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1 Introduction

What is Geometric Group Theory (GGT)?

Historically (19th century), groups appeared as automorphism groups of some
structures:

• Polynomials (field extensions) — Galois groups.

• Vector spaces, possibly equipped with a bilinear form— Matrix groups.

• Complex analysis, complex ODEs — Monodromy groups.

• Partial differential equations — Lie groups (possibly infinite-dimensional ones)

• Various geometries — Isometry groups of metric spaces, both discrete and
nondiscrete.

Goal of GGT is to study finitely-generated (f.g.) groups G as automorphism groups
(symmetry groups) of metric spaces X.

Central question: How algebraic properties of a group G reflect in geometric
properties of a metric space X and, conversely, how geometry of X reflects in algebraic
structure of G.

This interaction between groups and geometry is a fruitful 2-way road.

Inspiration: Simple noncompact connected Lie groups — Irreducible symmetric
spaces of noncompact type (E.Cartan et al).

Here there is an essentially 1-1 correspondence between algebraic objects (a Lie
group of a certain type) and geometric objects (certain symmetric spaces). Namely,
given a Lie group G on constructs a symmetric space X = G/K (K is a maximal
compact subgroup of G) and, conversely, every symmetric space corresponds to a Lie
group G (its isometry group) and this group is unique.

Imitating this correspondence is an (unreachable) goal for GGT.
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2 Cayley graphs and other metric spaces

Recall that we are looking for a correspondence:

groups ←→ metric spaces

The first step is to associate with a f.g. group G a metric space X. Let G be
a group with a finite generating set S = {s1, ..., sk}. It is sometimes convenient to
assume that S is symmetric, i.e., ∀s ∈ S, s−1 ∈ S. Then we construct a graph X,
where the vertex set V (X) is the group G itself and edges of X are

[g, gsi], si ∈ S, g ∈ G.

(If gsi = gsj, i.e., si = sj, then we treat [g, gsi], [g, sj] as distinct edges, but this is
not very important.) We do not orient edges.

The resulting graph X is called Cayley graph of the group G with respect to the
generating set S.

For examples of Cayley graphs — see the 1st discussion section.

Then the group G acts (by multiplication on the left) on X: Every γ ∈ G defines
a map

γ(g) = γg, g ∈ G.
Clearly, edges are preserved. Since S is a generating set of G, the graph X is con-
nected.

Metric on a graph: If X is any connected graph, then we declare every edge of
X to have unit length. Then we have a well-defined notion of length of a path in
X. Distance between points in X is the length of the shortest path in X connecting
these points.

Exercise 2.1. Shortest path always exists.

If you like, you can think of connecting only vertices of X by paths, as we will see,
this is not very important. The restriction of this metric to G is called a word-metric
on G. Here is why:

Example 2.2. Let X be Cayley graph of a group G. Distance d(1, g) from 1 ∈ G to
g ∈ G is the same thing as the “norm” |g| of g, the minimal number m of symbols in
the decomposition (a “word in the alphabet S ∪ S−1”)

g = s±1
i1
s±1
i2
...s±1

im

of g as a product of generators and their inverses. Note: If g = 1 then m = 0.

Other metric spaces which appear naturally in GGT: Connected Riemannian man-
ifolds (M,ds2). In this case, the distance between points is

d(x, y) = inf{
∫
p

ds =

∫ T

0

|p′(t)|dt}
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where infimum is taken over all paths p connecting x to y.

This, we have a correspondence: Groups → Metric spaces,

Cayley : G→ X = Cayley graph of G.

Is this the only correspondence? (No!) Is this map “Cayley” well defined ? (Not
really, since G has many generating sets.)

Definition 2.3. Let X be a metric space and G is a group acting on X. The action
G y X is called geometric if:

1. G acts isometrically on X.

2. G acts properly discontinuously on X (i.e., ∀ compact C ⊂ X, the set
{g ∈ G : gC ∩ C 6= ∅} is finite).

3. G acts cocompactly on X: X/G is compact.

Informally, a group X is a group of (discrete) symmetries of X if G acts geomet-
rically on X.

Example 2.4. G is a f.g. group, X is its Cayley graph. Question: What is the
quotient graph X/G?

Example 2.5. M is a compact connected Riemanninan manifold, π = π1(M), the
fundamental group, X = M̃ is the universal cover of M (with lifted Riemannian
metric), π acts on X as the group of covering transformations for the covering X →
M .

More generally, let φ : π → G be an epimorphism, X → M be the covering
corresponding to Ker(φ). Then the group of covering transformations of X → M is
G and G acts geometrically on X.

Note: For every f.g. group G there exists a compact Riemannian manifold M
(in every dimension ≥ 2) with an epimorphism π1(M) → G. Thus, we get another
correspondence Groups → metric spaces,

Riemann : G→ X = a covering space of some M as above.

Thus, we have a problem on our hands, we have too many candidates for the
correspondence Groups → Spaces and these correspondences are not well-defined.
What do different spaces on which G acts geometrically have in common?

3 Quasi-isometries

Definition 3.1. a. Let X,X ′ be metric spaces. A map f : X → X ′ is called (L,A)-
quasi-isometry if:
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1. f is (L,A)-Lipschitz:

d(f(x), f(y)) ≤ Ld(x, y) + A.

2. There exists an (L,A)-Lipschitz map f̄ : X ′ → X, which is “quasi-inverse” to
f :

d(f̄f(x), x) ≤ A, d(ff̄(x′), x′) ≤ A.

b. Spaces X,X ′ are quasi-isometric to each other if there exists a quasi-isometry
X → X ′.

Note, if A = 0 then such f is a bilipschitz homeomorphism; if L = 1, A = 0 then
f is an isometry.

Example 3.2. 1. Every bounded metric space is QI to a point.

2. R is QI to Z.

3. Every metric space is QI to its metric completion.

Here and in what follows I will abbreviate “quasi-isometry” and “quasi-isometric”
to QI.

Exercise 3.3. • Every quasi-isometry is “quasi-surjective”:
∃C <∞|∀x′ ∈ X ′,∃x ∈ X|d(x′, f(x)) ≤ C.

• Show that a map f : X → X ′ is a quasi-isometry iff it is quasi-surjective and
is a “quasi-isometric embedding”: ∃L,∃A so that ∀x, y ∈ X:

1

L
d(x, y)− A ≤ d(f(x), f(y)) ≤ Ld(x, y) + A.

• Composition of quasi-isometries is again a quasi-isometry.

• Quasi-isometry of metric spaces is an equivalence relation.

Exercise 3.4. 1. Let S, S ′ be two finite generating sets for a group G and d, d′ be
the corresponding word metrics. Then the identity map (G, d)→ (G, d′) is an (L, 0)-
quasi-isometry for some L.

