
Lectures on proper CAT(0) spaces

and their isometry groups

(preliminary version)

Pierre-Emmanuel Caprace





Contents

Introduction v

Lecture I. Leading examples 1
1. The basics 1
2. The Cartan–Hadamard theorem 2
3. Proper cocompact spaces 3
4. Symmetric spaces 4
5. Euclidean buildings 5
6. Rigidity 7
7. Exercises 8

Lecture II. Geometric density 11
1. A geometric relative of Zariski density 11
2. The visual boundary 11
3. Convexity 13
4. A product decomposition theorem 14
5. Geometric density of normal subgroups 15
6. Exercises 16

Lecture III. The full isometry group 19
1. Locally compact groups 19
2. The isometry group of an irreducible space 19
3. de Rham decomposition 21
4. Exercises 23

Lecture IV. Lattices 25
1. Geometric Borel density 25
2. Fixed points at infinity 26
3. Levi decomposition 27
4. Back to rigidity 30
5. Exercises 31

Bibliography 33

iii





Introduction

CAT(0) spaces, introduced by Alexandrov in the 1950’s, were given
prominence by M. Gromov, who showed that a great deal of the theory
of manifolds of non-positive sectional curvature could be developed without
using much more than the CAT(0) condition (see [BGS85]). Since then,
CAT(0) spaces have played a central role in geometric group theory, open-
ing a gateway to a form of generalized differential geometry encompassing
non-positively curved manifolds as well as large families of singular spaces
such as trees, Euclidean or non-Euclidean buildings, and many other cell
complexes of non-positive curvature.

Excellent introductions on CAT(0) spaces may be found in the literature,
e.g. in the books [Bal95] and [BH99]. The goal of these lectures is to present
some material not covered by those references. While the rigidity of (usually
discrete) group actions on non-positively curved space is a standard theme
of study in geometric group theory, the main idea we would like to convey is
that, in the locally compact case, the spaces themselves turn out to be much
more rigid than one might expect as soon as they admit a reasonable amount
of isometries. This phenomenon will be highlighted by placing a special
emphasis on the full isometry group of a proper CAT(0) space. Taking into
account the fact the this isometry group is naturally endowed with a locally
compact group topology which is possibly non-discrete, many structural
(and especially rigidity) properties of the underlying space can be derived
by combining results on locally compact groups with (mostly elementary)
geometric arguments. A number of results obtained along this approach are
presented in the course.

Although some of the very basics on CAT(0) spaces will be recalled, a fa-
miliarity with the aforementioned standard references is recommended. We
have chosen to present the results not always in their most general form, but
rather in a way that makes their statement simpler and hopefully more en-
lightening. More general statements, detailed arguments and further results
may be found in the papers [CM09a,CM09b,CM12a]. All the original results
presented here have been obtained in collaboration with Nicolas Monod.
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LECTURE I

Leading examples

1. The basics

Let (X, d) be a metric space. A geodesic map is an isometric map
ρ : I → X of a convex subset I ⊆ R to X, where the real line R is endowed
with the Euclidean distance. The map ρ is called a geodesic segment
(resp. ray, line) if I is a closed interval (resp. I is a half-line, I = R). It
should be noted that the notion of geodesic introduced here is a global one,
as opposed to the corresponding notion in differential geometry.

A geodesic metric space is a metric space (X, d) in which any two
points are joined by a geodesic segment.

Examples I.1.
• The Euclidean space (Rn, dEucl) is a geodesic metric space.
• More generally, a Riemannian manifold, viewed as a metric space

with its canonical distance function, is a geodesic metric space pro-
vided it is complete. An incomplete Riemannian manifold need not
be a geodesic metric space.

• Any metric graph is a geodesic metric space.

Let (X, d) be a geodesic metric space. Given a triple (x, y, z) ∈ X3, a
Euclidean comparison triangle for (x, y, z) is a triple (x̂, ŷ, ẑ) of points of
the Euclidean plane R2 such that d(x, y) = dEucl(x̂, ŷ), d(y, z) = dEucl(ŷ, ẑ)
and d(z, x) = dEucl(ẑ, x̂). Notice that any triple in X admits some Euclidean
comparison triangle.

A CAT(0) space is a geodesic metric space all of whose triple of points
(x, y, z) ∈ X3 satisfy the following condition: given a Euclidean comparison
triangle (x̂, ŷ, ẑ) in R2, any point p ∈ X which belongs to some geodesic
segment joining y to z in X satisfies the inequality

d(x, p) ≤ dEucl(x̂, p̂),

where p̂ ∈ R2 is the unique point of R2 such that d(y, p) = dEucl(ŷ, p̂) and
d(p, z) = dEucl(p̂, ẑ).

The following fundamental properties of CAT(0) spaces are straightfor-
ward to deduce from the definition.

Proposition I.2. Let (X, d) be a CAT(0) space. Then:
(i) (X, d) is uniquely geodesic, i.e. any two points are joined by a

unique geodesic segment.
(ii) X is contractible.

Examples I.3.
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• The Euclidean space (Rn, dEucl) is a CAT(0) space. So is any pre-
Hilbert space.

• A complete Riemannian manifold M , endowed with its canonical
distance function, is a CAT(0) space if and only if M has non-
positive sectional curvature. See [BH99, Theorem 1.A.6]. So is in
particular the real hyperbolic space Hn.

• A metric graph X is a CAT(0) space if and only if X is a tree.

This short list of examples already illustrates that the category of CAT(0)
spaces encompasses both smooth and singular objects. The singular charac-
ter expresses itself by the fact that geodesics may branch, i.e. two distinct
geodesic segments may share a common sub-segment of positive length.

There are several ways to construct news examples of CAT(0) spaces
from known ones.

A subset Y of a CAT(0) space (X, d) is called convex if the geodesic
segment joining any two points of Y is entirely contained in Y . Clearly, a
convex subset of a CAT(0) space is itself a CAT(0) space when endowed
with the induced metric.

Another key feature of the CAT(0) condition is its stability under Carte-
sian products. The proof is left as an exercise.

Proposition I.4. Let (X1, d1) and (X2, d2) be CAT(0) spaces. Then
the Cartesian product X = X1 × X2, endowed with the metric d defined by
d2 = d2

1 + d2
2, is a CAT(0) space.

Various more exotic constructions, like gluing two CAT(0) spaces along
an isometric convex subset, also preserve the CAT(0) condition. We close
this section with the following noteworthy facts, for which we refer to
Cor. II.3.10 and II.3.11 in [BH99].

Proposition I.5.
(i) The Cauchy completion of a CAT(0) space is itself CAT(0).
(ii) An ultraproduct of CAT(0) spaces is itself CAT(0). In particular, the

asymptotic cones of a CAT(0) space are CAT(0).

2. The Cartan–Hadamard theorem

A fundamental feature of the CAT(0) condition is that it is a local con-
dition, as is the condition of being non-positively curved in the realm of
Riemannian geometry. This matter of fact is made precise by the following
basic result, for which we refer to [Bal95, Theorem I.4.5] and [BH99, Theo-
rem II.4.1].

Theorem I.6 (Cartan–Hadamard). Let (X, d) be a complete connected
metric space.

If every point of X admits some neighbourhood which is CAT(0) when
endowed with the appropriate restriction of d (we then say that (X, d) is
locally CAT(0)), then there is a unique distance function d̃ on the universal
cover X̃ such that following two conditions hold:

• the covering map X̃ → X is a local isometry;
• (X̃, d̃) is a CAT(0) space.
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The metric d̃ coincides with the length metric (also called inner met-
ric) induced by d on X̃. We refer to [Bal95, §1.1] and [BH99, §I.3] for de-
tailed treatments of those notions. At this point, let us just observe that a
non-convex subset of a CAT(0) space may very well be CAT(0) provided it
is endowed with the induced length metric.

The Cartan–Hadamard theorem yields a wealth of further examples of
CAT(0) spaces constructed as universal covers of compact metric spaces
that are locally CAT(0). A typical situation is that of a finite piecewise
Euclidean cell complex X, endowed with the length metric d induced by the
Euclidean metric on each cell. The Cartan–Hadamard theorem ensures that
the universal covering cell complex X̃ is naturally a CAT(0) space provided
(X, d) is locally CAT(0). Verifying that a given finite piecewise Euclidean
cell complex is locally CAT(0) is usually highly non-trivial (although, in the-
ory, it can be done algorithmically, see [EM04]). There are only two special
cases where this question can be decided by means of an easy combinatorial
criterion, as described in the following (see [BH99, §II.5] and the lectures by
M. Sageev).

Theorem I.7. Let X be a connected piecewise Euclidean cell complex
endowed with the length metric d induced by the Euclidean metric on each
cell. If any of the following conditions holds, then (X, d) is locally CAT(0),
and hence (X̃, d̃) is a CAT(0) space:

(i) X is two-dimensional, and for each vertex v ∈ X(0) and each sequence
(σ1, σ1, . . . , σn) of pairwise distinct 2-faces such that σi ∩ σi+1 is an
edge containing v for all i ∈ Z/nZ, the sum over all i of the interior
angles of the faces σi at the vertex v is at least 2π.

(ii) Each cell in X is a Euclidean cube with edge length one, and the link
of every vertex is a flag complex.

