Lecture 2: Cubulations

Pocsets \rightarrow CAT(0) Cube Complexes

 Σ – locally finite, finite width pocset

An <u>ultrafilter</u> on Σ is a subset $\alpha \subset \Sigma$ satisfying

- Choice: For every $A \in \Sigma$, $A \in \alpha$ or $A^* \in \alpha$ (not both)
- Consistency: $A \subset \alpha$ and $A \subset B \Rightarrow B \in \alpha$

every descending chain $A_1 > A_2 > \dots$ in α terminates. An ultrafilter α is said to satisfy the <u>descending chain condition (DCC)</u> if

	Ū
	X
	l
-	η
	2
	0
	S

Tree
squaring of R ²
family of lines in R ²

- X⁽⁰⁾ DCC vertices
- $X^{(1)}$ join α and β if they differ on a single choice:

$$3 = (\alpha; A) = (\alpha - \{A\}) \cup \{A^*\}$$

Exercise. (α ; A) is a vertex \Leftrightarrow A is minimal in α

• $X^{(2)}$ – attach squares to all 4-cycles in $X^{(1)}$

Exercise. α , (α ; A), (α ; B), (α ; A,B) are vertices

 \Leftrightarrow

A, $B \in \alpha$ are minimal and transverse

Remark. If pocset came with a group action, then the cube complex inherits an Exercise. The vertex α and $A_1, \dots, A_n \in \alpha$ span a cube action. <u>Remark.</u> Dimension of X = width of Σ Exercise. X is CAT(0) X⁽ⁿ⁾ – attach n-cubes wherever you can. $A_1, \dots, A_n \in \alpha$ are minimal and transverse \Leftrightarrow

(Wise) Small Cancellation Groups

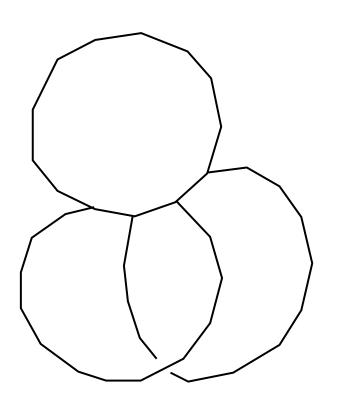
G = < S | R > where S, R are finite (R cyclically closed)

A <u>piece</u> is a word that appears twice in R.

in which it appears. G is C'(1/n) if the length of any piece is less than 1/n the length of any relator

<u>Gromov:</u> C'(1/6) groups are hyperbolic.

Build walls in the universal cover of the presentation complex.



Draw Wise-tracks across cells.

Coxeter Groups (Niblo-Reeves)

For $1 \leq i \neq j \leq n$ we start with some numbers

Define $G = \langle s_1, \dots, s_n | s_i^2, (s_i s_j)^{m_{ij}} \rangle$

each s_i^2 – bigon to an edge and each complex for a pair (i,j) to an m_{ij} – gon. Build the presentation 2-complex and then collapse

Draw tracks across cells.

Codimension 1 subgroups

H < G finitely generated

H has codimension 1 in G. If Cay(G)/H has more than one end then we say that

p: Cay(G) \rightarrow Cay(G)/H

 $p^{-1}(A) \rightarrow A$

 $\Omega = \{gA\} \cup \{gA^*\}$

(Cay(G), Ω) is a discrete space with walls

Cocompactness and Properness Criteria

Then the action on the associated cube complex is cocompact. <u>(Gitik-Mitra-Rips-S):</u> G hyperbolic group, H quasiconvex codimension 1 subgroup.

subgroup such that the lifts the surface to the universal cover is a pattern of planes any two of which intersect. Warning (Rubinstein-Wang): There exists a closed 3-manifold with a surface

⇐

Cube complex is infinite dimensional!

(Hruska-Wise): G ℃ K by isometries, properly. (K,Ω) a discrete wall space. d(x,gx) → ∞ ⇒ |{walls separating x & gx}| → ∞

Then the action on the associated cube complex is proper.

complex on the boundary. Then G acts properly and cocompactly on a CAT(0) cube (Bergeron-Wise): G hyperbolic such that quasi-convex subgroups separate points

Application: hyperbolic 3-manifolds

of C. For every $\varepsilon > 0$ and every circle C in S²= ∂H^3 , there exists a surface subgroup in H whose limit set lies in the *e-neighborhood* (Kahn-Markovic): G \bigcirc H 3 properly cocompactly

 \Leftarrow

3-manifold acts properly and cocompactly on a CAT(0) cube complex The fundamental group of every hyperbolic

Duality of constructions Finite dimensional Finite width $CAT(0)$ cc's Pocsets X \longrightarrow $\mathcal{H}(X)$ - halfspaces $X(\Sigma)$ Σ $X(\Sigma)$ Σ (Roller): These constructions are dual to one another. $X(\mathcal{H}(X))=X$ $\mathcal{H}(X(\Sigma))=\Sigma$ Exercise: Show this. (Also think about infinite dimensional complexes and infinite width pocsets.)
--

decomposition as a product of irreducibles. Corollary: Every finite dimensional CAT(0) cube complex admits a canonical Proof:

A decomposition $\hat{H} = \hat{H}_1 \cup \hat{H}_2$ where every hyperplane in \hat{H}_1 crosses every hyperplane in \hat{H}_2

A decomposition of X as a product X = $X_1 \times X_2$

 \leftrightarrow

Application: Recognizing Products