2. G is QI to its Cayley graph X. The map G → X is the identity. What is the
quasi-inverse?

Lemma 3.5. (Milnor–Schwartz lemma). Suppose that G acts geometrically on a
“nice” metric space X (e.g. a graph or a Riemannian manifold). Then G is f.g. and
(∀x ∈ X) the orbit map g 7→ g(x), G→ X, is a quasi-isometry, where G is equipped
with word-metric.
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Thus, if instead of isometry classes of metric spaces, we use their QI classes, then
both Cayley and Riemann correspondences are well-defined and are equal to each
other! Now, we have a well-defined map

geo : f.g. groups −→ QI equivalence classes of metric spaces.

Problem: This map is very far from being 1-1, so our challenge is to “estimate”
the fibers of this map.

Exercise 3.6. Show that half-line is not QI to any Cayley graph. Hint: Prove first
that every unbounded Cayley graph contains an isometrically embedded copy of R.
Use Arzela-Ascoli theorem.

Example 3.7. Every finite group is QI to the trivial group.

In particular, from the QI viewpoint, the entire theory of finite groups (with its
150 year-old history culminating in the classification of finite simple groups) becomes
trivial. Is this good news or is this bad news?

This does not sound too good if we were to recover a group from its geometry (up
to an isomorphism). Is there a natural equivalence relation on groups which can help
us here?

4 Virtual isomorphisms and QI rigidity problem

In view of M-S lemma, the following provide examples of quasi-isometric groups:

1. If G′ < G is a finite-index subgroups then G is QI to G′. (G′ acts on G
isometrically and faithfully so that the quotient is a finite set.)

2. If G′ = G/F , where F is a finite group, then G is QI to G′. (G acts isometrically
and transitively on G′ so that the action has finite kernel.)

Combining these two examples we obtain

Definition 4.1. 1. G1 is VI to G2 if there exist finite index subgroups Hi ⊂ Gi and
finite normal subgroups Fi / Hi, i = 1, 2, so that the quotients H1/F1 and H2/F2 are
isomorphic.

2. A group G is said to be virtually cyclic if it is VI to a cyclic group. Similarly,
one defines virtually abelian groups, virtually free groups, etc.

Lemma 4.2. VI is an equivalence relation.

By M-S lemma,
V I ⇒ QI

Thus, if we were to recover groups from their geometry (treated up to QI), then
the best we can hope for is to recover a group up to VI. This is bad news for people
in the finite group theory, but good news for the rest of us.
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Remark 4.3. There are some deep and interesting connections between theory of
finite group and GGT, but quasi-isometries do not see these.

Informally, quasi-isometric rigidity is the situation when the arrow V I ⇒ QI can
be reversed.

Definition 4.4. 1. We say that a group G is QI rigid if every group G′ which is QI
to G, is in fact VI to G.

2. We say that a class C of group is QI rigid if every group G′ which is QI to
some G ∈ C, there exists G′′ ∈ C so that G′ is VI to G′′.

3. A property P of groups is said to be “geometric” or “QI invariant” whenever
the class of groups satisfying P is QI rigid.

Note that studying QI rigidity and QI invariants is by no means the only topic of
GGT, but this will be the topic of my lectures.

5 Examples and non-examples of QI rigidity

At the first glance, any time QI rigidity holds (in any form), it is a minor miracle: How
on earth are we supposed to recover precise algebraic information from something as
sloppy as a quasi-isometry? Nevertheless, instances of QI rigidity abound.

Examples of QI rigid groups/classes/properties (all my groups are finitely-
generated, of course):

• Free groups.

• Free abelian groups.

• Class of nilpotent groups.

• Class of fundamental groups of closed (compact, without boundary) surfaces.

• Class of fundamental groups of closed (compact, without boundary) 3-dimensional
manifolds.

• Class of finitely-presentable groups.

• Class of hyperbolic groups.

• Class of amenable groups.

• Class of fundamental groups of closed n-dimensional hyperbolic manifolds. For
n ≥ 3 this result, due to P.Tukia, will be the central theorem of my lectures.

• Class of discrete cocompact subgroups Γ in a simple noncompact Lie group G.
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• Every discrete subgroup Γ in a simple noncompact Lie group G so that G/Γ
has finite volume. For instance, every group which is QI to SL(n,Z) is in fact
VI to SL(n,Z).

• Solvability of the word problem (say, for finitely-presented groups).

• Cohomological dimension over Q.

• Admitting a “geometric” action on a contractible CW-complex (i.e., an action
which is cocompact on each skeleton is cocompact and properly discontinuous).

• Admitting an amalgam decomposition (amalgamated free product or HNN de-
composition) over a finite subgroup.

• Admitting an amalgam decomposition over a virtually cyclic subgroup.

Rule of thumb: The closer a group (a class of groups) is to a Lie group, the
higher are the odds of QI rigidity.

Examples of failure of QI rigidity:

• Suppose that S is a closed surface of genus ≥ 2 and π = π1(S). Then Z× π is
QI to any Γ which appears in any central extension

1→ Z→ Γ→ π → 1.

For instance, the fundamental group Γ of the unit tangent bundle to Σ appears
like this.

• In particular, the property of being the fundamental group of a compact nonpositively-
curved Riemannian manifold with convex boundary is not QI invariant.

• There are countably many VI classes of groups which act geometrically on the
hyperbolic 3-space. All these groups are QI to each other by M-S lemma. Same
for all irreducible nonpositively curved symmetric spaces of dimension ≥ 3.

• Class of solvable groups is not QI rigid.

• Class of simple groups is not QI rigid.

• Class of residually-finite groups is not QI rigid.

• Property T is not QI invariant.

Few open problems:

• Is the class of π1 of a closed aspherical n-dimensional orbifolds QI rigid?

• Is the class of polyciclic groups QI rigid (conjecturally, yes).
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• Is the class of Right-Angled Artin Groups QI rigid?

• Are random finitely-presented groups QI rigid?

Where do the tools of GGT come from? Almost everywhere! Here are some
examples:

• Group theory (of course)

• Geometry (of course)

• Topology (point-set topology, geometric topology, algebraic topology)

• Lie theory

• Analysis (including PDEs, functional analysis, real analysis, complex analysis,
etc.)

• Probability

• Logic

• Dynamical systems

• Homological algebra

• Combinatorics

In these lectures, I will introduce two (of many) tools of QI rigidity: Ultralimits
(coming from logic) and Quasiconformal maps (geometric analysis and real analysis).

6 Ultralimits and asymptotic cones

Motivation: Quasi-isometries are not nice maps, they need not be continuous, etc.
We will use ultralimits to convert quasi-isometries to homeomorphisms.

Definition 6.1. An ultrafilter on the set N of natural numbers is a finitely-additive
(σ-additive) measure defined for all subsets of N and taking only the values 0 and 1.

In other words, ω : 2N → {0, 1} is:

• Finitely-additive: ω(A ∪B) = ω(A) + ω(B)− ω(A ∩B).

• ω(∅) = 0.
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We will say that a subset E of N is ω-large if ω(E) = 1. Similarly, we will say
that a property P (n) holds for ω-all natural numbers if ω({n : P (n) is true }) = 1.

Trivial examples of ultrafilters are such that ω({n}) = 1 for some n ∈ N. I will
always assume that ω vanishes on all finite sets.

Existence of ultrafilters does not follow from the Zermelo-Frankel (ZF) axioms of
set theory, but follows from ZFC (ZF+ Axiom of Choice).

We will use ultrafilters to define limits of sequences:

Definition 6.2. Let X be a Hausdorff topological space and ω is an ultrafilter (on
N). Then, for a sequence (xn) of points xn ∈ X, we define ω-limit (ultralimit),
limω xn = a, by:

For every neighborhood U of a the set {n ∈ N : xn ∈ U} is ω-large.

In other words, xn ∈ U for ω-all n.

As X is assumed to be Hausdorff, limω xn is unique (if it exists).

Exercise 6.3. If limxn = a (in the usual sense) then limω xn = a for every ω.

I will fix an ultrafilter ω once and for all.

Lemma 6.4. If X is compact then every sequence in X has ultralimit.

In particular, every sequence tn ∈ R+ has ultralimit in [0,∞].

Exercise 6.5. What is the ultralimit of the sequence (−1)n in [0, 1]?

Our next goal is to define ultralimit for a sequence of metric spaces (Xn, dn).
The definition is similar to Cauchy completion of a metric space: Elements of the
ultralimit will be equivalence classes of sequences xn ∈ Xn. For every two sequences
xn ∈ Xn, yn ∈ Yn we define

dω((xn), (yn)) := lim
ω
dn(xn, yn) ∈ [0,∞].

Exercise 6.6. Verify that dω is a pseudo-metric. (Use the usual convention ∞+a =
∞, for every a ∈ R ∪ {∞}.)

Of course, some sequences will be within zero distance from each other. As in
the definition of Cauchy completion, we will identify such sequences (this is our
equivalence relation). After that, dω is “almost” a metric: The minor problem is
that sometimes dω is infinite. To handle this problem, we introduce a sequence of
“observers”, points pn ∈ Xn. Then, we define limωXn = Xω, the ultralimit of the
sequence of “pointed” metric spaces (Xn, pn) to be the set of equivalence classes of
sequences xn ∈ Xn so that

lim
ω
dn(xn, pn) <∞.

Informally, Xω consists of equivalence classes of sequences which the “observers” can
see.

In case (Xn, dn) = (X, d), we will refer to limωXn as a constant ultralimit.
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Exercise 6.7. • If X is compact then the constant ultralimit limωX is homeo-
morphic to X (for any sequence of observers).

• Suppose that X admits a geometric group action. Then the constant ultralimit
limωX does not depend on the choice of the observers.

• Suppose that X is a metric space where every closed metric ball is compact. Then
for every bounded sequence pn ∈ X the constant ultralimit limωX is homeomor-
phic to X.

• For instance, limω Rk = Rk.

The ultralimits that we will use are not quite constant: Take a metric space (X, d)
and a sequence of positive scale factors λn so that limω λn = 0. Then take dn := λnd.
Hence, the sequence (X, dn) consists of rescaled copies of (X, d).

Definition 6.8. An asymptotic cone of X, denoted Cone(X) is the ultralimit of the
sequence of pointed metric spaces: Cone(X) = limω(Xn, λnd, pn).

Note that, in general, the asymptotic cone depends on the choices of ω, (λn) and
(pn).

Exercise 6.9. Let G = Zn be the free abelian group with its standard set of generators.
Let X = G with the word metric. Then Cone(X) is isometric to Rn with the `1-metric
corresponding to the norm

‖(x1, ..., xn)‖ = |x1|+ ...+ |xn|.

Lemma 6.10. Suppose that X is the hyperbolic space Hk, k ≥ 2. Then Xω =
Cone(X) (for all choices) is a tree which branches at every point and has infinite
(continual) degree of branching at every point xω: The cardinality of the number of
components of Xω − {xω} is continuum.

Quasi-isometries and asymptotic cones. Suppose that f : X → X ′ is an
(L,A)-quasi-isometric embedding:

1

L
d(x, y)− A ≤ d(f(x), f(y)) ≤ Ld(x, y) + A.

Pick a sequence of scale factors λn a sequence of observers pn ∈ X and their images
qn = f(xn). Then, after rescaling the metrics on X,X ′ by λn, we obtain:

1

L
d(x, y)− λnA ≤ d(f(x), f(y)) ≤ Ld(x, y) + λnA.

Thus, after taking the ultralimit:

fω : Xω → X ′ω, fω((xn)) = (f(xn)).
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we get:
1

L
dω(x, y) ≤ dω(fω(x), fω(y)) ≤ Ldω(x, y)

for all x, y ∈ Xω. Thus, fω is a bilipschitz embedding, since the additive constant A
is gone! Even better, if f was quasi-surjective, then fω is surjective. Thus, fω : Xω →
X ′ω is a homeomorphism!

The same principle applies to sequences of quasi-isometric embeddings/quasi-
isometries as longs as the constants L,A are fixed.

Exercise 6.11. Rn is QI to Rm iff n = m.

Exercise 6.12. Suppose that Rn → Rn is a QI embedding. Then f is quasi-surjective.
Hint: If not, then, taking an appropriate sequence of scaling factors and observers,
and passing to asymptotic cones, we get fω : Rn → Rn, a bilipschitz embedding which
is not onto. This map has to be open (since dimensions of domain and range are the
same), it is also proper since it is bilipschitz. Thus, fω is also closed. Hence fω is
onto.

Unfortunately, we cannot tell Hn from Hm using asymptotic cones since all cones
are isometric to the same tree!

Morse Lemma. Let X = Hn be a hyperbolic space. A quasi-geodesic in X is a
QI embedding f : I → X, where I is an interval in R (either finite or infinite).

Lemma 6.13. There exists a function D(L,A) so that every (L,A)-quasi-geodesic in
X is D-close to a geodesic.

Proof. Quasi-geodesics in X yield bi-Lipschitz embedded curves in the tree Cone(X).
However, every embedded curve in a tree is geodesic.

The same applies to all Gromov-hyperbolic geodesic metric spaces (e.g., Gromov-
hyperbolic groups). Morse lemma fails completely in the case of quasi-geodesics in
the Euclidean plane.

7 Boundary extension of QI maps of hyperbolic

spaces

Suppose that X = Hn and f : X → X is a QI map. Then it sends geodesic rays
uniformly close to geodesic rays: ∀ρ, ∃ρ′ so that

d(f(ρ), ρ′) ≤ D

where ρ, ρ′ are geodesic rays. Let ξ, ξ′ be the limits of the rays ρ, ρ′ on the boundary
sphere of Hn. Then we set

f∞(ξ) := ξ′.
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Exercise 7.1. The point ξ′ depends only on the point ξ and not on the choice of a
ray ρ that limits to ξ.

Thus, we obtain the boundary extension of quasi-isometries of Hn to the boundary
sphere Sn−1.

Exercise 7.2. (f ◦ g)∞ = f∞ ◦ g∞ for all quasi-isometries f, g : X → X.

Exercise 7.3. Suppose that d(f, g) <∞, i.e., there exists C <∞ so that

d(f(x), g(x)) ≤ C

for all x ∈ X. Then f∞ = g∞. In particular, if f̄ is quasi-inverse to f , then (f̄)∞ is
inverse to f∞.

Our next goal is to see that the extensions f∞ are continuous, actually, they
satisfy some further regularity properties which will be critical for the proof of Tukia’s
theorem.

Let γ be a geodesic ray in Hn and p : Hn → γ be the orthogonal projection
(the nearest-point projection). Then for all x ∈ γ (except for the initial point),
Hx := p−1(x) is an n− 1-dimensional hyperbolic subspace of Hn, which is orthogonal
to γ.

Lemma 7.4. Quasi-isometries quasi-commute with the nearest-point projections. More
precisely, let f : Hn → Hn be an (L,A)-quasi-isometry. Let γ be a geodesic ray,
γ′ be a geodesic ray within distance ≤ D(L,A) from the quasi-geodesic f(γ). Let
p : Hn → γ, p′ : Hn → γ′ be nearest-point projections. Then, for some C = C(L,A),
we have:

d(fp, p′f) ≤ C,

i.e.,
∀x ∈ Hn, d(fp(x), p′f(x)) ≤ C.

Let ξ be the limit point of γ. Then, for xi ∈ γ converging to ξ, the boundary
spheres Σi of the subspaces Hxi

= p−1(xi), bound round balls Bi ⊂ Sn−1 (containing
ξ). These balls form a basis of topology at the point ξ ∈ Sn−1. Quasi-isometry
property of f implies that points yi = f(xi) cannot form a bounded sequence in Hn,
hence, lim yi = ξ. Using the above lemma, we see that f∞(Bi) are contained in round
balls B′i, whose intersection is the point ξ′ = f∞(ξ). Thus, f∞ is continuous and,
hence, a homeomorphism. We thus obtain

Lemma 7.5. For every quasi-isometry f : Hn → Hn, the boundary extension f∞ is
a homeomorphism.

Corollary 7.6. Hn is QI to Hm iff n = m.

12



8 Quasi-actions

The notion of an action of a group on a space is replaced, in the context of quasi-
isometries, by quasi-action. Recall that an action of a group G on a set X is a
homomorphism φ : G → Aut(X), where Aut(X) is the group of bijections X →
X. Since quasi-isometries are defined only up to “bounded noise”, the concept of a
homomorphism has to be modified when we use quasi-isometries.

Definition 8.1. Let G be a group and X be a metric space. An (L,A) -quasi-action
of G on X is a map φ : G→Map(X,X), so that:

• φ(g) is an (L,A)-quasi-isometry of X for all g ∈ G.

• d(φ(1), idX) ≤ A.

• d(φ(g1g2), φ(g1)φ(g2)) ≤ A for all g1, g2 ∈ G.

Thus, Parts 2 and 3 say that φ is “almost” a homomorphism with the error A.

Example 8.2. Suppose that G is a group and φ : G→ R is a function which deter-
mines a quasi-action of G on R by translations (g ∈ G acts on R by the translation by
φ(x)). Such maps φ are called quasi-morphisms and they appear frequently in GGT.
Many interesting groups do not admit nontrivial homomorphisms of R but admit un-
bounded quasimorphisms.

Here is how quasi-actions appear in the context of QI rigidity problems. Suppose
that G1, G2 are groups acting isometrically on metric spaces X1, X2 and f : X1 → X2

is a quasi-isometry with quasi-inverse f̄ . We then define a quasi-action φ of G2 on
X1 by

φ(g) = f̄ ◦ g ◦ f.

Exercise 8.3. Show that φ is indeed a quasi-action.

For instance, suppose that X1 = Hn, ψ : G1 y X is a geometric action, and
suppose that G2 is a group which is QI to G1 (and, hence, by M-S Lemma, G2

is QI to X). We then take X2 = G2 (with a word metric). Then quasi-isometry
f : G1 → G2 yields a quasi-action φf,ψ of G2 on Hn.

We now apply our extension functor (sending quasi-isometries of Hn to homeo-
morphisms of the boundary sphere). Then, Exercises 7.1 amd 7.2 imply:

Corollary 8.4. Every quasi-action φ of a group G on Hn extends (by g 7→ φ(g)∞)
to an action φ∞ of G on Sn−1 by homeomorphisms.

Lemma 8.5. The kernel for the action φ∞ is finite.

Proof. The kernel of φ∞ consists of the elements g ∈ G such that d(φ(g), id) <
∞. Since φ(g) is an (L,A)-quasi-isometry of Hn, it follows from Morse lemma that
d(φ(g), id) ≤ C = C(L,A). Thus, such g, as an isometry G → G moves every point
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at most by C ′ = C ′(L,A). However, clearly the set of such elements of G is finite.
Hence, Ker(φ∞) is finite as well.

Conical limit points of quasi-actions. Suppose that φ is a quasi-action of a
group G on Hn. A point ξ ∈ Sn−1 is called a conical limit point for the quasi-action
φ if the following holds:

For some (equivalently every) geodesic ray γ ⊂ Hn limiting to ξ, and some (equiv-
alently every) point x ∈ Hn, there exists a constant R <∞ and a sequence gi ∈ G so
that:

• limi→∞ φ(g)(x) = ξ.

• d(φ(gi)(x), γ) ≤ R for all i.

In other words, the sequence φ(gi)(x) converges to ξ in a closed cone (contained
in Hn) with the tip ξ.

Lemma 8.6. Suppose that ψ : G y Hn is a geometric action. Then every point of
the boundary sphere Sn−1 is a conical limit point for ψ.

Lemma 8.7. Suppose that G1 y Hn geometrically, G2 is a group and f : Hn →
G2 is a quasi-isometry. Then every point of Sn−1 is a conical limit point for the
corresponding quasi-action φf,ψ of G2 on Hn.

If φ∞ is a topological action of a group G on Sn−1 which is obtained by extension
of a quasi-action φ of G on Hn, then we will say that conical limit points of the action
G y Sn−1 are the conical limit points for the quasi-action G y Hn.

9 Quasiconformality of the boundary extension

Can we get a better conclusion than just homeomorphism for the maps f∞?

I will work in the upper half-space model of Hn. After composing f with isometries
of Hn, we can (and will) assume that:

• ξ ∈ Rn and γ is the vertical geodesic above 0.

• ξ′ = f∞(ξ) ∈ Rn.

• f∞(∞) = ∞. In particular, the vertical geodesic γ above ξ maps to a quasi-
geodesic within bounded distance from the vertical geodesics γ′ above ξ′.

For every x ∈ γ, take the subspace Hx = p−1(x) (p is the projection to γ). Then
f(Hx) is contained in the slab Sy,z ⊂ Hn bounded by subspaces Hz, Hy orthogonal to
γ′, where d(y, z) ≤ C = C(L,A). Then the boundary of Sy,z in Sn−1 = Rn−1 ∪∞ is
a spherical annulus bounded by spheres of radii R1 ≤ R2. We also have:

R2

R1

≤ c = eC .
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Thus, the image of the sphere Σ = ∂Hx is a “quasi-ellipsoid” of the eccentricity ≤ c.

I will now change my notation and will use n to denote the dimension of the
boundary sphere of the hyperbolic n+ 1-dimensional space. I will think of Sn as the
1-point compactification of Rn and will use letters x, y, z, etc., to denote points on
Rn. I will also use the notation f for the maps Rn → Rn.

Definition 9.1. A homeomorphism f : Rn → Rn is called c-quasi-symmetric1, if for
all x, y, z ∈ Rn so that 0 < |x− y| = |x− z| = r, we have

|f(x)− f(y)|
|f(x)− f(z)|

≤ c. (1)

We will think of quasi-symmetric maps as homeomorphisms of Sn = Rn ∪ ∞,
which send ∞ to itself.

Theorem 9.2. (P.Tukia, F.Paulin) Every c-quasi-symmetric homeomorphism Sn →
Sn extends to an (L(c), A(c))-quasi-isometric map of the hyperbolic space.

The drawback of this definition is that we are restricted to the maps of Rn rather
than Sn. In particular, we cannot apply this definition to Moebius transformations.

Definition 9.3. A homeomorphism of Sn is called quasi-moebius if it is a composition
of a Moebius transformation with a quasi-symmetric map.

We thus conclude that every (L,A)-quasi-isometry Hn+1 → Hn+1 extends to a
c-quasi-moebius homeomorphism of the boundary sphere. Unfortunately, this def-
inition of quasi-moebius maps is not particularly useful. One can define instead
quasi-moebius maps by requiring that they quasi-preserve the cross-ratio, but then
the definition becomes quite cumbersome.

What we will do instead is to take the limit in the inequality (1) as r → 0. Then
for every c-quasi-symmetric map f we obtain:

∀x, Hf (x) := lim sup
r→0

(
sup
y,z

|f(x)− f(y)|
|f(x)− f(z)|

)
≤ c. (2)

Here, for each r > 0 the supremum is taken over y, z so that r = |x− y| = |x− z|.

Definition 9.4. Let U,U ′ be domains in Rn. Then a homeomorphism f : U → U ′

is called quasiconformal if supx∈U Hf (x) <∞. A quasiconformal map f is called H-
quasiconformal2 if H(f) := ess supx∈U Hf (x) ≤ H. I will abbreviate quasiconformal
to qc.

The number H(f) is called the linear dilatation of f .

Thus, every c-quasi-symmetric map is c-quasiconformal. The advantage of qua-
siconformality is that every Moebius map f : Sn → Sn is 1-quasiconformal on
Sn \ f−1(∞). In particular, all quasi-moebius maps are qc. A more difficult result is:

1Quasi-symmetric maps can be also defined for general metric spaces, but the definition is more
involved.

2This definition is slightly different from the standard one, see Appendix 3.

15



Theorem 9.5. Every H-quasiconformal map f : Rn → Rn is c-quasi-symmetric for
some c = c(H) that depends only on H.

I will assume from now on that n ≥ 2 since for n = 1 quasiconformality is not
quite the right definition.

Analytic properties of qc maps.

1. H(f ◦ g) ≤ H(f)H(g), H(f−1) = H(f).

2. (J.Väisälä) Every qc map f is differentiable a.e. in Rn. Furthermore, its partial
derivatives are in Lnloc(Rn). In particular, they are measurable functions.

3. (J.Väisälä) Jacobian Jf of qc map f does not vanish a.e. in Rn.

4. Suppose that f is an H-quasiconformal map. For x where Dxf exists and is
invertible, we let λ1 ≤ ... ≤ λn denote the singular values of the matrix Dxf .
Then

λn
λ1

= Hf (x)

Thus, the image of the unit sphere in the tangent space TxS
n under Dxf is an

ellipsoid of eccentricity ≤ H. This is the geometric interpretation of qc maps:
They map infinitesimal spheres to infinitesimal ellipsoids of uniformly bounded
eccentricity.

5. QC Liouville’s theorem (F.Gehring and Y.Reshetnyak). 1-quasiconformal
maps are conformal. (Here and in what follows I do not require that conformal
maps preserve orientation, only that they preserve angles. Thus, from the view-
point of complex analysis, we allow holomorphic and antiholomorphic maps of
the 2-sphere.)

6. Convergence property for quasiconformal maps (J.Väisälä). Let x, y, z ∈
Sn be three distinct points. A sequence of quasiconformal maps (fi) is said to
be “normalized at {x, y, z}” if the limits limi fi(x), limi fi(y), lim fi(z) exist and
are all distinct. Then: Every normalized sequence of H-quasiconformal maps
contains a subsequence which converges to an H-quasiconformal map.

7. Semicontinuity of linear dilatation (Tukia; Iwaniec and Martin. Sup-
pose that (fi) is a convergent sequence of H-quasiconformal maps so that the
sequence of functions Hfi

converges to a function H in measure:

∀ε > 0, lim
i→∞

mes({x : |Hfi
(x)−H(x)| > ε}) = 0.

(Here mes is the Lebesgue measure on Sn.) Then the sequence (fi) converges
to a qc map f so that Hf (x) ≤ H(x) a.e..

16



10 Quasiconformal groups

Recall that we abbreviate quasiconformal to qc.

A group G of homeomorphism of Sn is called (uniformly) quasiconformal if there
exists K <∞ so that every g ∈ G is H-quasiconformal.

Example 10.1. 1. Every conformal (Moebius) group is quasiconformal (take K = 1).

2. Suppose that f : Sn → Sn is H-quasiconformal and G is a group of con-
formal transformations of Sn. Then then conjugate group Gf := fGf−1 is K2-
quasiconformal.

3. Suppose that φ is a quasi-action of a group G on Hn+1. Then the extension
φ∞ defines an action of G on Sn as a qc group.

4. Conversely, in view of the theorem of Paulin and Tukia, every qc group G y Sn

extends to a quasi-action G y Hn+1.

D.Sullivan proved that for n = 2, every qc group is qc conjugate to a conformal
group. This fails for n ≥ 3. For instance, there are discrete qc groups acting on S3

which are not isomorphic to any subgroup of Mob3.

Our goal is to prove

Theorem 10.2. (P.Tukia, 1986) Suppose that G is a (countable) qc group acting on
Sn, n ≥ 2, so that (almost) every point of Sn is a conical limit point of G. Then G is
qc conjugate to a group acting conformally on Sn.

Once we have this theorem, we obtain:

Theorem 10.3. Suppose that G = G2 is a group QI to a group G1 acting geometri-
cally on Hn+1 (n ≥ 2). Then G acts acts geometrically on Hn+1.

Proof. We already know that a quasi-isometry G1 → G2 yields a quasi-action φ of
G on Hn+1. Every boundary point of Hn+1 is a conical limit point for this quasi-
action. We also have a qc extension of the quasi-action φ to a qc group action
G y Sn. Theorem 10.2 yields a qc map h∞ conjugating the group action G y Sn

to a conformal action η : G y Sn. Every conformal transformation g of Sn extends
to a unique isometry ext(g) of Hn+1. Thus, we obtain a homomorphism ρ : G →
Isom(Hn+1), ρ(g) = ext(η(g)); kernel of ρ has to be finite since the kernel of the
action φ∞ : G y Sn is finite. We need to verify that the action ρ of G on Hn+1 is
geometric.

a. Proper discontinuity. Suppose that there exists a sequence gi ∈ G so
that limi ρ(gi) = 1. Then limi η(gi) = id and limi φ∞(gi) = id. Thus, for some
(equivalently, every) point x ∈ Hn+1, there exists C <∞ so that

d(φ(gi)(x), x) ≤ C, ∀i.

Thus, there exists C ′ < ∞ so that for some (equivalently, every) point x ∈ G,
d(gix, x) ≤ C ′. Here G acts on itself by left multiplication. However, the set of g ∈ G
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so that d(gi, 1) ≤ C ′, is clearly finite. Thus, the sequence (gi) consists only of finitely
many elements of G and, hence, the action ρ is properly discontinuous.

b. Cocompactness. Let h := ext(h∞) be an extension of h∞ to quasi-isometry
of Hn. Then

g 7→ h̄ ◦ ρ(g) ◦ h

determines a quasi-action ν of G on Hn+1 whose extension to Sn is the qc action φ∞.
Therefore, there exists a constant C1 so that for all g ∈ G

d(ν(g), φ(g)) ≤ C1.

Since the action of G on itself was transitive, the quasi-action φ of G on Hn+1 is
cocompact in the sense that there exists a constant C2 so that for some x ∈ Hn+1,

∀y ∈ Hn+1,∃g ∈ G : d(φ(g)(x), y) ≤ C2.

Since the distance between the quas-actions φ and ν is bounded, the quasi-action ν
is cocompact too. It follows that the action ρ is cocompact as well.

Thus, our objective now is to prove Theorem 10.2

11 Invariant measurable conformal structure for

qc groups

Let Γ be group acting conformally on Sn = Rn∪∞ and let ds2
E be the usual Euclidean

metric on Rn. Then conformality of the elements of Γ amounts to saying that for
every g ∈ Γ, and every x ∈ Rn (which does not map to ∞ by g)

(Dxg)T ·Dxg

is a scalar matrix (scalar multiple of the identity matrix). Here and in what follows,
Dxf is the matrix of partial derivatives of f at x. In other words, the product

(Jg,x)
− 1

2n · (Dxg)T ·Dxg

is the identity matrix I. Here Jg,x = det(Dxg) is the Jacobian of g at x. This
equation describes (in terms of calculus) the fact that the transformation g preserves
the conformal structure on Sn.

More generally, suppose that we have a Riemannian metric ds2 on Sn (given by
symmetric positive-definite matrices Ax depending smoothly on x ∈ Rn). A conformal
structure on Rn is the metric ds2 on Rn up multiplication by a conformal factor. It
is convenient to use normalized Riemannian metrics ds2 on Rn, where we require
that det(Ax) = 1 for every x. Geometrically speaking, this means that the volume
of the unit ball in Tx(Rn) with respect to the metric ds2 is the same as the volume
ωn of the unit Euclidean n-ball. Normalization for a general metric Ax is given by
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multiplication by det(A)−1/n. We then identify space of conformal structures on Rn

with smooth matrix-valued function Ax, where Ax is a positive-definite symmetric
matrix with unit determinant.

Suppose that g is a diffeomorphism of Sn. Then the pull-back g∗(ds2) of ds2 under
a diffeomorphism g : Sn → Sn is given by the symmetric matrices

Mx = (Dxg)T AgxDxg

If Ax was normalized, then, in order to have normalized pull-back g•(ds2) we again
rescale:

Bx := (Jg,x)
− 1

2n (Dxg)T · AgxDxg.

How do we use this in the context of qc maps? Since their partial derivatives
are measurable functions on Rn, it makes sense to work with measurable Riemannian
metrics and measurable conformal structures on Rn. (One immediate benefit is that
we do not have to worry about the point∞.) We then work with measurable matrix-
valued functions Ax, otherwise, nothing changes. Given a measurable conformal
structure µ, we define its linear dilatation H(µ) as the essential supremum of the
ratios

H(x) :=

√
λn(x)√
λ1(x)

,

where λ1(x) ≤ ... ≤ λn(x) are the eigenvalues of Ax. Geometrically speaking, if
Ex ⊂ TxRn is the unit ball with respect to Ax, then H(x) is the eccentricity of the
ellipsoid Ex.

We say that a measurable conformal structure µ is bounded if H(µ) <∞.

We say that a measurable conformal structure µ on Rn is invariant under a qc
group G if

g•µ = µ,∀g ∈ G.

In detail:
∀g ∈ G, (Jg,x)

− 1
2n (Dxg)T · Agx ·Dxg = Ax

a.e. in Rn.

Theorem 11.1. (D.Sullivan, P.Tukia) Every qc group acting on Sn, n ≥ 2, admits
a bounded invariant measurable conformal structure.

Proof. The idea is to start with an arbitrary conformal structure µ0 on Rn (say, the
Euclidean structure) and then “average” it over g ∈ G. I will prove this only for
countable groups G (which is all what we need since we are interested in f.g. groups).
Let Ax be the matrix-valued function defining a normalized Riemannian metric on
Rn, for instance, we can take Ax = I for all x. Then, since G is countable, for
a.e. x ∈ Rn, we have well-defined matrix-valued function corresponding to g∗(µ0) on
TxRn:

Ag,x := (Jg,x)
− 1

2n (Dxg)T · Agx ·Dxg.
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For such x we let Eg,x denote the unit ball in TxRn with respect to g∗(µ0). From
the Euclidean viewpoint, Eg,x is an ellipsoid of the volume ωn. This ellipsoid (up to
scaling) is the image of the unit ball under the inverse of the derivative Dxg. Since
g is H-quasiconformal, Eg,x has bounded eccentricity, i.e., the ratio of the largest to
the smallest axis of this ellipsoid is uniformly bounded independently of x and g.
Since volume of Eg,x is fixed, it follows that the diameter of the ellipsoid is uniformly
bounded above and below.

Let Ux denote the union of the ellipsoids⋃
g∈G

Eg,x.

This set has diameter ≤ R for some R independent of x. Note also that Ux is
symmetric (about 0). Note that the family of sets Ux is invariant under the group G:

(Jg,x)
−1/nDxg(Ux) = Ug(x), ∀g ∈ G.

Lemma 11.2. Given a bounded symmetric subset U of Rn with nonempty interior,
there exists unique ellipsoid E = EU (centered at 0) of the least volume containing U .
The ellipsoid E is called the John-Loewner ellipsoid of U .

Existence of such an ellipsoid is clear. Uniqueness is not difficult, but not obvious
(see Appendix 2). We then let Ex denote the John-Loewner ellipsoid of Ux. This
ellipsoid defines a measurable function of x to the space of positive-definite n × n
symmetric matrices. In other words, we obtain a measurable Riemannian metric ν
on Rn. Uniqueness of the John-Loewner ellipsoid and G-invariance of the sets Ux
implies that the action of G preserves νx (up to scaling, of course). One can then get
a normalized conformal structure µ by rescaling ν, so that

g•µ = µ,∀g ∈ G.

It remains to show that µ is bounded. Indeed, the length of the major semiaxis
of Ex does not exceed R while its volume is ≥ V ol(Ux) ≥ ωn. Thus, eccentricity of
Ex is uniformly bounded. Hence µ is a bounded measurable conformal structure.

12 Proof of Tukia’s theorem

We are now ready to prove Theorem 10.2. As a warm-up, we consider the easiest
case, n = 2 (the argument in this case is due to D.Sullivan). In the 2-dimensional
case, Theorem 10.2 holds without the conical limit points assumption. Let µ be a
bounded measurable conformal structure on S2 invariant under the group G. Mea-
surable Riemann mapping theorem for S2 states that every bounded measurable con-
formal structure µ on S2 is quasiconformally equivalent to the standard conformal
structure µ0 on S2, i.e., there exists a quasiconformal map f : S2 → S2 which sends
µ0 to µ:

f •µ0 = µ.
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Since a quasiconformal group G preserves µ on S2, it follows that the group Gf =
fgf−1 preserves the structure µ0. Thus, Gf acts as a group of conformal automor-
phisms of the round sphere, which proves theorem for n = 2.

We now consider the case of arbitrary n ≥ 2.

Definition 12.1. A function η : Rn → R is called approximately continuous at a
point x ∈ Rn if for every ε > 0

lim
r→0

mes{y ∈ Br(x) : |η(x)− η(y)| > ε}
V olBr(x)

= 0.

In other words, as we “zoom into” the point x, “most” points y ∈ Br(x), have value
η(y) close to η(x), i.e., the rescaled functions ηr(x) := η(rx) converge in measure to
the constant function.

We will need the following result from real analysis:

Lemma 12.2. (E.Borel) For every L∞ function η on Rn, a.e. point x ∈ Rn is an
approximate continuity point of η.

The functions to which we will apply this lemma are the matrix entries of a
(normalized) bounded measurable conformal structure µ(x) on Rn (which we will
identify with a matrix-valued function Ax). Since µ is bounded and normalized, the
matrix entries of µ(x) will be in L∞.

We let µ(x) again denote a bounded normalized measurable conformal structure
on Rn invariant under G. Since a.e. point in Rn is a conical limit point of G, we will
find such point ξ which is also an approximate continuity point for µ(x).

Then, without loss of generality, we may assume that the point ξ is the origin in
Rn and that µ(0) = µ0(0) is the standard conformal structure on Rn. We will identify
Hn+1 with the upper half-space Rn+1

+ . Let e = en+1 = (0, ..., 0, 1) ∈ Hn+1.

To simplify the notation, we let g(x) = φ(g)(x) denote the quasi-action of the
elements g ∈ G on Hn+1.

Since 0 is a conical limit point of G, there exists C < ∞ and a sequence gi ∈ G
so that limi→∞ gi(e) = 0 and

d(gi(e), tie) ≤ c

where d is the hyperbolic metric on Hn+1 and ti > 0 is a sequence converging to zero.
Let Ti denote the hyperbolic isometry (Euclidean dilation) given by

x 7→ tix, x ∈ Hn+1.

Set
g̃i := T−1

i ◦ gi.

Then d(g̃i(e), e) ≤ c for all i. Furthermore, each g̃i is an (L,A)-quasi-isometry of
Hn+1 for fixed L and A. Thus, the sequence g̃i subconverges to a quasiisometry g̃
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of Hn+1. Accordingly, the sequence of quasiconformal maps fi which are boundary
extensions of g̃i’s, will subconverge to a quasiconformal mapping f . We also have:

µi := f •i (µ) = (T−1
i )• ◦ g•i (µ) = (T−1

i )•µ,

since g•(µ) = µ,∀g ∈ G. Thus,

µi(x) = µ(Tix) = µ(tix),

in other words, the measurable conformal structure µi is obtained by “zooming into”
the point 0. Since x is an approximate continuity point for µ, the functions µi(x)
converge (in measure) to the constant function µ0 = µ(0). Thus, we have the diagram:

µ
fi−→ µi

↓
µ

f−→ µ0

If we knew that the derivatives Dfi subconverge (in measure) to the derivative of Df ,
then we would conclude that

f •µ = µ0.

Then f would conjugate the group G (preserving µ) to a group Gf preserving µ0 and,
hence, acting conformally on Sn.

However, derivatives of quasiconformal maps (in general), converge only in the
distributional sense (actually, even weaker than this), which will not suffice for our
purposes. Thus, we have to use a less direct argument below.

We restrict to a certain round ball B in Rn. Since µ is approximately continuous
at 0, for every ε ∈ (0, 1

2
),

‖µi(x)− µ(0)‖ < ε

away from a subset Wi ⊂ B of measure < εi, where limi εi = 0. Thus, for x ∈ Wi,

1− ε < λ1(x) ≤ ... ≤ λn(x) < 1 + ε,

where λk(x) are the eigenvalues of the matrix Ai,x of the metric µi(x). Thus,

H(µi, x) <

√
1 + ε√
1− ε

≤
√

1 + 4ε ≤ 1 + 2ε.

away from subsets Wi. For every g ∈ G, each map γi := figf
−1
i is conformal with

respect to the structure µi and, hence (1 + 2ε)-quasiconformal away from the set
Wi. Since limimes(Wi) = 0, we conclude, by the semicontinuity property, that each
γ := lim γi is (1 + 2ε)-quasiconformal. Since this holds for arbitrary ε > 0 and
arbitrary round ball B, we conclude that each γ is is conformal (with respect to the
standard conformal structure on Sn).

Thus, the group Γ = fGf−1 consists of conformal transformations.
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13 QI rigidity for surface groups

The proof of Tukia’s theorem mostly fails for groups QI to the hyperbolic plane. The
key reason is that quasi-symmetric maps of the circle are differentiable a.e. but are
not absolutely continuous. Thus, their derivative could (and, in the interesting cases
will) vanish a.e. on the circle.

Nevertheless, the same proof yields: If G is a group QI to the hyperbolic plane,
then G acts on S1 by homeomorphisms with finite kernel K, so that the action is
“discrete and cocompact” in the following sense:

Let T denote the set of ordered triples of distinct points on S1. Thus, T is an
open 3-dimensional manifold, one can compute its fundamental group and see that it
is infinite cyclic, furthermore, T is homeomorphic to D2 × S1. The action G y S1,
of course, yields an action G y T . Then G y T is properly discontinuous and
cocompact. The only elements of G that can fix at point in T are the elements of
K. Thus, Γ = G/K acts freely on T and the quotient T/Γ is a closed 3-dimensional
manifold M .