The CAT(0) spaces constructed as in Theorem I.7(ii), which are called
CAT(0) cube complexes, are endowed with a rich combinatorial structure
which provides an important addition tool in their study. This explains why
results known about CAT(0) cube complexes are usually much finer than
those describing more general classes of CAT(0) spaces. Nevertheless, it
turns out that CAT(0) cube complexes are much more ubiquitous that one
might think at a first sight. We refer to the lectures by M. Sageev for more
information.

From now on, a metric space (X, d) will simply be denoted by its under-
lying set of points X, the distance function being by default by denoted by
the letter d, unless explicitly mentioned otherwise.

3. Proper cocompact spaces

The class of all CAT(0) spaces is wide and wild; it is not a realistic goal
to understand it exhaustively. In the rest of the course, we shall frequently
impose that the spaces under consideration satisfy (some of) the following
conditions:

• Properness. A metric space is called proper if all of its closed
balls are compact. In particular such a space is locally compact.
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• Cocompactness. A metric space X is called cocompact if its
full isometry group Is(X) acts cocompactly, i.e. if the orbit space
Is(X)\X is compact.

• Geodesic completeness. A geodesic metric space X is called
geodesically complete (one also says that X has extendible
geodesics) if every geodesic segment can be prolonged to a (po-
tentially non-unique) bi-infinite geodesic line.

As in Riemannian geometry, the notions of properness, completeness
and geodesic completness are related in the case of locally compact spaces:

Theorem I.8 (Hopf–Rinow). Let X be a locally compact CAT(0) space.
(i) X is proper if and only if it is complete.
(ii) If X is geodesically complete, then it is proper.

Proof. See [Bal95, Theorem I.2.4] and [BH99, Proposition I.3.7]. �

Among all proper cocompact CAT(0) spaces, there are two leading fam-
ilies of examples, namely symmetric spaces and Euclidean buildings. Those
are the spaces naturally associated with semi-simple Lie groups or semi-
simple linear algebraic groups over local fields. We shall now briefly recall
the basic definitions.

4. Symmetric spaces

A symmetric space is a Riemannian manifold M such that the ge-
odesic symmetric σx centered at each point x ∈ M is a global isometry.
Equivalently, for each x ∈ M there is an isometry σx ∈ Is(M) fixing x,
whose differential is the central symmetry of TxM .

Basic examples are provided by the sphere Sn, the Euclidean space Rn

and the real hyperbolic space Hn. As the example of the sphere shows, a
symmetric space can be positively curved. A symmetric space is said to
be of non-compact type if it has non-positive sectional curvature and no
non-trivial Euclidean factor.

Any such space M is thus a CAT(0) space which is proper, cocompact
(in fact homogeneous!) and geodesically complete. It can be constructed as
a coset space M = G/K, where G is a non-compact, connected semi-simple
Lie group and K < G is a maximal compact subgroup. The metric on G/K
comes from the Killing form of the Lie algebra of G.

A prominent example is provided by the case G = SLn(R) and K =
SO(n). The coset space M = G/K can be identified with the collection of
scalar products on Rn for which the unit ball has the same volume as the
unit ball with respect to the standard Euclidean metric dEucl.

The distance function on M can be defined as follows. Given two scalar
products x1 = (·, ·)1 and x2 = (·, ·)2 on Rn, it is a standard fact that there
exists some basis of Rn with respect to which both products are represented

by a diagonal Gram matrix, say

 λ1

. . .
λn

 and

 µ
. . .

µn

 .
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The distance from x1 to x2 is then defined by

(4.1) d(x1, x2) =

√√√√ n∑
i=1

(
log

λi

µi

)2

.

It is then a (non-trivial) fact that (M,d) is a CAT(0) space (see Exer-
cise I.4). The following key feature of that space is easy to deduce from the
definition given above.

Proposition I.9. Let (M, d) be the symmetric space associated with
SLn(R). Then any two points of M are contained in a common flat of
dimension n − 1.

A flat of dimension k in a CAT(0) space is a subset isometric to the
Euclidean space Rk. The rank of a symmetric space is the maximal dimen-
sion of a flat. The above property is a special instance of a general property:
in a symmetric space of rank r, any two points are contained in a common
r-flat.

5. Euclidean buildings

Let W ≤ Is(Rn) be a discrete reflection group, i.e. a discrete sub-
group generated by orthogonal reflections through hyperplanes.

The discreteness of W implies that the collection H of all hyperplanes
associated with reflections in W is locally finite, i.e. every ball meets only
finitely many hyperplanes in H. In fact, the pattern determined by H de-
fines a cellular decomposition of Rn, which is called a Euclidean Coxeter
complex. A chamber in that complex is defined as a connected compo-
nent of the space Rn −

∪
H∈H H. The group W acts sharply transitively on

the set of chambers. The top-dimensional cells in a Coxeter complex coin-
cide with the closures of the chambers, which may be non-compact. Any
lower dimension cell is the intersection of a closed chambers with a set of
hyperplanes in H.

A Euclidean building is a cell complex ∆ satisfying the following two
conditions:
(1) Any two cells are contained in a common subcomplex, called an apart-

ment, which is (combinatorially) isomorphic to a Euclidean Coxeter
complex.

(2) Given any two apartments A1 and A2 in ∆, there is an isomorphism
φ : A1 → A2 fixing the intersection A1 ∩ A2 pointwise.

A Euclidean building is thus primarily a combinatorial object. It always
possesses a CAT(0) metric realization:

Proposition I.10. Let ∆ be a Euclidean building. Then ∆ has a metric
realisation (|∆|, d) such that for each apartment A ⊂ ∆, the restriction of
d to |A| is the Euclidean metric. The metric space (|∆|, d) is a complete
CAT(0) space.
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Proof. Axiom (2) implies that all apartments are combinatorially iso-
morphic. Fix a Euclidean metric on one of them, and transport this metric
to all the others via the isomorphisms provided by (2). The axioms imply
that this yields a geometric realisation |∆| endowed with a well defined map
d : |∆| × |∆| → R+ whose restriction to each apartment is the Euclidean
metric. One may then verify that (|∆|, d) is a metric space which satisfies
the CAT(0) condition. The fact that it is geodesic is immediate from (1).
See [AB08, Theorem 1.16] for details. �

The simplest example of a building is when W is the infinite dihedral
group acting properly on the real line. In that case, the corresponding
Coxeter complex is the simplicial line, and a Euclidean building having that
Coxeter complex as type of apartments is a simplicial tree without vertex
of valency one. Conversely any simplicial tree without vertex of valency
one is a Euclidean building. Likewise, if W is a product of n copies of the
infinite dihedral groups acting properly on Rn, the corresponding buildings
are products of n trees.

Euclidean buildings are the natural ‘discrete’ analogues of symmetric
spaces. In fact, to any semi-simple linear algebraic group over a local field
(e.g. SLn(Qp)), one may associate a Euclidean building on which the group
acts isometrically, transitively on the chambers. This is part of the Buhat–
Tits theory [BT72]. Let us merely mention here that the key feature of
symmetric spaces pointed out in Proposition I.9 is shared by Euclidean
buildings:

Proposition I.11. In the CAT(0) realization of a Euclidean building of
dimension n, any two points are contained in a common n-flat. �

The fact that the rank coincides with the dimension is of course peculiar
to buildings; the symmetric space associated with SLn(R) has rank n − 1
and dimension (n−1)(n+2)

2 . In fact, one has the following characterization of
Euclidean buildings among locally compact CAT(0) spaces:

Theorem I.12 (Kleiner). Let X be a locally compact CAT(0) space of
geometric dimension n. If any two points are contained in a common n-flat,
then X is the metric realization of a Euclidean building.

The geometric dimension can be defined as the supremum over all
compact subsets K ⊂ X of the topological dimension of K. For alternative
characterizations, see [Kle99].

A more detailed introduction on Euclidean buildings can be found in
[Bro89]. See also [AB08] for a comprehensive account. The Euclidean
buildings defined above are sometimes called discrete Euclidean buildings,
in order to distinguish them within a more general class of objects, called
R-buildings (or non-discrete Euclidean buildings). Those generalize
discrete buildings in the same way as R-trees generalize simplicial trees;
they appear naturally in the Bruhat–Tits theory of reductive groups over
fields with a non-discrete valuation. They also pop up as asymptotic cones
of symmetric spaces of non-compact type, as proved by Kleiner and Leeb
(see [KL97], as well as the lectures by M. Kapovich).
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6. Rigidity

Symmetric spaces and Euclidean buildings should be considered as lead-
ing examples of CAT(0) spaces. This is not only justified by the fact that
their features serve as a basis for the intuition in the study of more general
CAT(0) spaces, but also because these spaces (especially in rank > 1) seem
to be the most rigid among all proper CAT(0) spaces. We finish this first
lecture by mentioning some instances of this matter of fact.

Products of symmetric spaces and Euclidean buildings arise naturally
in the study of arithmetic groups (see the lectures by T. Gelander and by
D. Morris). The prototypical example is Γ = SLn(Z[ 1

p1...pr
]), with p1, . . . , pr

distinct primes. Indeed the diagonal embedding of Γ in G = SLn(R) ×
SLn(Qp1)×· · ·×SLn(Qpr) is a lattice embedding. In particular the discrete
group Γ acts properly on the model CAT(0) space of G, which is the product

X = M × ∆p1 × · · · × ∆pr

of the symmetric space M of SLn(R) with the Euclidean buildings ∆pi of
SLn(Qpi).

The following result highlights a strong rigidity property of the arith-
metic group Γ.

Theorem I.13 ([CM09a, Th. 1.14 and 1.15]). Let Γ = SLn(Z[ 1
p1...pr

]),
with n ≥ 3 and r ≥ 0, act by isometries on a proper cocompact CAT(0) space
Y . Assume that Γ acts minimally in the sense that it does not preserve
any non-empty closed convex subset Z ( Y .

Then Y is a product of symmetric spaces and Euclidean buildings, which
is a subproduct of the model space X.

Notice that no properness assumption is made on the action of Γ on
Y . The theorem shows that Γ admits only few minimal actions on proper
cocompact CAT(0) spaces: all of them occur as projections of the Γ-action
on the model space X on a subproduct. In particular, when the model space
has only one factor, i.e. when Γ = SLn(Z), it follows that any minimal action
of Γ on a proper cocompact CAT(0) space is either trivial, or proper and
coincides with the standard Γ-action on the symmetric space SLn(R)/SO(n).

Theorem I.13 can be viewed as a rigidity property of the arithmetic group
SLn(Z[ 1

p1...pr
]). The following result should rather be interpreted as a rigidity

property of its model space X. We recall the isometries of a CAT(0) fall
into three families, called elliptic, hyperbolic and parabolic respectively.
Elliptic isometries are those which fix points. Hyperbolic isometries are those
which preserve some geodesic line and act non-trivially along it. Parabolic
isometries are all the others; they can have translation length zero or not,
and should be viewed as the wilder type of isometries, especially when the
ambient space is not locally compact. See [Bal95, §II.3] and [BH99, §II.6].

Theorem I.14 ([CM09b, Th. 1.5]). Let X be a locally compact, geodesi-
cally complete, cocompact CAT(0) space. Assume that the full isometry
group Is(X) contains a lattice Γ which is finitely generated, residually finite,
and indecomposable in the sense that it does not split non-trivially as a
direct product, even virtually.
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If X admits some parabolic isometry, then X is a product of symmetric
spaces and Euclidean buildings.

The hypothesis that Γ < Is(X) be a finitely generated lattice is auto-
matically satisfied if Γ is a discrete group acting properly and cocompactly
on X.

The content of this course includes some of the main ingredients coming
into the proofs of Theorems I.13 and I.14.

We finish this section by mentioning a conjecture geometric character-
ization of symmetric spaces and Euclidean buildings, independent of any
discrete group action. To this end, let us denote by (Pn) the property that
any two points are contained in a common n-flat. Clearly, a CAT(0) space
satisfies (P1) if and only if it is geodesically complete. We have seen that
for all n, symmetric spaces of rank n and Euclidean buildings of dimension
n satisfy (Pn). Moreover, one has the following easy observation:

Lemma I.15. Let X = X1 × X2 be a CAT(0) product space. If X1 and
X2 satisfy (Pn1) and (Pn2) respectively, then X satisfies (Pn1+n2).

We have thus three sources of CAT(0) spaces satisfying (Pn) with n > 1:
symmetric spaces, Euclidean buildings, and products of geodesically com-
plete spaces. It is an important question to determine to what extent these
are the only sources:

Conjecture I.16 (Ballmann–Buyalo [BB08]). Let X be a proper co-
compact CAT(0) space. If X satisfies (Pn) for some n ≥ 2, then X is a
symmetric space, or a Euclidean building, or a (non-trivial) CAT(0) prod-
uct space.

This conjecture is closely related to the the phenomenon called Rank
Rigidity. It is known in case X is a manifold of non-positive curvature, see
[Bal95] and references therein. It has also been verified when X is a CAT(0)
cell complex of dimension 2 or 3 by Ballmann and Brin [BB95, BB00]. It
is moreover true when X is a CAT(0) cube complex, see [CS11] as well as
M. Sageev’s lecture notes in this volume.

7. Exercises

Exercise I.1. Let X be a proper metric space and let G ≤ Is(X).
Show that the orbit space G\X is compact if and only if there is a ball in
X which meets every G-orbit.

Exercise I.2. Let (X1, d1) and (X2, d2) be CAT(0) spaces. Given p ∈
[1,∞), let dp be the metric on the cartesian product X = X1 × X2 defined
by dp = dp

1 + dp
2. Show that (X, dp) is a CAT(0) space if and only if p = 2.

Exercise I.3. (i) Let X = X1×X2 be a CAT(0) product space. Show
that X is geodesically complete if and only if X1 and X2 are both so.

(ii) Show that every CAT(0) space embeds as a convex subset in some
geodesically complete CAT(0) space.

(iii) Show that Theorem I.8(ii) fails for spaces that are not locally compact.
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Exercise I.4. Let M = SLn(R)/SO(n) and d : M × M → R be the
map defined by (4.1).

(i) Show that d is well defined, i.e. it does not depend on the choice of a
diagonalizing basis.

(ii) Given a positive definite n × n matrix A, we denote by λ(A) the vec-
tor formed by its eigenvalues put in non-increasing order. A result
by Lidskii (see [Bha97]) asserts that for A,B positive definite, one
has log(λ(AB)) ≺ log λ(A) + log λ(B). The expression (x1, . . . , xn) ≺
(y1, . . . , yn) for two non-increasing sequences means that the latter se-
quence majorizes the former, i.e.

∑k
i=1 xi ≤

∑k
i=1 yi for all k, and∑n

i=1 xi =
∑n

i=1 yi.

Use Lidskii’s result to show that (M, d) is a metric space.
(iii) (Open problem) Find a direct proof that (M,d) is a CAT(0) space,

without using differential geometry.





LECTURE II

Geometric density

1. A geometric relative of Zariski density

Let X be a CAT(0) space and G < Is(X) be a group of isometries. The
G-action is called minimal if G does not preserve any non-empty closed
convex subset X ′ ( X. The group G is called geometrically dense if G
acts minimally and without a fixed point at infinity on X. (For a brief recap
on points at infinity, see §2 below.)

This notion can be viewed as coarsely related to Zariski density in the
case of linear groups. Indeed, if X is a symmetric space of non-compact
type, then any geometrically dense subgroup G < Is(X) is Zariski dense.
This can be deduced from the Karpelevic–Mostow theorem. If in addition
X is irreducible of rank ≥ 2, the converse holds by a theorem of Kleiner and
Leeb [?KleinerLeeb2]. In rank one symmetric spaces, there exist Zariski
dense subgroups which do not act minimally.

A CAT(0) space is called irreducible if it does not split as a CAT(0)
product space in a non-trivial way. The symmetric space associated with a
simple Lie group is always irreducible, as is the Euclidean building associated
with a simple algebraic group over a local field. The following property of
the full isometry group of a proper CAT(0) space could be viewed as some
very weak form of ‘simplicity’.

Theorem II.1 ([CM09a, Th. 1.10]). Let X be a proper CAT(0) space
which is irreducible, not isometric to the real line, and has finite-dimensional
visual boundary ∂X (the latter condition is automatic if X is cocompact).

Given a geometrically dense subgroup G < Is(X), any normal subgroup
N � G is either trivial or geometrically dense.

If X = R is the real line, a non-trivial normal subgroup N �G still acts
minimally on X, but may obviously fix the two elements of ∂X.

2. The visual boundary

The visual boundary of X is the set of asymptotic classes of geodesic
rays. It is denoted by ∂X. The visual boundary ∂X comes equipped with
two different natural topologies, which are both preserved by Is(X):

• The cone topology, which is defined by viewing ∂X as a quotient
of the space of all geodesic rays, endowed with the topology of
uniform convergence on bounded subsets. When X is proper, the
cone topology on ∂X is compact by the Arzela–Ascoli theorem.

11
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• The topology induced by the angular metric. The angle between
two points ξ, η ∈ ∂X is defined by

∠(ξ, η) = sup
x∈X

∠x(ξ, η),

where ∠x(ξ, η) denotes the Alexandrov angle at x between the
unique geodesic rays issuing from x and pointing to ξ and η respec-
tively. The angular metric is indeed a metric, and the associated
topology is finer (and often strictly finer) than the cone topology.

For a detailed treatment of the visual boundary, see [BGS85, §3–4],
[Bal95, § II.1–II.4] and [BH99, §II.8–II.9]. A fundamental fact is that if X
is complete, then the metric space (∂X, ∠) is a complete CAT(1) space, see
[BH99, Th. II.9.20]. Here we shall content ourselves with mentioning a few
facts needed in the sequel.

It is a well known fact that a bounded subset Z of a complete CAT(0)
space X admits a unique circumcenter, i.e. a unique point c such that
Z is contained in the closed ball B(c,R) of radius R around c, where c
is defined as c = infx∈X{r ∈ R | Z ⊂ B(x, r)}. The number r is called
the circumradius of Z. In CAT(1) geometry, a similar statement holds
provided the subset Z is assumed to have circumradius < π/2, see [BH99,
Prop. II.2.7]. The following important result, due to Balser and Lytchak,
shows that this can be extended to sets of circumradius ≤ π/2 provided the
set Z is convex and finite-dimensional:

Theorem II.2 ([BL05, Prop. 1.4]). Let Z be a finite-dimensional com-
plete CAT(1) space. If Z has circumradius π/2, then the set of circumcenters
of Z has circumradius < π/2. In particular the full isometry group Is(Z)
fixes a point in Z. �

The notion of dimension is the same as in Theorem I.12, see [Kle99]
for more information. We emphasize that Theorem II.2 fails without the
finite-dimensionality assumption, see Exercise II.3. The typical situation in
which we shall apply Theorem II.2 is the following: the space Z will be a
closed convex subset of the visual boundary ∂X of a proper CAT(0) space
X. The finite-dimensionality hypothesis is automatically satisfied if X is
cocompact, since then the full visual boundary ∂X is finite-dimensional by
[Kle99, Thm. C], and hence so is any convex subset Z ⊆ X. It should be
noted that the circumradius of Z as a subset of X may be smaller than the
intrinsic circumradius of Z, defined by infz∈Z{r ∈ R | Z ⊂ B(z, r)}. It
is of course the intrinsic circumradius that has to be used when applying
Theorem II.2 to a closed convex subset Z ⊆ ∂X. In the situations we shall
encounter, the upper bound of π/2 on the circumradius will be deduced from
the following observation.

Proposition II.3. Let X be a proper CAT(0) space, and (Yi)i∈I be a
descending chain of closed convex subsets.

If
∩

i∈I Yi is empty, then
∩

i∈I ∂Yi is a non-empty closed convex subset
of ∂X, whose circumradius is at most π/2.

Proof. Pick x ∈ X and let yi be its orthogonal projection to Yi. If
the set (yi)i∈I is bounded, then

∩
i∈I Yi is non-empty. Assume that this is



3. CONVEXITY 13

not the case. We can then extract a countable chain (Yi(n))n≥0 such that
the sequence (yi(n)) converges to some boundary point ξ ∈ ∂X with respect
to the cone topology. In particular

∩
n Yi(n) is empty and Z =

∩
n ∂Yi(n) =∩

i Yi. Notice moreover that ξ belongs to Z.
It remains to show that for each η ∈ Z, we have ∠(ξ, η) ≤ π/2. To

this end, observe that there is a sequence y′n ∈ Yi(n) which converges to
η in the cone topology. We have π/2 ≤ ∠yi(n)

(x, y′n) by the properties of
the projection [BH99, Prop. II.2.4], and ∠yi(n)

(x, y′n) ≤ ∠yi(n)
(x, y′n) by the

CAT(0) condition, where ∠ denotes the angle in a Euclidean comparison
triangle. It follows that ∠x(yi(n), y

′
n) ≤ π/2. By [BH99, Prop. II.9.16], this

implies that ∠(ξ, η) ≤ π/2, as desired. �

3. Convexity

A map f : X → R is called convex if for each geodesic ρ : I → X, the
composed map f ◦ ρ : I → R is convex. In that case, sublevel sets of f are
convex subsets of X. Here are a few examples:

• Given a point p ∈ X, the distance to p, namely

dp : X → R : x 7→ d(x, p)

is convex: this follows right away from the CAT(0) condition. Its
sublevel sets are nothing but balls around p.

• Given a complete convex subset Y ⊂ X, the distance to Y , namely

dY : X → R : x 7→ d(x, Y ) = inf
y∈Y

d(x, y)

is convex, see [BH99, Cor. II.2.5]. Its sublevel sets are called tubu-
lar neighbourhoods of Y and denote by Nr(Y ) = f−1([0, r]).

• Given a geodesic ray ρ : [0,∞) → X, the function bρ : X → R
defined by

bρ(x) = lim
t→∞

d(x, ρ(t)) − t

is well defined, convex and 1-Lipschitz, see Exercise II.7. It is
called the Busemann function associated with ρ. Its sublevel
sets are called horoballs centered at the endpoint ξ = ρ(∞). If ρ′

is another geodesic ray having ξ as endpoint, then the Busemann
functions bρ and bρ′ differ by a constant, so that the collection of
horoballs centered at ξ does not depend on the choice of a geodesic
ray pointing to ξ.

• Given an isometry g ∈ Is(X), its displacement function dg : X →
R defined by dg(x) = d(x, g.x) is convex and 2-Lipschitz, see Ex-
ercise II.5. The infimum of the displacement function is called
the translation length, and is denoted by |g|. The sublevel set
f−1([0, |g|]) = f−1(|g|), which is thus closed and convex, is denoted
by Min(g). It is non-empty if and only if g is not parabolic.

The existence of isometries with a constant displacement function wit-
nesses the presence of a Euclidean factor:

Proposition II.4 ([BH99, Th. II.6.5]). A CAT(0) space X admits a
non-trivial isometry with constant displacement function if and only if X
splits as a product X ∼= R × X ′. �
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We record the following consequence:

Corollary II.5. Let X be a CAT(0) space without non-trivial Eu-
clidean factor.

For any group G < Is(X) acting minimally on X, the centraliser
ZIs(X)(G) is trivial. In particular so is the center Z (G).

Proof. Let g ∈ ZIs(X)(G). Then the displacement function dg is G-
invariant in the sense that dg is constant on each G-orbit. In particular G
preserves all sublevel sets of dg, which are closed and convex. By minimality,
it follows that dg has no non-trivial sublevel set; in other words dg is constant,
and Proposition II.4 concludes the proof. �

Here is another straightforward application of convexity.

Lemma II.6. Let X be a complete CAT(0) space. Given G < Is(X) and
two points y, z ∈ X, we have denote by ∂Conv(G.y) = ∂Conv(G.z), where
Conv(Y ) denotes the convex hull of Y , and G.y the G-orbit of y.

Proof. Set Y = Conv(G.y) and Z = Conv(G.z). Then Y and Z are
both G-invariant. Setting r = d(Y, z), we obtain G.z ⊆ Nr(Y ). Since
Nr(Y ) is closed and convex, this yields Z ⊆ Nr(Y ). Similarly Y ⊆ Nr(Z),
and hence Y and Z are a bounded Hausdorff distance apart. Therefore
∂Y = ∂Z, see Exercise II.1. �

Lemma II.6 allows one to associate a canonical subset ∆G ⊆ ∂X to the
group G, defined as the visual boundary of the closed convex hull of some
orbit. We call ∆G the convex limit set of G. It contains (generally as a
proper subset) the usual limit set ΛG, which is defined as the intersection
with the visual boundary ∂X of the closure of some G-orbit in the union
X ∪ ∂X, endowed with the cone topology. Notice the convex limit set is
defined as the visual boundary of a complete CAT(0) subspace of X, and is
thus a CAT(1) space. In other words, it is closed and convex in ∂X.

4. A product decomposition theorem

Let X be a complete CAT(0) space and ℓ be a geodesic line in X. It
is then a standard fact that the union P(ℓ) of all geodesic lines having the
same endpoints as ℓ in the visual boundary, is a closed convex subset of X,
which splits as a CAT(0) product P (ℓ) ∼= R × C. This fact is actually the
key point in the proof of Proposition II.4. Our next task is to extend that
statement to more general subspaces than lines. To this end, we need an
additional piece of terminology.

A closed convex subset Y ⊆ X is called boundary-minimal if for every
closed convex subset Z ( Y , we have ∂Z ( Y . Clearly, a geodesic line is
boundary-minimal while a geodesic ray is not.

Theorem II.7 ([CM09a, Prop. 3.6]). Let X be a proper CAT(0) space
and let ∆ ⊆ ∂X. Set

C∆ = {Y ⊆ X | Y is boundary-minimal and ∂Y = ∆}.
Then the union

∪
C∆ is a closed convex subset which splits as a CAT(0)

product
∪

C∆
∼= Y × C. Moreover C∆ coincides with the set of fibers

{
Y ×

{c} | c ∈ C
}
.
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Proof. We shall only prove the key point, namely the fact that for
any two sets Z1, Z2 ∈ C∆, the distance function to Z1, denoted by dZ1 , is
constant on Z2.

Let Z ′
2 ⊆ Z2 be a non-empty sublevel set of the restriction of dZ1 to Z2.

Thus there is some r > 0 such that Z ′
2 = {z ∈ Z3 | dZ1(z) ≤ r}, and Z ′

2 is
closed and convex.

Let then ξ ∈ ∆ and pick any p ∈ Z ′
2. Let also ρ : [0,∞) → X be the

geodesic ray issuing from p and pointing to ξ. Since ξ ∈ ∆ = ∂Z2 and
since Z2 is closed and convex, it follows that the ray ρ(t) belongs to Z2 for
all t. Since ξ also belongs to ∂Z1, the ray ρ([0,∞)) is entirely contained
in a tubular neighbourhood of Z1. It follows that the map t 7→ dZ1(ρ(t))
is bounded convex function. It must therefore be non-increasing. Since
ρ(0) = p ∈ Z ′

2, it follows that ρ(t) ∈ Z ′
2 for all t. In particular ξ belongs

to ∂Z ′
2. This proves that ∂Z ′

2 = ∂Z2. Since Z2 is boundary-minimal, we
deduce that Z ′

2 = Z2 which proves that the function dZ1 is constant on Z2,
as claimed.

The rest of the proof of the theorem uses the Sandwich Lemma [BH99,
Ex. II.2.12], and is similar to the special case of the parallel set of a geodesic
line mentioned above. Further details are provided in [CM09a, Prop. 3.6].

�

Remark that the set C∆ is potentially empty.

5. Geometric density of normal subgroups

We are now in a position to complete the proof of geometric density for
normal subgroups.

Proof of Theorem II.1. Let N �G be a non-trivial normal subgroup
and ∆ = ∆N be its convex limit set. Consider the set C∆.

Assume that C∆ is empty. then by Zorn’s lemma, there exists a chain of
closed convex subspaces (Yi)i∈I such that ∂Yi = ∆ for all i, and

∩
i Yi = ∅.

By Proposition II.3, it follows that ∆ has intrinsic circumradius at most
π/2. Since ∆ is G-invariant, it follows from Theorem II.2 that G fixes a
point in ∂X, a contradiction.

Thus C∆ is non-empty. By Theorem II.7, the union
∪

C∆ is then a non-
empty closed convex subset splitting as a product of the form Y × C with
all fibers Y × {c} belonging to C∆. Since C∆ is G-invariant and since the
G-action on X is minimal, it follows that X =

∪
C∆. Since X is irreducible,

the product decomposition X ∼= Y ×C must be trivial. Thus either Y or C
is reduced to a singleton. The latter case is impossible, since it would mean
that the elements of C∆ are singletons, which is absurd since they have a non-
empty visual boundary. Thus X ∼= Y × {c}, which implies that X belongs
to C∆. Thus X is boundary-minimal. It follows that N -acts minimally on
X. Indeed, given a non-empty closed convex N -invariant subset Z ( X, we
have ∆N ⊆ ∂Z ⊆ ∂X. Since ∆N = ∂X, we have ∂Z = ∂X, whence Z = X
since X is boundary-minimal.

This proves that any non-trivial normal subgroup N �G acts minimally
on X. It remains to show that N does not fix any point at infinity. Suppose
on the contrary that N fixes some ξ ∈ ∂X. Then the commutator subgroup
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[N, N ] annihilates the Busemann character centered at ξ (see Exercise II.7)
and therefore stabilises each horoball around ξ. In particular it does not act
minimally on X. But N being normal in G, its commutator subgroup [N, N ]
is also normal in G, and is thus trivial by the first part of the proof. Thus N
is abelian. This is absurd, since a group acting minimally on CAT(0) space
without Euclidean factor must be center-free by Corollary II.5. �

Remark that the finite-dimensionality of ∂X was only used through the
application of Theorem II.2. It is an interesting question to determine
whether Theorem II.1 holds if X is a proper CAT(0) space with infinite-
dimensional visual boundary.

Clearly Theorem II.1 can be bootstrapped, thereby giving information
on subnormal subgroups:

Corollary II.8. Let X be a proper cocompact CAT(0) space which is
irreducible, and not isometric to the real line. Let G < Is(X) be a geometri-
cally dense subgroup and H < G be a non-trivial subnormal subgroup. Then
H is still geometrically dense; in particular:

(i) ZG(H) = 1,
(ii) H does not split non-trivially as a direct product,
(iii) H is not soluble,
(iv) H does not have fixed points in X.

Proof. That H is geometrically dense is immediate from an iterated
application of Theorem II.1, and (iv) follows right away. Part (i) is a conse-
quence of Corollary II.5, Part (ii) follows from (i). Part (i) also implies that
a subnormal subgroup cannot be abelian, which implies (iii). �

6. Exercises

Exercise II.1. Let X be a CAT(0) space and Y, Z ⊆ X be two convex
subsets. Show that if Y and Z are a bounded Hausdorff distance apart, then
∂Y = ∂Z. The converse does not hold in general.

Exercise II.2. Construct an example of a proper cocompact CAT(0)
space X whose full isometry group is minimal, but not geometrically dense.

Exercise II.3. Show that Theorem II.2 fails if Z is infinite-dimensional.
(Hint: a counterexample may be constructed as a closed convex subset of
the unit sphere in a Hilbert space).

Exercise II.4. Let X be a proper CAT(0) space and let G < Is(X).
(i) Show that if G does not fix any point in ∂X, then G stabilises a non-

empty closed convex subset X ′ ⊆ X on which its action is minimally.
This minimal G-invariant subspace X ′ need not be unique, even if G
acts without fixed point in X.

(ii) Show that if G acts cocompactly on X, then the same conclusions hold.
(iii) Show that if X is geodesically complete and G acts cocompactly, then

G acts minimally.

Exercise II.5. Show that the displacement function of an isometry of
a CAT(0) space is convex and 2-Lipschitz.
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Exercise II.6. Let X be a metric space and G < Is(X). A func-
tion f : X → R is called G-invariant if f is constant on G-orbits, namely
f(g.x) = f(x) for all x ∈ X and g ∈ G. A function f : X → R is called
G-quasi-invariant if for all g ∈ G, the map X → R : x 7→ f(g.x)− f(x) is
constant. Assuming this is the case, we denote the difference by c(g). Show
that the map

G → R : g 7→ c(g)
is a homomorphism.

Exercise II.7. Let X be a CAT(0) space.
(i) Show that Busemann functions associated with geodesic rays in X are

well defined, convex and 1-Lipschitz.
(ii) Show that any Busemann function associated with a geodesic ray point-

ing to ξ ∈ X is quasi-invariant under the stabiliser Gξ of ξ in the full
isometry group G = Is(X).

(iii) Show that the corresponding homomorphism Gξ → R defined as in
Exercise II.6 depends only on ξ. This homomorphism is called the
Busemann character at ξ.

Exercise II.8. Let X be a complete CAT(0) space and G < Is(X). A
function f : X → R is called invariant if f is constant on G-orbits, namely
f(g.x) = f(x) for all x ∈ X and g ∈ G.

(i) Show that if X is geodesically complete, then every bounded convex
function is constant.

(ii) Show that if X is boundary-minimal, then every bounded convex func-
tion is constant.

(iii) Show that G acts minimally on X if and only if every G-invariant
convex function is constant.

(iv) Show that G is geometrically dense if and only if every G-quasi-
invariant convex function is constant.

Exercise II.9. An action of a group G on a topological space Z by
homeomorphism is called (topologically) minimal1 if G does not preserve
any non-empty closed subset Z ′ ( Z. Equivalently, the G-action is minimal
if and only if every G-orbit is dense in Z.

Let M denote the symmetric space of G = SLn(R). Show that the
G-action on the visual boundary ∂M is minimal if and only if n = 2.

Exercise II.10. Let G = SL2(R).
(i) Show that a subgroup Γ < G is Zariski dense if and only if Γ is not

virtually soluble.
(ii) Show that G contains Zariski dense subgroups that are not geometri-

cally dense as isometry groups of the hyperbolic plane H2.

Exercise II.11. Let X be a proper CAT(0) space.
(i) Show that if X is boundary-minimal, then ∂X has circumradius > π/2.
(ii) Show that if X has finite-dimensional boundary and if Is(X) acts min-

imally, then X is boundary-minimal.

1This standard notion of minimality in topological dynamics should not be confused
with the notion of minimality introduced above in the realm of CAT(0) geometry.





LECTURE III

The full isometry group

1. Locally compact groups

Our strategy in studying the full isometry group of a proper CAT(0)
space is to combine geometric arguments with information arising from the
structure theory of locally compact groups. The following classical fact
shows that locally compact groups pop up naturally in our setting:

Theorem III.1. Let X be a proper metric sapce. Then the full isometry
group Is(X), endowed with the compact open topology, is a locally compact
(Hausdorff) topological group, and the natural action of Is(X) on X is con-
tinuous and proper.

Proof. See Exercise III.1. �
The continuity of the action of G = Is(X) on X means that the map

G × X → X is continuous. The properness of the action means that for
each ball B in X, the set {g ∈ G | g.B ∩ B ̸= ∅} has compact closure in G.

A deep result in the theory of locally compact groups which we shall
invoke is the following:

Theorem III.2 (Gleason; Montgomery–Zippin [MZ55, Th. IV.4.6]). Let
G be a connected locally compact group. Then any identity neighbourhood
in G contains a compact normal subgroup K � G such that G/K is a Lie
group.

2. The isometry group of an irreducible space

A CAT(0) space is called irreducible if it does not split non-trivially
as a CAT(0) product space. Combining the results collected thus far yields
the following.

Corollary III.3. Let X be a proper CAT(0) space with finite-
dimensional boundary, such that X is irreducible and Is(X) is geometrically
dense.

Then Is(X) is either a virtually connected simple Lie group, or Is(X) is
totally disconnected (potentially discrete).

Proof. Let G = Is(X), which is a locally compact group by Theo-
rem III.1. The connected component of the identity G◦ is a closed normal
subgroup of G. By Theorem III.1, any compact subgroup of G has a bounded
orbit, hence a fixed point in X. Corollary II.8(iv) thus ensures that G the
only compact subnormal subgroup of G is trivial. In particular G◦ has no
non-trivial compact normal subgroup, and must thus be a connected Lie
group by Theorem III.2.

19
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By Corollary II.8(iii) implies that the solvable radical, as well as the
center, of G◦ is trivial, hence G◦ is a center-free semi-simple Lie group. It
is thus a product of simple groups, which can have at most one non-trivial
factor by Corollary II.8(ii). This shows that G◦ is a centerfree simple Lie
group.

A consequence of the classification of simple Lie groups is that the outer
automorphism group Out(G◦) is finite. The conjuation action of G on G◦

yields a continuous map φ : G → Out(G◦), whose kernel is thus a closed
normal subgroup of G of finite index. Notice that Ker(φ) = G◦ · ZG(G◦).
By Corollary II.8(i), either G◦ or its centraliser must be trivial. In the former
case, the group G is totally disconnected. In the latter case, the identity
component G◦ has finite index in G, so that G is virtually a connected simple
Lie group. �

It is not surprising that, in the Lie group case of Corollary III.3, much
finer information on X can be extracted from the structure theory of simple
Lie groups. Each maximal compact subgroup K < G = Is(X) fixes a point in
X, and we thus get an equivariant embedding of the symmetric space M =
G/K into X. Notice however that this embedding need not be isometric,
even up to scaling. Explicit examples of this phenomenon have recently
been constructed by Monod and Py [?MonodPy] with G = SO(n, 1) acting
cocompactly on a proper CAT(0) space X, containing no isometric (and even
homothetic) copy of the hyperbolic space Hn. Of course, the cocompactness
of the action implies that X is quasi-isometric to the symmetric space of G.
That X is genuinely isometric to the symmetric space is however true if one
impose in addition that X be geodesically complete:

Theorem III.4 ([CM09a, Th. 7.4]). Let X be a locally compact geodesi-
cally complete CAT(0) space and G be a virtually connected semi-simple Lie
group acting continuously, properly and cocompactly on X by isometries.

Then X is equivariantly isometric to the symmetric space of G (up to
an appropriate scaling of each irreducible factor).

The same conclusion holds under the slightly weaker hypotheses that
the action is minimal with full limit set, and that the boundary of X is
finite-dimensional.

One should next analyze the totally disconnected case of Corollary III.3.
Since that case includes the situation that Is(X) be discrete, conclusion of
the same vein as those of Theorem III.4 cannot be expected. The follow-
ing useful facts can however be derived under the hypothesis of geodesic
completeness:

Theorem III.5 ([CM09a, §6]). Let X be a locally compact geodesically
complete CAT(0) space and G be a totally disconnected locally compact group
acting continuously and properly on X by isometries. Then:

(i) The action is smooth in the sense that the pointwise stabiliser of every
open set is open in G.

(ii) If the G-action is cocompact, then G does not contain parabolic isome-
tries.
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(iii) If the G-action is cocompact, then X admits a locally finite G-
equivariant decomposition into convex pieces, such that the piece σ(x)
supporting a point x ∈ X is defined as the fixed-point-set of the sta-
biliser Gx.

Proof. For (i) and (ii), see Th. 6.1 and Cor. 6.3 in [CM09a]. For
(iii), notice that the condition that σ(x) = XGx defines a G-equivariant
decomposition of X into convex pieces. The only thing to show is that this
decomposition is locally finite. Let thus B be a ball in X.

�

3. de Rham decomposition

In the previous section, we focused on irreducible CAT(0) spaces. One
should next show that the general case reduces to the irreducible one. This
will require to impose suitable assumptions, since a ‘de Rham decomposition
theorem’ cannot be expected in full generality for CAT(0) spaces, due to
the possible presence of infinite-dimensional pieces. This happens even for
locally compact spaces: a CAT(0) space can even be compact and infinite-
dimensional, as is easily seen by considering compact convex subsets of a
Hilbert space.

The following remarkable result, due to Foertsch and Lytchak, shows
that infinite-dimensionality is the only obstruction to a ‘de Rham decompo-
sition’ at a very broad level of generality:

Theorem III.6 (Foertsch–Lytchak [FL08]). Let X be a finite-
dimensional geodesic metric space. Then X admits a canonical product
decomposition

X ∼= Rn × X1 × · · · × Xp,

where n, p ≥ 0, and each factor Xi is irreducible, and neither reduced to
a singleton, nor isometric to the real line (the right-hand side is given
the ℓ2-metric). Every isometry of X preserves the decomposition, up to
a permutation of possibly isometric factors among the Xi. In particular
Is(Rn) × Is(X1) × · · · × Is(Xp) is a finite-index normal subgroup of Is(X).

In the case of CAT(0) spaces, we have the following analogue:

Theorem III.7 ([CM09a, Cor. 5.3]). Let X be a proper CAT(0) space
with finite-dimensional visual boundary ∂X, and such that Is(X) acts min-
imally.

Then X admits a canonical CAT(0) product decomposition, with the
same properties as in Theorem III.6.

The latter statement cannot be deduced directly from Theorem III.6,
since the hypotheses do not imply in general that X itself be finite-
dimensional. A detailed proof of Theorem may be found in [CM09a, §5.A].
An alternative approach can be taken using the following.

Corollary III.8. Let Z be a finite-dimensional, complete CAT(1)
space. Then Z admits a canonical decomposion as a join

Z ∼= Sn ◦ Z1 ◦ · · · ◦ Zp,
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where Sn is the Euclidean n-sphere and each Zi is not a sphere and does not
decompose non-trivially as a join for all i. Every isometry of Z preserves
the decomposition, up to a permutation of possibly isometric factors among
the Zi.

Proof. Let X be the Euclidean cone over Z, defined as in
[BH99, Def. I.5.6]. By Berestovskii’s theorem [BH99, Th. II.3.14], the space
X is a CAT(0) space, which is finite-dimensional since Z is so. (However
X is not locally compact in general.) Every isometry of Z extends to an
isometry of the cone X. The conclusion now follows by apply Theorem III.6
to X. �

One may now conclude the proof of Theorem III.7 as follows.

Proof of Theorem III.7. By Exercise II.11, the space X is
boundary-minimal. It follows that for every product decomposition X ∼=
Y1 × · · · ×Yq, each factor Yi is unbounded (see Exercise II.1) and thus has a
non-empty visual boundary ∂Yi. In other words, every product decomposi-
tion of X determines a join decomposition of the visual boundary ∂X, the
factors in both decompositions being canonically in one-to-one correspon-
dence. From Corollary III.8, it follows that X admits at least one product
decomposition X ∼= Rn × X1 × · · · × Xq with a maximal Euclidean factor
Rn and finitely many irreducible non flat factors. The desired canonicity
of the product decomposition will follow from Corollary III.8 provided one
shows that each factor in the product is determined by its visual boundary.
Since X is boundary-minimal, so must be each factor Xi. It follows that for
∆i = ∂Xi, the set C∆i from Theorem II.7 is non-empty. Theorem II.7 then
implies that the fibers

{x0} × · · · × {xi−1} × Xi × {xi+1} × · · · × {xq}

in the product X ∼= Rn × X1 × · · · × Xq coincide with the closed convex
subsets Y ⊆ X which are boundary-minimal and satisfy ∂Y = ∂Xi. Thus Xi

is canonically determined by its visual boundary ∂Xi, and we are done. �

The possibility that Is(X) may fix a point at infinity is not excluded in
Theorem III.7, and does indeed occur sometimes (see Exercise II.2). How-
ever, assuming that the full isometry group is geometrically dense, the results
obtained thus far assemble to yield the following, which already sheds some
light on the conclusions of Theorem I.14.

Corollary III.9. Let X be a locally compact geodesically complete
CAT(0) space. Assume that Is(X) acts cocompactly without a fixed point
at infinity. Then X admits a canonical product decomposition

X ∼= M1 × · · · × Mp × Rn × Y1 × · · · × Yq,

which is preserved by all isometries upon permutations of isomorphic factors,
where Mi is an irreducible symmetric space of non-compact type, and Yj has
a totally disconnected isometry group, which acts smoothly and does not
contain any parabolic isometry.
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Proof. Since X is geodesically complete, any cocompact group action
is minimal (see Exercise II.4). Theorem III.7 provides a canonical prod-
uct decomposition for X, and the various properties of the irreducible non
Euclidean factors were established in Corollary III.3 and Theorems III.4
and III.5. �

4. Exercises

Exercise III.1. Let X be a proper metric space and let Is(X)p.o. denote
the full isometry group of X endowed with the point-open topology. Let also
φ : Is(X) → XX be the natural embedding of Is(X) in the space XX of all
maps from X to X, endowed with the product topology.

(i) Show that φ(Is(X)) is closed in XX .
(ii) Show that φ : Is(X)p.o. → XX is a homeomorphism onto its image.
(iii) Deduce from (i) and (ii) that Is(X)p.o. is locally compact.
(iv) Show that the point-open and the compact-open topology on Is(X)

coincide.
(v) Conclude the proof of Theorem III.1.

Exercise III.2. Let G be a locally compact group acting by isometries
on a proper metric space X.

(i) Show that the following conditions are equivalent:
(a) the G-action is continuous,
(b) the orbit maps G → X : g 7→ g.x are continuous for all x ∈ X,
(c) the homomorphism α : G → Is(X) induced by the action is contin-

uous.
(ii) Assuming that the G-action is continuous, show that the following

conditions are equivalent:
(a) the G-action is proper,
(b) the homomorphism α : G → Is(X) induced by the action is contin-

uous is proper,
(c) Ker(α) is compact and α(G) is closed in Is(X).

Exercise III.3. Let X be a locally compact geodesically complete
CAT(0) space.

(i) Prove point (ii) in Theorem III.5 using point (i).
(ii) Show that if a non-discrete totally disconnected locally compact group

G acts continuously and properly on X, then some geodesics in X must
branch.

(iii) Show that if Is(X) is geometrically dense and every geodesic extend
can be prolonged into a unique bi-infinite geodesic line, then Is(X) is
a Lie group.





LECTURE IV

Lattices

1. Geometric Borel density

The phenomenon of geometric density of normal subgroups has been
discussed in Theorem II.1. We shall now present a related statement for
lattices. In the light of the analogy between geometric density and Zariski
density, this could be interpreted as a geometric version of the Borel density
(in fact, the classical statement can indeed be deduced from the geometric
version, see [CM09b, Prop. 2.8]).

