is compatible with the negatively curved structure on S. 1

(see, e.g. [16]). This pulls back to a Riemann structure on T 1S̃. In
what follows, the distances dT 1S and dT 1S̃ on T 1S and T 1S̃ are mea-
sured in this Sasaki metric. This metric has the property that its
restriction to any fiber of T 1S is just Lebesgue (angular) measure dθ,
and its restriction to any parallel vector field along a curve in S is just
arclength along that curve. On the hyperbolic plane, the Sasaki metric
is precisely the left-invariant metric on PSL(2,R).

1Briefly, the Sasaki structure in the tangent space TvTS to v ∈ TS is obtained
using the identification Tv(TS) ' Tπ(v)S × Tπ(v)S given by the connection. The
two factors are endowed with the original Riemann inner product and declared to
be orthogonal.
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We say γ1 ∼ γ2 if one is an orientation-preserving reparamentrization
of the other: γ2(t) = γ1(t + t0), for some t0 ∈ R. Denote by [γ] the
equivalence class of the parametrized unit speed geodesic γ.

Proposition 1.2. The universal cover S̃ has the following properties:

(1) Strict Convexity: If γ1, γ2 are distinct unit speed geodesics,
then

t 7→ d(γ1(t), γ2(R)) and t 7→ dT 1S̃(γ̇1(t), γ̇2(R))

are C∞, strictly convex functions acheiving their minimum at
the same time t0. Thus the distance between two unit speed
geodesics is realized at a unique point, where the (Sasaki) dis-
tance between velocity curves is also minimized.

(2) Geodesic rays are asymptotic or diverge: If γ1, γ2 : [0,∞)→
S̃ are geodesic rays with

lim sup
t→∞

d(γ1(t), γ2(t)) <∞,

then there exists t0 ∈ R such that

lim
t→∞

d(γ1(t), γ2(t+ t0)) = 0.

(in fact, this convergence to 0 is uniformly exponentially fast,
with rate determined by the curvature k).

(3) Distinct geodesics diverge: For every C, ε > 0, there exists
T > 0 such that, for any two unit speed geodesics: γ1, γ2 : (−∞,∞)→
S̃, if

max{d(γ1(−T ), d(γ2(−T )), d(γ1(T ), γ2(T ))} < C,

then

dT 1S̃(γ̇1(0), γ̇2([−T, T ])) < ε.

In particular, if

d(γ1(t), γ2(t)) < C

for all t, then γ1 ∼ γ2.

1.4. The geodesic flow. The geodesic flow ϕ : T S̃ × R → T S̃ sends
(v, t) to ϕt(v) := γ̇v(t). This projects to a geodesic flow on TS, since
the geodesic flow commutes with isometries. As remarked above, the
dependence of γ̇v(t) on v and t is C∞, and uniqueness of solutions to
the initial value problem (1) and (2) implies that ϕt is a flow on T 1S̃,
i.e. a 1-parameter group of diffeomorphisms under composition:

ϕ0 = Id, and ϕs+t = ϕs ◦ ϕt, ∀s, t.
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Since geodesics have constant speed, the geodesic flow restricts to a
geodesic flow on the unit tangent bundles T 1S, T 1S̃.

Exercise 1.3. An additional symmetry of the geodesic flow is flip in-
variance:

ϕ−t(−v) = −ϕt(v).

Another way to state this is that ϕt is conjugate to the reverse time
flow ϕ−t via the involution on I : T 1S̃ → T 1S defined by:

I(v) = −v.
Verify this.

Another useful way to describe the geodesic flow is as the flow of a
Hamiltonian vector field on TS (and similarly on T S̃). To do this, one
first recalls that the cotangent bundle T ∗S carries a canonical symplec-
tic structure (it is ω = dθ, where θ is the canonical 1-form on T ∗S).
This pulls back to a (noncanonical) symplectic form ω on the tangent
bundle via the Riemann structure. Let E : TS → R be the Hamiltonian
(energy) function given by the square of the Riemannian metric:

E(v) = ‖v‖2

Then the symplectic gradient XE of this Hamiltonian is defined by:

dE = iXE
ω.

The vector field XE on TS then generates the geodesic flow; i.e.,

d

dt
ϕt(v)|t=t0 = XE(ϕt0(v)),

for all v, t0 (this is just another formulation of the geodesic equation
given by (1) and (2)).

From standard properties of Hamiltonian flows, one reads off imme-
diately properties of the geodesic flow:

(1) E◦ϕt = E, for all t. That is, the geodesic flow preserves length.
(2) ϕ∗tω = ω, for all t. That is, {ϕt} is a 1-parameter group of

symplectomorphisms. In particular, ϕt preserves the volume
form ω ∧ ω.

(3) The restriction of ϕt to the unit tangent bundle T 1S̃ = E−1(1)
preserves the contact 1-form α given by

α = i∇Eω.

In particular, ϕt preserves the volume form dλ = α∧dα on T 1S
(Liouville’s Theorem). This volume λ is called the Liouville
measure. It is the product of Riemannian measure on S with
arclength on the fibers of T 1S.
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(4) Since T 1S is compact, its total volume is finite:

λ(T 1S) =

∫
T 1S

|α ∧ dα| <∞.

Poincaré Recurrence implies that for almost every v ∈ T 1S
(with respect to volume):

lim inf
t→±∞

dT 1S(ϕt(v), v) = 0.

More generally, the machinery of smooth ergodic theory can be
applied to geodesic flows to prove things like ergodicity, mixing
etc.

(See [15] for more details. Most of what is written here is completely
general and applies to any Riemannian manifold.)

Exercise 1.4. Show that on T 1H = PSL(2,R), the geodesic flow is
given by right multiplication by the 1-parameter subgroup:

A =

{
at :=

(
et/2 0

0 e−t/2

)
: t ∈ R

}
.

To be continued...
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