Lecture 4: Special cube complexes

Separability

G – finitely generated group, H < G

subgroup K such that H is said to be <u>separable</u> if for any $g \in G - H$ there exists a finite index H < K and g ∉ K.

 $G \rightarrow F$, in which $f(g) \notin f(H)$. <u>Exercise</u>. H is separable \Leftrightarrow for every $g \in G - H$, there exists a finite quotient f:

G is <u>residually finite</u> if the trivial group is separable.

<u>Exercise</u> . G is residually finite ⇔ G is Hausdorff. <u>Exercise</u> . H is separable ⇔ H is closed. <u>Exercise</u> . If G is residually finite and there H is virtual retract of G, then H is separable.	The profinite topology on G is the topology defined by taking cosets of finite index subgroups as basic open sets.	$G = \pi_1(K) \Rightarrow$ can "unwrap" loops (and not others)
hen H i	f finite	

Stallings proof of Marshall Hall's theorem

is separable. Theorem. Every finitely generated subgroup of a finitely generated free group

Proof. Completion and retract....

Special cube complexes (Haglund-Wise)

Definition. A NPC cube complex is called special if the it satisfy:

- 1. Every hyperplane is embedded.
- 2. Every hyperplane is 2-sided.
- 3. No hyperplane self-osculates.
- 4. No two hyperplanes interosculate .

Recall: A Salvetti complex for a RAAG.

into a Salvetti complex. <u>Lemma</u>. A cube complex is special ⇔ it admits a locally isometric immersion

Proof:

 \Leftarrow Definitive properties are preserved by pullbacks.

 \Rightarrow Let Γ = the incidence graph of the hyperplanes

Build map $X \rightarrow X_{\Gamma}$ in the natural way.

complexes, they are NPC. Recall: Since special complexes come with locally isometric maps to NPC

Completion and Retraction

- A compact cube complex, R Salvetti complex
- completion of A. f: $A \rightarrow R$, a locally isometric immersion. We describe C(A,R), the canonical
- C¹(A,R) define as before for graphs.
- Cⁿ(A,R) Fill in cubes, inductively, to obtain C(A,R), a covering space of R
- The retraction $C^{1}(A,R) \rightarrow A^{1}$ extends to a retraction $C(A,R) \rightarrow A$

Completing a map to a special complex

Fiber product: a cell for every pair of cells, one in C(A,R) and one in B, that map to the same cell in R.

$$\begin{array}{cccc} \mathsf{B} \otimes \mathsf{C}(\mathsf{A},\mathsf{R}) & \to & \mathsf{C}(\mathsf{A},\mathsf{R}) \\ \to & \mathsf{B} & \downarrow & \mathsf{C}(\mathsf{A},\mathsf{R}) \\ & & \to & \mathsf{R} \\ & & & & \downarrow \\ & & & & \mathsf{P} \end{array}$$
 special

⋗

Example: quasiconvex subgroups

- X special cube complex
- G $\pi_1(X)$, Gromov hyperbolic
- H < G, quasiconvex subgroup

We show that H is a virtual retract \Rightarrow separable.

Cores (Haglund)

CAT(0)

v – a vertex of Y = universal cover of X

Proposition. There exists R>0 such that Hull(Hv) ⊂ N_R(Hv).

Hv... Proof. If point is far away from Hv, there exists a hyperplane separating it from

Separability argument

- A = Hull(Hv)/H is compact and immerses into X
- $\pi_1(A) = H$
- Form canonical completion C(A,X)
- We then have a retraction $C(A,X) \rightarrow A$
- Conclusion H is a virtual retract so is separable.

<u>Corollary</u> C'(1/6) – groups are virtually special. In particular, they are linear!	ل Virtual Haken conjecture	<u>Corollary.</u> M a closed hyperbolic 3-manifold, then every quasi-conve injective surface in M lifts to an embedding in a finite cover.	Theorem. X a Gromov hyperbolic CAT(0) cube complex, G \circlearrowright X prope cocompactly, then there exists a finite cover of X/G which is a spec complex.
		i-convex π ₁ -	<properly a="" and="" cube<="" special="" td=""></properly>

Agol's theorem