And what's it all good for

Groups which act on them

CAT(0) Cube Complexes
A CAT(0) cube complex is a 1-connected NPC cube complex.

The link of each vertex is a flag complex (no missing simplices) •

The 1-skeleton of the link of a vertex is a simplicial graph (no 1,2-gons) •

unit Euclidean cubes by isometries of their faces so that:

A non-positively curved (NPC) cube complex is a cell complex built out of

NPC and CAT(0) cube complexes

Lecture 1: Introduction
Bridson: the natural piecewise path metric on a CAT(0) cube complex is indeed a metric.

Groves: With this metric, a CAT(0) cube complex is locally CAT(0).

Leary (appendix to "A metric Kan-Thurston theorem"): generalized to the infinite dimensional case.

Remark: The universal cover of a NPC complex is CAT(0).

Groups

Fundamental groups of NPC groups (and more generally, groups which act properly and cocompactly on CAT(0) cube complexes) are called cubed.
<table>
<thead>
<tr>
<th>A product</th>
<th>A graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Salvetti complex</td>
<td>A surface (genus > 0)</td>
</tr>
</tbody>
</table>
Exercise. Show that a CAT(0) square complex is a product of trees if and only if the link of each vertex is a complete bipartite graph.

Example. (Janzen-Wise) Four square example of free cocompact quotient of a tree x tree which is not finitely covered by graph x graph. (Burger-Mozes have examples which are simple groups.)

![Diagram of square complexes](image)

Exercise. Say something about $G = \langle a, b, c \mid a^2 b^2 c^2 bac \rangle$
Definition: A map \(f: X \to Y \) between cube complexes is said to be a cubical map if it sends cubes to cubes and on each cube factors through a natural projection.

Exercise: Let \(f: X \to Y \) be a cubical map such that

- \(f \) is locally injective
- \(f(lk(v)) \) is a full subcomplex of \(lk(f(v)) \)

Show that

- \(X \) is NPC
- \(f_*: \pi_1(X) \to \pi_1(Y) \) is injective

Hint: Cartan-Hadamard
Hyperplanes

X - NPC cube complex

E - edges of X

Equivalence relation on E: ~ generated by

e ∼ f

Hyperplane dual to equivalence class:

Hyperplanes
Exercise. Find an infinite NPC square complex with two embedded hyperplanes.

Exercise. Find a NPC square complex with a single hyperplane.

Exercise. Find a NPC square complex with a single hyperplane.

Previously:

Exercise. Understand what hyperplanes look like in the examples discussed.
Fundamental hyperplane facts

• Embeddedness: A hyperplane in a $\text{CAT}(0)$ cube complex is embedded (the carrier of the hyperplane is a convex subcomplex)

• Separation: Each hyperplane separates the cube complex into two components

• Helly: Every collection of pairwise intersecting hyperplanes intersects

• Hereditary CAT(0)ness: Each hyperplane in a $\text{CAT}(0)$ cube complex is a $\text{CAT}(0)$ cube complex
Application: No f.g. torsion groups

Theorem. \(G \) finitely generated and \(G \circlearrowright X \) a finite-dimensional without a global fixed point. Then \(G \) is not a torsion group.

Lemma (Exercise). A geodesic 1-skeleton path between vertices crosses every hyperplane separating the vertices exactly once.

Proofs:
Observations:
1. \(\mathcal{H} \) is a poset under inclusion
2. The poset \(\mathcal{H} \) is locally finite
3. \(\mathcal{H} \) has an order reversing involution

Notation:
\(\mathcal{H} \) - half-spaces
\(\hat{h} \) - half-space
\(\hat{h} \) - hyperplane
\(\overset{\ast}{h} \) - opposite half-space
A pocset \(\Sigma \) is a poset with an order-reversing involution \(\ast: \Sigma \to \Sigma \).

Two elements \(A, B \subseteq \Sigma \) are said to be transverse if
\(A \neq B, A \neq B^\ast, A^\ast \neq B \) and \(A^\ast \neq B^\ast \).

A pocset \(\Sigma \) is said to be of width \(n \) if the size of the largest collection of mutually transverse elements is \(n \).

We will call the pocset \(\Sigma \) locally finite if it is the poset \(\mathbb{Z} \) is locally finite.
Spaces with walls (Nica, Chatterji-Niblo)

Example of a pocset: A space with walls is simply

Exercise: (prove, disprove or salvage if possible)

A space with walls is called discrete if for any two elements a, b ∈ S, there are finitely many $A \in \Omega$ satisfying $a \in A$ and $b \notin A$.

A space with walls is discrete if and only if the associated pocset is locally finite.

Ω - a collection of subsets of S closed under complementation

S - a set

Example of a pocset: A space with walls is simply
| Surface in a 3-manifold | Curve on a surface | Lines in \mathbb{R}^2 |

Examples: