
LECTURES ON LATTICES

TSACHIK GELANDER

1. Lecture 1, a brief overview on the theory of lattices

Let G be a locally compact group equipped with a left Haar measure µ, i.e. a Borel
regular measure which is finite on compact, positive on open and invariant under left
multiplications — by Haar’s theorem such µ exists and is unique up to normalization. The
group G is called unimodular if µ is also right invariant, or equivalently if it is symmetric
in the sense that µ(A) = µ(A−1) for every measurable set A. Note that G is compact iff
µ(G) <∞.

For example:

• Compact groups, Nilpotent groups and Perfect groups are unimodular.
• The group of affine transformations of the real line is not unimodular.

A closed subgroup H ≤ G is said to be co-finite if the quotient space G/H admits a
non-trivial finite G invariant measure. A lattice in G is a co-finite discrete subgroup. A
discrete subgroup Γ ≤ G is a lattice iff it admits a finite measure fundamental domain, i.e.
a measurable set Ω of finite measure which form a set of right cosets representatives for Γ
in G. We shall denote Γ ≤L G to express that Γ is a lattice in G.

Exercise 1. If G admits a lattice then it is unimodular.

We shall say that a closed subgroup H ≤ G is uniform if it is cocompact, i.e. if G/H is
compact.

Exercise 2. A uniform discrete subgroup Γ ≤ G is a lattice. Note that if G = SL2(R) and
H is the Boral subgroup of upper triangular matrices, then H is uniform but not co-finite.

Examples 3. (1) If G is compact every closed subgroup is cofinite. The lattices are the
finite subgroups.

(2) If G is abelian, a closed subgroup H ≤ G is cofinite iff it is cocompact.
(3) Let G be the Heisenberg group of 3× 3 upper triangular unipotent matrices over R

and let Γ = G(Z) be the integral points. Then Γ is a cocompact lattice in G.
(4) Let T be a k regular tree equipped with a k coloring of the edges s.t. neighboring

edges have different colors. Let G = Aut(T ) be the group of all automorphisms of
T and let Γ be the group of those automorphisms that preserve the coloring. Then
Γ is a uniform lattice in G.

(5) SLn(Z) is a non-uniform lattice in SLn(R).
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(6) Let Σg be a closed surface of genus g ≥ 2. Equip Σg with a hyperbolic structure
and fix a base point and a unit tangent vector. The action of the fundamental
group π1(Σg) via Deck transformations on the universal cover H2 = Σ̃g yields an
embedding of π1(Σg) in PSL2(R) ∼= Isom(H2)◦ and the image is a uniform lattice.

1.1. Lattices simulates their ambient group in many ways. Here are few example
of this phenomena: Let G be a l.c. group and Γ ≤L G a lattice.

(1) G is amenable iff Γ is amenable.
(2) G has property (T) iff Γ has property (T).
(3) Margulis’ normal subgroup theorem: If G is a center free higher rank simple Lie

group (e.g. SLn(R) for n ≥ 2) then Γ is just infinite, i.e. has no infinite proper
quotients.

(4) Borel density theorem: If G is semisimple real algebraic then Γ is Zariski dense.

1.2. Some basic properties of lattices.

Lemma 1.1 (Compactness criterion). Suppose Γ ≤L G, let π : G → G/Γ be the quotient
map and let gn ∈ G be a sequence. Then π(gn) → ∞ iff there is a sequence γn ∈ Γ \ {1}
such that gnγng

−1
n → 1. In this case we shall say that the {γn} is asymptotically unipotent,

and that Γ has an approximated unipotent.

Proof. If π(gn) does not go to infinity then a subsequance π(gnk) converges to some π(g0).
Let W be an identity neighborhood which intersects Γg0 trivially, and let V be a symmetric
identity neighborhood satisfying V 3 ⊂ W . For sufficiently large k we have π(g0g

−1
k ) ∈ π(V )

which implies that Γgk intersects V trivially.
Conversely, suppose that π(gn)→∞. Let W be a an identity neighborhood in G and let

V be a relatively compact symmetric identity neighborhood satisfying V 2 ⊂ W . Let K be
a compact subset of G such that vol(π(K)) > vol(G/Γ)− µ(V ). Since π(Gn)→∞, there
is n0 such that n ≥ n0 implies that π(V gn) ∩ π(K) = ∅. The volumes inequality above
then implies that vol(π(V gn)) < vol(V ) and we conclude that V gn is not injected to the
quotient, i.e. that V gn ∩ V gnγ 6= ∅ for some γ ∈ Γ \ {1}.