It was proven, in a combination of papers by Tukia, Gabai, Casson and Jungreis
in 1988—1994, that such Γ acts geometrically and faithfully on the hyperbolic plane.
Their proof was mostly topological. One can now also derive this result from Perem-
lan’s proof of Thurston’s geometrization conjecture as follows. The infinite cyclic
group π1(T ) will be a normal subgroup of π1(M). Then, you look at the list of closed
aspherical 3-dimensional manifolds (given by the Geometrization Conjecture) and see
that such M has to be a Seifert manifold, modelled on one of the geometries H2×R,
SL(2,R), Nil, E3. In the case of the geometries Nil, E3, one sees that the quotient of
π1 by normal infinite cyclic subgroup yields a group Γ which is VI to Z2. Such group
cannot act on S1 so that Γ y T is properly discontinuous and cocompact. On the
other hand, in the case of the geometries H2 ×R, SL(2,R) the quotient by a normal
cyclic subgroup will have to be VI to a group acting geometrically on H2.

14 Appendix 1: Hyperbolic space

The upper half-space model of the hyperbolic n-space Hn is

Rn
+ = {(x1, ...xn) : xn > 0}

equipped with the Riemannian metric

ds2 =
|dx|2

x2
n

.

Thus, the length of a smooth path p(t), t ∈ [0, T ] in Hn is given by∫
p

ds =

∫ T

0

|p′(t)|e
pn(t)

dt.

23



Here |v|e is the Euclidean norm of a vector v and pn(t) denotes the n-th coordinate
of the point p(t).

The (ideal) boundary sphere of Hn is the sphere Sn−1 = Rn−1 ∪ ∞, where Rn−1

consists of points in Rn with vanishing last coordinate xn.

Complete geodesics in Hn are Euclidean semicircles orthogonal to Rn−1 as well as
vertical straight lines. For instance, if p, q ∈ Hn are points on a common vertical line,
then their hyperbolic distance is

d(p, q) = | log(pn/qn)|

The group of isometries of Hn is denoted Isom(Hn). Every isometry of Hn ex-
tends to a Moebius transformation of the boundary sphere Sn−1. The latter are the
conformal diffeomorphisms of Sn−1 in the sense that they preserve (Euclidean) angles.
(I do not assume that conformal transformations preserve orientation.) Conversely,
every Moebius transformation of Sn−1 extends to a unique isometry of Hn.

The group Mobn−1 of Moebius transformations of Sn−1 contains all inversions, all
Euclidean isometries of Rn−1 and all dilations. (Compositions of Euclidean isometries
and dilations are called similarities.) In fact, a single inversion together with all
similarities of Rn−1 generate the full group of Moebius transformations. Furthermore,
in every similarity of Rn−1 extends to a similarity of Rn

+ in the obvious fashion, so
that the extension is an isometry of Hn. Similarly, inversions extend to inversions
which are also isometries of Hn.

Exercise 14.1. Show that the group Mobn−1 acts transitively on the set of triples of
distinct points in Sn−1.

The key fact of hyperbolic geometry that we will need is that all triangles in Hn

are δ-thin, i.e., for every hyperbolic triangle with the sides γ1, γ2, γ3, there exists a
point x ∈ Hn so that

d(x, γi) ≤ δ, i = 1, 2, 3.

Here δ is some number ≤ 1.

15 Appendix 2: Least volume ellipsoids

Recall that a closed ellipsoid (with nonempty interior) centered at 0 in Rn can be
described as

E = EA = {x ∈ Rn : ϕA(x) = xTAx ≤ 1}

where A is some positive-definite symmetric n × n matrix. Volume of such ellipsoid
is given by the formula

V ol(EA) = ωn (det(A))−1/2

where ωn is the volume of the unit ball in Rn. Recall that a subset X ⊂ Rn is
centrally-symmetric if X = −X.
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Theorem 15.1. (F. John, 1948) For every compact centrally-symmetric subset X ⊂
Rn with nonempty interior, there exists unique ellipsoid E(X) of the least volume
containing X. The ellipsoid E(X) is called the John-Loewner ellipsoid of X.

Proof. The existence of E(X) is clear by compactness. We need to prove uniqueness.
Consider the function f on the space S+

n of positive definite symmetric n×n matrices,
given by

f(A) = −1

2
log det(A).

Lemma 15.2. The function f is strictly convex.

Proof. Take A,B ∈ S+
n and consider the family of matrices Ct = tA + (1 − t)B,

0 ≤ t ≤ 1. Strict convexity of f is equivalent to strict convexity of f on such line
segments of matrices. Since A and B can be simultaneously diagonalised by a matrix
M , we obtain:

f(Dt) = f(MCtM
T ) = − log det(M)− 1

2
log det(Ct) = − log det(M) + f(Ct),

where Dt is a segment in the space of positive-definite diagonal matrices. Thus,
it suffices to prove strict convexity of f on the space of positive-definite diagonal
matrices D = Diag(x1, ..., xn). Then,

f(D) = −1

2

n∑
i=1

log(xi)

is strictly convex since log is strictly concave.

In particular, whenever V ⊂ S+
n is a convex subset and f |V is proper, f attains

unique minimum on V . Since log is a strictly increasing function, the same uniqueness
assertion holds for the function det−1/2 on S+

n . Let V = VX denote the set of matrices
C ∈ S+

n so that X ⊂ EC . Since ϕA(x) is linear as a function of A for any fixed x ∈ X,
it follows that V convex. Thus, the least volume ellipsoid containing X is unique.

16 Appendix 3: Different measures of quasicon-

formality

Let M be an n×n invertible matrix with singular values λ1 ≤ ... ≤ λn. Equivalently,
these numbers are the square roots of eigenvalues of the matrix MMT . The singular
value decomposition yields:

M = UDiag(λ1, ..., λn)V

where U, V are orthogonal matrices.

We define the following distortion quantities for the matrix M :
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• Linear dilatation:

H(M) :=
λn
λ1

= ‖M‖ · ‖M−1‖,

where ‖A‖ is the operator norm of the n× n matrix A:

max
v∈Rn\0

|Av|
|v|

.

• Inner dilatation:

HI(M) :=
λ1....λn
λnn

=
| det(M)|
‖M‖n

• Outer dilatation

HO(M) :=
λn1

λ1....λn
=
‖M−1‖−n

| det(M)|

• Maximal dilatation

K(M) := max(HI(M), HO(M)).

Exercise 16.1.
(H(M))n/2 ≤ K(M) ≤ (H(M))n−1

Hint: It suffices to consider the case when M = Diag(λ1, ...λn) is a diagonal matrix.

As we saw, qc homeomorphisms are the ones which send infinitesimal spheres
to infinitesimal ellipsoids of uniformly bounded eccentricity. The usual measure of
quasiconformality of a qc map f is its maximal distortion (or maximal dilatation)
K(f), defined as

K(f) := ess sup
x
K(Dx(f))

where the essential supremum is taken over all x in the domain of f . Here Dxf is
the derivative of f at x (Jacobian matrix). See e.g. J.Väisälä’s book [4]. A map f is
called K-quasiconformal if K(f) ≤ K.

In contrast, the definition of quasiconformality used in these lectures is: f is
H-quasiconformal if

H(f) := ess sup
x
H(Dxf) ≤ H.

To relate to the two definition we observe that

1 ≤ (H(f))n/2 ≤ K(f) ≤ (H(f))n−1 .

In particular, K(f) = 1 if and only if H(f) = 1.
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