Theorem IV.1 ([CM09b, Th. 2.4]). Let X be a proper CAT(0) space
without non-trivial Euclidean factor. Let G be a locally compact group and
φ : G → Is(X) be a continuous homormorphism.

If φ(G) is geometrically dense, then so is φ(Γ) for each lattice Γ < G
(and, more generally, for each closed subgroup of finite covolume).

The proof consists in two parts: the first is to show the absence of Γ-fixed
points at infinity, which is established by adapting an argument of Adams
and Ballmann [AB98]; the second is to show that the Γ-action is minimal.
Since some technicalities can be avoided when Γ is assumed cocompact, we
will content ourselves with a discussion of the second part of the proof in
that case.

Proof of Theorem IV.1. For simplicity, we assume that Γ < G is
cocompact and that ∂X is finite-dimensional and only discuss the proof of
Γ-minimality; ; for a complete proof in the general case, the reader should
consult [CM09b].

Since Γ is cocompact in G and φ is continuous, it follows that φ(Γ) and
φ(G) has the same convex limit sets: ∆φ(Γ) = ∆φ(G).

Consider the convex limit set ∆ = ∆φ(G) of φ(G). That φ(G) acts
minimally implies that ∆ = ∂X. That φ(G) has no fixed point at infinity
implies that ∆ has intrinsic circumradius > π/2 by Theorem II.2. Since
Γ is cocompact in G and φ is continuous, it follows that φ(Γ) and φ(G)
has the same convex limit sets. Thus ∆ = ∆φ(Γ), hence there exists some
Γ-invariant closed convex subsets Y ⊆ X such that ∂Y = ∆. By Zorn’s
lemma, we may mind such a Y which is minimal by inclusion, since otherwise
Proposition II.3 would imply that ∆ has circumradius ≤ π/2. Thus Y ⊆ X
is a Γ-invariant closed convex subsets Y ⊆ X such that ∂Y = ∆, and on
which Γ acts minimally.

We need to show that Y = X. To this end, consider the distance function
dY to Y . Since Γ is cocompact in G, it follows that dY : X → R is bounded.
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In particular the function

f : X → R : x 7→
∫

G/Γ
dgY (x)dg

is well defined. Moreover it is convex and 2-Lispschitz since dY is so. By
construction, it is G-invariant. Since G acts minimally on X, the map f
must be constant. It follows that for almost all gΓ ∈ G/Γ, the map dgY

is affine: an affine maps is a map f : X → R such that for each geodesic
ρ : I → X, the composed map f ◦ ρ : I → R is affine (see Exercise IV.2).

We have seen that there exists g ∈ G such that dgY is affine. Upon
replacing the lattice Γ by its conjugate gΓg−1 (which stabilises the closed
convex set gY ), we may assume that dY is affine. It follows that for any two
x, x′ ∈ X with dY (x) = dY (x′), the restriction of dY to the geodesic segment
[x, x′] is constant. In other words the level sets of dY are convex.

Let Y ′ be a level set of dY . Thus Y ′ is closed, convex and Γ-invariant.
Since Y is Γ-invariant and Γ-minimal, the restriction of dY ′ to Y is also
constant. Using the Sandwich Lemma [BH99, Ex. II.2.12], one may conclude
that Y ′ is equivariantly isometric to Y via the orthogonal projection. This
implies that Y ′ is Γ-minimal.

This proves that all level sets of dY are closed, convex and Γ-minimal,
and have the convex limit set ∆ as visual boundary. All of them are
boundary-minimal by Exercise II.11. Applying Theorem II.7 to the set
∂Y = ∆ = ∂X then yields a canonical product decomposition X ∼= Y × C,
which is Is(X)-invariant (the Γ-action on the factor C is trivial by construc-
tion). Since ∂Y = ∆ = ∂X, it follows that C is bounded. Some fiber
Y ×{c} is thus Is(X)-invariant. The minimality of φ(G) finally implies that
X = Y × {c}. Hence φ(Γ) acts minimally on X, as desired. �

As in the case of normal subgroups, this has algebraic consequences on
lattices:

Corollary IV.2. Let X be a proper CAT(0) space without non-trivial
Euclidean factor, and G < Is(X) be a closed subgroup which is geometrically
dense. Then:

(i) ZG(Γ) = 1.
(ii) If Γ is finitely generated, then NG(Γ) is a lattice (containing Γ as a

finite index subgroup).

Proof. (i) follows from Theorem IV.1 and Corollary II.5. For (ii),
observe that the finite generation assumption implies that Aut(Γ) is count-
able. Hence so is NG(Γ) by (i). Since the normaliser of a closed subgroup
is closed, it follows that NG(Γ) is a countable locally compact group, and
must thus be discrete by Baire’s category theorem. A discrete subgroup
containing a lattice is itself a lattice, whence the conclusion. �

2. Fixed points at infinity

Most results obtained so far used the condition that Is(X) be geometri-
cally dense as a hypothesis. Our next task is to discuss to what extent this
restriction is severe.
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If a group G acts cocompact, or without a fixed at infinity, on X, then
there always exists some non-empty G-invariant closed convex subset Y ⊆ X
on which G acts minimally (see Exercise II.4). On the other hand, one
cannot expect that the full isometry group Is(X) of a proper CAT(0) space
be always geometrically dense on some minimal invariant subspace Y ⊂ X
(see Exercise II.2). The next result shows that this is however indeed the
case provided the full isometry group contains a lattice.

Theorem IV.3 ([CM12a, Th. L]). Let X be a proper cocompact CAT(0)
space and assume that Is(X) acts minimally. Let Γ < Is(X) be a lattice (e.g.
a discrete group acting properly cocompactly on X).

Then the only points in the visual boundary fixed by Γ lie in the boundary
of the maximal Euclidean factor of X.

Since a locally compact group containing a lattice is unimodular, Theo-
rem IV.3 follows by combining the following result with the geometric Borel
density from the previous section:

Theorem IV.4 ([CM12a, Th. M]). Let X be a proper cocompact CAT(0)
space and assume that Is(X) acts minimally.

If Is(X) is unimodular, then Is(X) has no fixed point at infinity.

Notice that the minimality assumption in both theorems is harmless:
indeed, since the action is assumed cocompact, we may simply replace X
by some minimal Is(X)-invariant subspace Y ⊆ X. One should however
be aware that Y may admit isometries that do not extend to X. : It is
thus conceivable (and it indeed happens, see Exercise IV.1) that Is(X) fixes
points at infinity; Theorem IV.4 ensures that Is(Y ) does not.

The proof of Theorem IV.4 requires further geometric preliminaries and
is thus postponed to the next section. A weaker version of Theorem IV.3
was first proved in [CM09b, Th. 3.14] under the additional hypothesis that
Γ be finitely generated. At this point, let us merely present the simplest
version of the argument, due to Burger–Schroeder [BS87], under the stronger
assumption that Γ is cocompact:

Lemma IV.5. Let X be a proper CAT(0) space and Γ be a discrete group
acting properly cocompactly on X. If a finitely generated subgroup Λ < Γ
fixes some ξ ∈ ∂X, then Λ fixes some ξ′ which is opposite ξ in the sense
that {ξ, ξ′} are the endpoints of a geodesic line.

Applying the lemma to the whole group Λ = Γ, which is finitely gener-
ated since it is cocompact, we find an opposite pair of Γ-fixed points. As-
suming in addition that the Γ-action is minimal, the product decomposition
theorem (see Theorem II.7) then yields a Γ-invariant splitting X ∼= R× X ′

such that ξ and ξ′ are the endpoints of the line factor. Thus the conclusion
of Theorem IV.3 holds in case Γ is cocompact.

3. Levi decomposition

The main geometric ingredient in the proof of Theorem IV.4 is a version
of the Levi decomposition theorem for parabolic subgroups of semi-simple
Lie or algebraic groups. The parabolic subgroups of a semi-simple Lie group
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are precisely the stabilisers of points at infinity in the associated symmetric
space. Those parabolic subgroups have the additional property that they act
cocompactly on the ambient space. The Levi decomposition provides a de-
composition of a parabolic subgroup as a semi-direct product of a unipotent
radical with a so called Levi factor.

In order to describe a geometric analogue of that classical decomposition,
we need to attach to each point at infinity ξ ∈ ∂X of a CAT(0) space X
a new CAT(0) space Xξ in a canonical way, so that the stabiliser Is(X)ξ

naturally acts on Xξ by isometries. The space Xξ is called the transverse
space of ξ, and is constructed as follows. Consider the set X∗

ξ of all rays
ρ : [0,∞) → X pointing to ξ. The convexity of the metric d implies that the
map

dξ : X∗
ξ × X∗

ξ → R : (ρ, ρ′) = inf
t,t′≥0

d(ρ(t), ρ′(t′))

is a pseudometric. We define (Xξ, dξ) to be the Cauchy completion of the
quotient metric space of (X∗

ξ , dξ). One verifies that this is indeed a CAT(0)
space, which is complete by definition (see Exercise IV.3). Associating with
each point x in X the unique geodesic ray issuing from x and pointing
to ξ, we get a canonical map X → X∗

ξ which, followed by the projection
X∗

ξ → Xξ, yields a canonical 1-Lipschitz map X → Xξ with dense image.
In the Euclidean space X = Rn, the transverse space to a point at

infinity is isometric to Rn−1. In a CAT(0) space X which is Gromov hyper-
bolic, the transverse space of each point at infinity is uniformly bounded; it
is reduced to a singleton if X is CAT(−1). If X is a 2-dimensional affine
building, the transverse space Xξ is a tree (which is reduced to a single line
if ξ is a regular point of ∂X). In general, if X is finite-dimensional the space
Xξ has dimension at most dim(X) − 1.

The construction of the transverse space Xξ is due to Karpelevich in
the case of symmetric spaces. Its first appearance in the realm of general
CAT(0) spaces is in the work of Leeb [Lee00].

The stabiliser Is(X)ξ of the boundary point ξ ∈ ∂X can now be studied
by means of two different actions. The first is the action on the transverse
space Xξ, which is clearly isometric. In some sense, this action measures how
the elements of Is(X)ξ operate in the direction transverse to ξ. The other
action of Is(X)ξ is along the direction of ξ: it is given by the Busemann
character βξ : Is(X)ξ → R (see Exercise II.7). The kernel of βξ is the
subgroup of Is(X)ξ which preserves each horoball around ξ.

We define the horoaction of Is(X)ξ as the direct product of the above
two actions. It is thus an isometric action of Is(X)ξ on R × Xξ given by

ωξ : Is(X)ξ −→ Is(R) × Is(Xξ)
ωξ(g) : (t, x) 7−→ (t + βξ(g), g.x).

We are now in a position to formulate a geometric analogue of the Levi
decomposition theorem:

Theorem IV.6 ([CM12a, Th. 3.12]). Let X be a proper CAT(0) space
and G < Is(X) be a closed subgroup. Let ξ ∈ ∂X be such that the stabiliser
Gξ acts cocompactly on X.
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Then the set Opp(ξ) of boundary points opposite ξ is non-empty, and
for each ξ′ ∈ Opp(ξ) we have a decomposition

Gξ = Gξ,ξ′ · (Gξ ∩ Ker(ωξ)).

This decomposition need not be a semi-direct product as the intersection
Gξ,ξ′ ∩ (Gξ ∩ Ker(ωξ)) may be non-trivial. This intersection is however
necessarily compact, see Exercise IV.5.

We will need the following important consequence of Theorem IV.6:

Corollary IV.7. Let X be a proper CAT(0) space and G < Is(X) be a
closed subgroup. Let ξ ∈ ∂X be such that the stabiliser Gξ acts cocompactly
on X.

Then the group Gξ ∩ Ker(ωξ) acts transitively on Opp(ξ).

Proof. In view of Theorem IV.6, it suffices to show that the full sta-
biliser Gξ is transitive on Opp(ξ). This follows from the cocompactness of
the action on X by a standard argument. �

Using the geometric Levi decomposition, we are now able to exclude
fixed points at infinity for cocompact actions of unimodular groups.

Proof of Theorem IV.4. The isometry group Is(Rn) of the Eu-
clidean space is unimodular and acts without a fixed point at infinity. By
Theorem III.7, there is thus no loss of generality in assuming that X has no
non-trivial Euclidean factor.

Assume for a contradiction that G = Is(X) fixes some point ξ ∈ ∂X.
Since G acts cocompactly on X by hypothesis, the set of opposites Opp(ξ)
is non-empty, and the kernel of the horoaction Ker(ωξ) acts transitively on
it by Corollary IV.7.

We claim that Ker(ωξ) is compact. Since G acts minimally, this implies
that Ker(ωξ) is trivial, and hence the set Opp(ξ) is reduced to a singleton.
In particular ξ′ is fixed by G, and Theorem II.7 applied to the pair {ξ, ξ′}
yields a product decomposition of X with a line factor, contradicting that
the maximal Euclidean factor of X is trivial.

In order to prove the claim, we proceed as follows. Let ℓ : R → X be
a geodesic line such that ℓ(−∞) = ξ and ℓ(+∞) = ξ′. By cocompactness,
there is a sequence (gn) in G such that d(gn.ℓ(0), ℓ(n)) is bounded.

Since G fixes ξ it follows that for each individual element g ∈ G, the
sequence of conjugates (gngg−1

n ) is bounded (i.e. relatively compact) in G.
By an application of the Baire category theorem, one deduces that for each
compact subset U ⊂ G, the union

∪
n gnUg−1

n has compact closure.
Consider now an element g ∈ Ker(ωξ). That the horoaction of g is

trivial implies that any limit point of the sequence of conjugate (gngg−1
n )

fix pointwise the line ℓ. Choosing some compact neighbourhood Q of the
pointwise stabiliser of ℓ in G, we infer that gngg−1

n belongs to Q for all
sufficiently large n. This holds for any individual element g ∈ Ker(ωξ),
and another application of the Baire category theorem implies that for each
compact subset V ⊂ Ker(ωξ), one has gnV g−1

n ⊂ Q for all sufficiently large
n.

We now fix some compact identity niehgourhood U in X. Thus 0 <
vol(U) < ∞, where vol denotes a left Haar measure on G. We have seen
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that the set P =
∪

n gnUg−1
n is compact, and thus has finite volume. Now,

for each compact subset V ⊂ Ker(ωξ), we find

gnUV g−1
n = gnUg−1

n gnV g−1
n ⊂ PQ

for all sufficiently large n. Since PQ is compact, it has finite volume. The
unimodularity of G implies that the Haar measure is conjugacy invariant.
Thus vol(UV ) < vol(PQ) < ∞. This holds for every compact subset V ⊂
Ker(ωξ). Thus vol

(
U Ker(ωξ)

)
< ∞, from which it follows that Ker(ωξ) is

compact, as claimed. �

4. Back to rigidity

We finally come back to Theorem I.14 and describe the main steps of its
proof:

• Since Is(X) is cocompact and X geodesically complete, the Is(X)-
action is minimal (Exercise II.4).

• The existence of a lattice in Is(X) implies that Is(X) is geometri-
cally dense by Theorem IV.4.

• We are then in a position to invoke Corollary III.9, which yields a
canonical decomposition X ∼= M1 × · · · ×Mp ×Rn × Y1 × · · · × Yq,
where Mi is an irreducible symmetric space of non-compact type,
and Yj has a totally disconnected isometry group, which acts
smoothly and does not contain any parabolic isometry. The hy-
pothesis that X has some parabolic isometry can now be re-
interpreted: it simply means that X has at least one symmetric
space factor.

• At this point, if the space X is irreducible, we are done. Other-
wise we may assume that X has several non-trivial factors. This
implies that Γ may be viewed as a lattice in a product of locally
compact groups; this gives access to superrigidity results, that are
available for lattices in product groups in a high level of gener-
ality, notably through works by Burger [Bur95], Monod [Mon06],
Gelander–Karlsson–Margulis [GKM08].

• The residual finiteness assumption, combined with the indecompos-
ability of Γ is then used is an essential way: it is shown to imply
that the Γ-action on each irreducible factor of X. The connection
between residual finiteness of the lattice and the faithfulness of its
action on the factors was first discovered by Burger and Mozes in
their work on lattices in products of trees [BM00]. It was extended
to lattices in products of CAT(0) spaces in [CM09b, Th. 4.10] (see
also [CM12b, Prop. 2.4]). Here, we deduce that the Γ-action on
the non-trivial symmetric space factor yields in particular a faith-
ful representation of Γ.

• The rest of the proof consists in using this linear representation
combined with superrigidity tools to establish that Γ is an S-
arithmetic group; this step follows closely the way in which Mar-
gulis deduced his arithmeticity theorems from superrigidity (see
[Mar91] and the lectures by T. Gelander).
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• Finally, once Γ has been identified as an S-arithmetic group, further
applications of superrigidity imply that the closure of the image of
Γ in the isometry group of each irreducible factor Yj of X is a
semi-simple algebraic group. That Yj must be the model space
(symmetric space or Euclidean building) for the semi-simple group
in question is finally established, using the geodesic completeness
hypothesis.

5. Exercises

Exercise IV.1. Show that Theorem IV.4 can fail if Is(X) does not act
minimally.

Exercise IV.2. Let X be a complete CAT(0) space. Let also (Ω, µ) be
a measure space and (fω)ω∈Ω be a family of convex functions on X such
that the map ω 7→ fω(x) is integrable for all x ∈ X. Show that if the map
f : x 7→

∫
Ω fω(x)dµ(ω) is constant, then fω is affine for µ-almost all ω.

Exercise IV.3. Let X be a CAT(0) space.
(i) Prove that the transverse space Xξ is a CAT(0) space.
(ii) Prove that the natural homomorphism Is(X)ξ → Is(Xξ) is continuous

(with respect to the compact-open topologies).
(iii) Show that Xξ need not be proper even if X is so.

Exercise IV.4. Determine the transverse space Xξ of a point ξ ∈ ∂M ,
where M is the symmetric space of SL3(R).

Exercise IV.5. Let X be a proper CAT(0) space and ξ, ξ′ ∈ ∂X two
opposite boundary points. Show that the intersection Is(X)ξ,ξ′ ∩Ker(ωξ) is
compact, and can be non-trivial.

Exercise IV.6 (Ruane [Rua01]). Let X be a proper CAT(0) space and
Γ be a discrete group acting properly and cocompactly on X. Show that for
each γ ∈ Γ, the centraliser ZΓ(γ) acts cocompactly on Min(γ).
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