�

Corollary 1.2. Γ admits approximated unipotents iff it is non-uniform.

Lemma 1.3 (Recurrence). Let Γ ≤L G, let g ∈ G and let Ω ⊂ G be an open set. Then
ΩgnΩ−1 ∩ Γ 6= ∅ infinitely often.

Proof. This is immediate from Poincare recurrence theorem. �

Exercise 4. Let Γ ≤L SLn(R). Deduce from the last lemma that Γ admits regular elements
and that Span(Γ) = Mn(R).

Proposition 1.4. Let Γ ≤UL G (a uniform lattice) and γ ∈ Γ. Let CG(γ) be the centralizer
of γ in G. Then Γ ∩ CG(γ) is a uniform lattice in CG(γ).
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Proof. There are two ways to prove this, one by constructing a compact fundamental
domain for Γ ∩ CG(γ) in CG(γ) and one by showing that the projection of CG(γ) to G/Γ
is closed. Let us describe the first approach.

Let Ω is a relatively compact fundamental domain for Γ in G. For h ∈ CG(δ) we can
express h as ωδ with ω ∈ Ω and δ ∈ Γ, so δ = ω−1h. Thus we see that δγδ−1 belongs
to the relatively compact set Ω−1γΩ. Let δ1, . . . , δm ∈ Γ be chosen such that δiγδ

−1
i , i =

1, . . .m exhaust the finite set Ω−1γΩ∩ Γ. It is an exersize to see that ∪mi=1Ωδi ∩CG(γ) is a
fundamental domain for Γ ∩ CG(γ) in CG(γ). �

Exercise 5. Show that if Γ ≤UL SLn(R) then Γ admits a diagonalized subgroup isomorphic
to Zn−1.

1.3. Arithmeticity. One of the highlights of the theory of lattices is the connection with
arithmetic groups. This is illustrated in the following theorems:

Theorem 1.5 (Borel–Harish-Chandra). Let G be an algebraic group defined over Q which
has no Q characters. Then G(Z) ≤L G(R). Furthermore, G(Z) ≤UL G(R) iff G has no Q
co-characters.

Definition 1.6. Let G be a Lie group. We shall say that a subgroup Γ ≤ G is arithmetic
if there is a Q algebraic group H and a surjective homomorphism with compact kernel
f : H(R)→ G such that f(H(Z)) contains Γ as a subgroup of finite index.

Example 1.7. Let f(x, y, z) = x2 + y2 −
√

2z2, and consider the Q[
√

2]-group G = SO(f)

and the subgroup Γ = G(Z[
√

2]). Let H = Res|Q[
√

2]
Q G and let H = H(R). Then H ∼=

SO(2, 1)×SO(3) and Γ is isomorphic to H(Z). Thus Γ is an arithmetic lattice in SO(2, 1) ∼=
SL2(R) and since it has no unipotent it must be uniform. We conclude that Γ contains a
subgroup of finite index isomorphic to a surface group.

Theorem 1.8 (Margulis). If G is a higher rank simple Lie group then every lattice is
arithmetic.

2. Lecture 2, on Jordan–Zassenhaus–Kazhdan–Margulis theorem

Given two subsets of a group A,B ⊂ G we denote by {[A,B]} := {[a, b] : a ∈ A, b ∈ B}
the set of commutators. We define inductively A(n) := {[A,A(n−1)]} where A(0) := A.

By Edo–Iwasawa theorem every Lie group is locally isomorphic to a linear Lie groups.
By explicate computation using sub-multiplicativity of matrix norms, one proves:

Lemma 2.1. Every Lie group G admits an open identity neighborhood U such that U (n) →
1 in the sense that it is eventually included in every identity neighborhood.

Exercise 6. Let ∆ be a group generated by a set S ⊂ ∆. If S(n) = {1} for some n then ∆
is nilpotent of class ≤ n.

Corollary 2.2. If ∆ ≤ G is a discrete subgroup then 〈∆ ∩ U〉 is nilpotent.
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Furthermore, taking U sufficiently close to 1 we can even guarantee that every discrete
group with generators in U is contained in a connected nilpotent group:

Theorem 2.3 (Zassenhaus (38) – Kazhdan-Margulis (68)). Let G be a Lie group. There
is an open identity neighborhood Ω ⊂ G such that every discrete subgroup ∆ ≤ G which is
generated by ∆∩U is contained in a connected nilpotent Lie subgroup of N ≤ G. Moreover
∆ ≤UL N .

The idea is that near the identity the logarithm is well defined and two elements commute
iff their logarithms commute. For a complete proof see [19] or [21].

A set Ω as in the theorem above is called a Zassenhaus neighborhood.

Since connected compact nilpotent groups are abelian, we deduce the following classical
result:

Theorem 2.4 (Jordan). For a compact Lie group K there is a constant m ∈ N such that
every finite subgroup ∆ ≤ K admits an abelian subgroup of index ≤ m.

Let us make a short sidewalk before continuing the discussion about discrete groups.
Suppose that K is a metric group. An ε-quasi morphism f : F → K from an abstract
group F is a map satisfying d(f(ab), f(a)f(b)) ≤ ε, ∀a, b ∈ F . We shall say that K is quasi
finite if for every ε there is an ε-q.m. from some finite group to K with ε-dense image.
Relying on Jordan’s theorem, Turing showed:

Theorem 2.5 (Turing (38)). A compact Lie group is quasi finite iff it is a torus.

Turing’s theorem can be used to prove:

Theorem 2.6 ([12]). A metric space is a limit of finite transitive spaces (in the Gromov–
Hausdorff topology) iff it is homogeneous, its connected components are invers limit of tori
and it admits a transitive compact group of isometries whose identity connected component
is abelian.

Corollary 2.7 (Answering a question of I. Benjamini). S2 cannot be approximated by finite
homogeneous spaces. In fact the only manifolds that can be approximated are tori.

Coming back from this short tour, let us present another classical result:

Theorem 2.8 (The Margulis lemma). Let G be a Lie group acting by isometries with
compact stabilizers on a Riemannian manifold X. Given x ∈ X there are ε = ε(x) > 0 and
m = m(x) ∈ N such that if ∆ ≤ G is a discrete subgroup which is generated by the set

Σ∆,x,ε := {δ ∈ ∆ : d(δ · x, x) ≤ ε}
then ∆ admits a subgroup of index ≤ m which is contained in a connected nilpotent Lie
group. Furthermore, if G acts transitively on X then ε and m are independent of x.

The basic idea is that the set {g ∈ G : d(g · x, x ≤ 1} is compact and can be covered
by boundedly many (say m) translations of an open symmetric set V such that V 2 is a
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Zassenhaus neighborhood. Taking ε = 1/m one can prove the theorem. Again, for details
see [21].

In the special case of X = Rn since homotheties commute with isometries it follows that
ε =∞. Moreover, it is easy to verify that the connected nilpotent subgroups of the group
G = Isom(Rn) ∼= On(R)nRn are abelian. Using the fact that for any non-elliptic isometry
of Rn one can decompose Rn invariantly and orthogonally to Rk⊕Rn−k where the isometry
acts on the first factor by translation and on the second factor is by rotation, one deduces:

Theorem 2.9 (Bieberbach (11)— Hilbert’s 18’th problem). Let Γ be a group acting prop-
erly discontinuously by isometries on Rn. Then Γ admits a finite index subgroup isomorphic
to Zk (k ≤ n) which acts by translations on some k dimensional invariant subspace, and
k = n iff Γ is uniform. In particular, every crystallographic manifold is finitely covered by
a torus.

3. Lecture 3, on the geometry of locally symmetric spaces and some
finiteness theorems

3.1. Hyperbolic spaces. Consider the hyperbolic space Hn and its group of isometries
G = Isom(Hn). Recall that G◦ ∼= PO(n, 1) is a rank one simple Lie group. For g ∈ G
denote by dg(x) := d(g · x, x) the displacement function of g at x ∈ Hn. Let τ(g) = inf dg
and min(g) = {x :∈ Hn : dg(x) = τ(g)}. Note that dg is a convex function which is smooth
outside min(g).

The isometries of Hn splits to 3 types:

• elliptic — those that admit fixed points in Hn.
• hyperbolic — isometries for which dg attains a positive minima. In that case min(g)

is a g invariant geodesic, called the axis of g.
• parabolic — isometries for which inf dg = 0 but have no foxed points in Hn.

The first two types are called semisimple.

Exercise 7. If g, h ∈ G commute then

• if g is hyperbolic, then h is semisimple,
• if g and h are parabolics, they have the same fixed point at ∂Hn.

Exercise 8. A discrete subgroup ∆ ≤ G admits a common fixed point in Hn iff it is finite.

It follows that a discrete group Γ ≤ G acts freely on Hn iff it is torsion free.
Let Γ ≤ G be a t.f. discrete subgroup, we denote by M = Γ\Hn the associated complete

hyperbolic manifold. Note that Γ is a lattice iff M has finite volume. We denote by
InjRad(x) the injectivity radius at x. Let ε = 1

2
ε(Hn) be one half of the Margulis’ constant,

and let

M<ε = {x ∈M : InjRad(x) < ε/2}, and M≥ε = {x ∈M : InjRad(x) ≥ ε/2}

be the ε-thin part and the ε-thick part of M .
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Theorem 3.1 (The thick–thin decomposition). Supposing vol(M) < ∞, each connected
component M◦

<ε of the thin part M<ε is either

• a tubular neighborhood of a short closed geodesic, in which case M◦
<ε is homeomor-

phic to a ball bundle over a circle, or
• a cusp, in which case M◦

<ε is homeomorphic to N ×R>0 where N is some (n− 1)-
crystallographic manifold.

The number of connected components of M<ε is at most C · vol(M) for some constant
C = C(Hn), and in case n ≥ 3 the thick part M≥ε is connected.

Proof. Let M̃<ε be the pre-image in Hn of the thin part of M . Observe that

M̃<ε = ∪γ∈Γ\{1}{dγ < ε}
is the union of the ε-sub-level sets. Note that a sub-level set of a hyperbolic isometry is a
neighborhood of a geodesic and a sub-level set of a parabolic isometry is a neighborhood
of the fixed point at infinity.

Consider α, β ∈ Γ \ {1} such that {dα ≤ ε} ∩ {dβ ≤ ε} 6= ∅. By the Margulis lemma,
αm!, βm! commute. Hence the exercise above implies that α and β are either both hyperbolic
with the same axis or both parabolic with the same fixed point at infinity. It follows that
a connected component of M̃<ε is of the form ∪γ∈I{dγ ≤ ε} where I consists either of
hyperbolic elements sharing the same axis or of parabolic elements fixing a common point
at infinity. In the first case, the discreteness of the torsion free group Γ implies that the
element in I with minimal displacement generates a cyclic group containing I. In the
second case, the elements in I preserve the horospheres around the fixed point at infinity,
and the assumption vol(M) < ∞ implies that the quotient of such an horosphere by the
group 〈I〉 must be compact.

Finally, in order to bound the number of components of M<ε note that near the boundary
of every component one can inject an ε-ball such that these balls are disjoint. �

Remark 3.2. An analog result holds (with almost the same proof) in every rank one
symmetric space.

The thick-thin decomposition is an important ingredient in the proof of the following:

Theorem 3.3 ([7, 10]). There is a constant c = c(G) such that every t.f. lattice Γ ≤L G
admits a presentation Γ = 〈Σ|R〉 with |Σ|, |R| ≤ c · vol(G/Γ). Furthermore, unless G ∼=
PSL2(C) there is such a presentation in which the length of every relation is at most 3.

Suppose n > 3 then gluing back the thin components to the thick part one by one and
using Van–Kampen theorem, one sees that π1(M) ∼= π1(M≥ε). Now M≥ε, being an ε-thick

manifold (forget for a moment the boundary), can be covered by vol(M)
vol(Bε/2)

balls of radius ε.

Taking the nerve corresponding to that cover one gets a simplicial complex homotopic to
M≥ε, and it is not hard to verify that the fundamental group of that simplicial complex
has presentation as above. Indeed the vertex degrees of the associated simplicial complex
are uniformly bounded, and we can take a spanning tree and put a generator for each edge
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outside this tree and a relation for every 2-simplex. For a real proof of this theorem, not
avoiding the boundary issue, check [10].

Remark 3.4. A similar theorem holds for every simple Lie group G, with few exceptions,
but the proof is more complicated (see [10]).

3.2. General symmetric spaces.

Definition 3.5. A symmetric space is a complete Riemannian manifold X such that for
every p ∈ X there is an isometry ip which fixes p and reflects the geodesics through p.

A symmetric space admits a canonical de-Rham decomposition X =
∏
Xi to irreducible

factors. We shall say that X is of non-compact type if neither of the Xi are compact
nor ∼= R. In that case Isom(X)◦ is a center-free semisimple Lie group without compact
factors. Conversely, if G is a connected center-free semisimple Lie group without compact
factors then G admits a, unique up to conjugacy, maximal compact subgroup K and G/K
admits a canonical metric w.r.t which it is a symmetric space of non-compact type with
isometry group whose identity component if G. Symmetric spaces of non-compact type are
non-positively curved, i.e. they are CAT(0), and strictly negatively curved iff rank(G) = 1.

Example 3.6. As a model for the symmetric space of G = PSLn(R), denoted P 1(n,R),
we can take the space of all unimodular positive definite n×n matrices on which g acts by
similarity: g · p := gpgt. The tangent space at I is the space of symmetric n× n matrices.
The inner product at TI(P

1(n,R)) is given by 〈X, Y 〉 := trace(XY ), the geodesics through
I are of the form exp(tX) and the curvature tensor at X, Y ∈ TI(P

1(n,R)) is given by
K(X, Y ) = −‖[X, Y ]‖.

If Γ has torsion, the quotient space Γ\X is an orbifold. Dealing with the geometry of
orbifolds is much more delicate. Still, using a basic Morse theory and the Margulis’ lemma,
one can prove:

Theorem 3.7 ([11]). Let G be a connected semisimple Lie group without compact factors.
There is a constant C = C(G) such that d(Γ) ≤ C · vol(G/Γ) for every discrete group
Γ ≤ G, where d(Γ) denotes the minimal cardinality of a generating set.

Let us explain the idea of the proof in the hyperbolic case (see also [2] for a detailed
proof of this theorem in the rank one case). For G = PSL2(R), X = H2 the theorem can
be deduced from the Gauss–Bonnet theorem, so let us assume that n ≥ 3.

Lemma 3.8. Let X be an irreducible symmetric space of dimension > 2. Let g ∈ G =
Isom(X)◦ be a non-trivial element. Then dim(X)− dim(min(g)) ≥ 2.

It follows that Ỹ = X \ ∪{min(γ) : γ ∈ Γ \ {1}} is connected Γ-invariant subset of X.
Let Y = Γ\Ỹ be the image of Ỹ in M .

Let f : R>0 → R≥0 be a smooth function which tends to∞ at 0, is strictly decreasing on
(0, ε] and is identically 0 on [ε,∞). Let Γ◦ = {γ ∈ Γ \ {1} : τ(γ) ≤ ε}. Define ψ̃ : Ỹ → R
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as follows,:

ψ̃(x) =
∑
γ∈Γ◦

f(dγ(x)− τ(γ)).

Note that ψ̃ is well defined since for every x ∈ Ỹ only finitely many of the summoneds are
nonzero as Γ is discrete. Clearly ψ̃ is Γ-invariant and hence induces a map ψ : Y → R≥0.

Lemma 3.9 (Main lemma). The gradient of ψ vanishes precisely where ψ vanishes.

Proof. At any point x ∈ Ỹ we will find a tangent vector n̂x at which the directional
derivative of ψ̃ is nonzero. We distinguish between 3 cases. Let

Σx = {γ ∈ Γ◦ : f(dγ(x)) 6= 0}, let ∆x = 〈Σx〉
and let Nx be a normal subgroup of finite index in ∆x which is contained in a connected
nilpotent Lie subgroup of G. In view of Selberg’s lemma we may also suppose that Nx is
torsion free. Let Zx denote the center of Nx.

Case 1: Suppose first that ∆x is finite. Let y ∈ X be a fixed point for ∆x and let n̂x
be the unit tangent at x to the geodesic ray c : [0,∞) → X emanating from y through x.
Thus n̂x = ċ(d(x, y)). Since x ∈ Y it follows that dγ(x) > 0, ∀γ ∈ Σx, and since dγ is a
convex function we deduce that

d

dt
|t=d(x,y)dgc(c(t)) > 0,

for every γ ∈ Σx and hence

∂ψ̃(x) · n̂x =
d

dt
|t=d(x,y)ψ̃(c(t)) =

∑
γ∈Σx

f ′(dγ(x))
d

dt t=d(x,y)
dγ(c(t)) < 0

since γ ∈ Σx implies dγ(x) < ε and f has negative derivative on (0, ε).

In the next two cases Nx and Zx are nontrivial hence infinite.

Case 2: Suppose now that Zx admits an hyperbolic element γ0 and let A be the axis of γ0.
It follows that all elements of Nx preserve A and hence attain their minimal displacement
on A. Thus A = ∩minγ∈Nx(γ) and since Nx is normal it follows that A is also ∆x invariant,
and hence all elements in ∆x attain their minimal displacement on A. Let y = πA(x) be
the nearest point to x in A, let c : [0,∞) be the ray from y through x and let n̂x be the
tangent to c at x. Since A is convex dγ(x) ≥ dγ(y), ∀γ ∈ Σx. Moreover it also follow from
convexity and the fact that Hn admits no parallel geodesics that for every γ ∈ Σx we have
dγ(x) > dγ(y). Thus one can proceed arguing as in case 1.

Case 3: We are left with the case that Zx admits a parabolic element γ0. Since Zx is
characteristic in Nx and Nx is normal, also Zx is normal in ∆x. Moreover, since Nx is of
finite index in ∆x the element γ0 has only finitely many conjugate in ∆x and they are all
in Zx. Denote these elements by γ0, γ1, . . . , γk. All of them are parabolics and since they
commute with each other, for every t the corresponding sublevel sets intersect nontrivially:

Bt = ∩ki=0{p ∈ X : dγi(p) ≤ t} 6= ∅.
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Taking t < min{dγi(x) : i = 0, . . . , k} we get a nonempty ∆x-invariant closed convex set
Bt not containing x. Taking y = πBt(x) and proceeding as in the previous cases allows us
to complete the proof. �

By the finiteness of the volume of M we deduce:

Lemma 3.10. The map ψ is proper, i.e. ψ−1([0, a]) is compact for every a ∈ R≥0.

Proof. Suppose a > 0. If ψ(x) ≤ a and x̃ is a lift of x to Hn then for every γ ∈ Γ \ {1} we
have f(dγ(x)) ≤ a implying that dγ(x) ≥ f−1(a). It follows that the injectivity radius of
M at x is at least f−1(a)/2. Thus ψ−1([0, a]) is contained in the f−1(a)/2-thick part of M .
Since M has finite volume the last set is compact. �

Recall the following basic lemma from Morse theory:

Lemma 3.11 (Morse lemma). Let Q be a smooth manifold and and φ : Q → R≥0 a
smooth proper map. If ∂φ 6= 0 on φ−1(a, b) for some 0 ≤ a ≤ b ≤ ∞ then φ−1([0, a]) is a
deformation retract of φ−1([0, b]).

Applying the lemma to Q = Y and φ = ψ we deduce that ψ−1(0) is a deformation retract
of Y . It follows that π1(Y ) ∼= π1(ψ−1(0)). Note that since Γ acts freely on Ỹ and Y = Γ\Ỹ
it follows that Γ is a quotient of π1(Y ). Hence the theorem will follow if we show:

Lemma 3.12. π1(ψ−1(0)) is generated by C·vol(M) elements for some appropriate constant
C = C(Hn).

Proof. Let F be a maximal ε discrete subset of ψ−1(0). Since the ε/2 balls centered at F
are disjoint and injected

|F| ≤ Const · vol(M).

Let U be the union of the ε balls centered at F . Then ψ−1(0) ⊂ U ⊂ Y and since ψ−1(0)
is a deformation retract of Y we see that π1(ψ−1(0)) is a quotient of π1(U). Finally U is
homotopic to the simplicial complex corresponding to the nerve of the cover {B(f, ε) : f ∈
F} and the complexity of the letter is clearly bounded by a constant times |F|. �

This finishes the proof of the theorem in case X = Hn. �

As an immediate consequence we deduce the following result which originally proved by
Garland and Raghunathan in the rank one case and by Kazhdan in the higher rank case:

Corollary 3.13. Every lattice in G is finitely generated.

As another application we deduce:

Theorem 3.14 (Kazhdan–Margulis 68). Let G be as above. There is a positive constant
v0 such that for every lattice Γ ≤L G, vol(G/Γ) ≥ v0.

It can be shown that the minimal co-volume v0 is attained, but in general it is very hard
to get a good estimate of it.
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4. Lecture 4, Rigidity and arithmeticity

Let Γ be a finitely generated group and G a topological group. By Hom(Γ, G) we denote
the space of homomorphisms Γ→ G with the point-wise topology. A map f ∈ Hom(Γ, G) is
said to be locally rigid if the conjugacy class fG contains a neighborhood of f . A subgroup
Γ ≤ G is said to be locally rigid if the inclusion map Γ→ G is locally rigid.

Theorem 4.1 (Local rigidity). (Margulis, Weil, Selberg, Calabi) Let G be a connected
semisimple Lie group group not locally isomorphic to PSL2(R) or PSL2(C). Then every
irreducible lattice is locally rigid. If G is locally isomorphic to PSL2(C) and Γ ≤L G then
Γ is locally rigid iff it is uniform.

A. Selberg who proved local rigidity for uniform lattices in SLn(R), n ≥ 3 observed that
this implies:

Proposition 4.2. Let G be a semisimple Lie group and Γ a locally rigid subgroup then the
eigenvalues of Ad(γ) are algebraic for every γ ∈ Γ.

The local rigidity theorem is also an important ingredient in the proof of Wang’s finiteness
theorem:

Theorem 4.3 (Wang’s finiteness theorem). Let G be a connected semisimple Lie group
without compact factors not locally isomorphic to SL2(R) and SL2(C). Then for every
v > 0 there are only finitely many irreducible lattices Γ ≤ G with vol(G/Γ) < v.

Next let us formulate Mostow’s and Margulis’ rigidity theorems:

Theorem 4.4 (Strong rigidity, Mostow). Let G be a semisimple Lie group without compact
factors, and suppose that dim(G) > 3. Let Γ1,Γ2 ≤L G be irreducible lattices then every
isomorphism between Γ1 and Γ2 extends to an authomorphism of G.

As a corollary, one deduce for instance that two finite volume complete n-hyperbolic
manifolds are isometric iff their fundamental groups are isomorphic. Let us demonstrate
another result whose proof relies on Mostow’s theorem:

Theorem 4.5. Let G be a semisimple Lie group without compact factors not locally iso-
morphic to SL2(R), SL2(C). Then the number of conjugacy classes of lattices of covolume
≤ v is at most vcv where c is some constant depending on G.

Theorem 4.6 (Margulis super-rigidity theorem). Let G be a semisimple Lie group without
compact factors and suppose rankR(G) ≥ 2. Let Γ ≤L G be an irreducible lattice. Let H
be a center free simple algebraic group defined over a local field k and let ρ : Γ → H(k) be
a Zariski dense unbounded representation. Then ρ extends uniquely to a representation of
G.

We shall explain how super-rigidity implies arithmeticity:

Theorem 4.7. Let G be a higher rank semisimple Lie group without compact factors. Then
every irreducible lattice is arithmetic.
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