
LECTURE 4: APPROXIMATE GROUPS AND THE
BOURGAIN-GAMBURD METHOD (PRELIMINARY VERSION)

EMMANUEL BREUILLARD

I. The Bourgain-Gamburd method

Up until the Bourgain-Gamburd 2005 breakthrough the only known ways to turn
SLd(Fp) into an expander graph (i.e. to find a generating set of small size whose as-
sociated Cayley graph has a good spectral gap) was either through property (T ) (as
in the Margulis construction) when d > 3 or through the Selberg property (and the
dictionary between combinatorial expansion of the Cayley graphs and the spectral gap
for the Laplace-Beltrami Laplacian on towers of covers of hyperbolic manifolds) when
d = 2.

This poor state of affairs was particularly well-illustrated by the embarrassingly open
question of Lubotzky, the Lubotzky 1−2−3 problem, which asked whether the subgroups
Γi := ⟨Si⟩ 6 SL2(Z) for i = 1, 2 and 3 given by

Si = {
(

1 ±i
0 1

)
,

(
1 0
±i 1

)
}

have property (τ) with respect to the family of congruence subgroups Γi∩ker(SL2(Z) →
SL2(Z/pZ)) as p varies among the primes. The answer for i = 1 and 2 follows as before
from Selberg’s 3

16
theorem, because both Γ1 and Γ2 are subgroups of finite index in

SL(2,Z) (even Γ1 = SL2(Z)). However Γ3 has infinite index in SL2(Z) and therefore
none of these methods applies.

Bourgain and Gamburd changed the perspective by coming up with a more head-on
attack of the problem showing fast equidistribution of the simple random walk directly
(which as we saw yields a spectral gap) by more analytic and combinatorial means.
One of these combinatorial ingredients was the notion of an approximate group (see
below) which was subsequently studied for its own sake and lead in return to many
more applications about property (τ) and expanders as we are about to describe.

Let us now state the Bourgain-Gamburd theorem:

Theorem 0.1. (Bourgain-Gamburd [1]) Given k > 1 and τ > 0 there is ε = ε(k, τ) > 0
such that every Cayley graph C(SL2(Z/pZ), S) of SL2(Z/pZ) with symmetric generating
set S of size 2k and girth at least τ log p is an ε-expander.
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We recall that the girth of a graph is the length of the shortest loop in the graph.
Conjecturally all Cayley graphs of SL2(Z/pZ) are ε-expanders for a uniform ε, and this
was later established for almost all primes in Breuillard-Gamburd [4] using the Uniform
Tits alternative. But the Bourgain-Gamburd theorem is the first instance of a result on
expanders where a purely geometric property, such as large girth, is shown to imply a
spectral gap.

The Bourgain-Gamburd result answers positively the Lubotzky 1− 2− 3 problem:

Corollary 0.2. Every non-virtually solvable subgroup Γ in SL2(Z) has property (τ) with
respect to the congruence subgroups Γp := Γ ∩ ker(SL2(Z) → SL2(Z/pZ)) as p varies
among the primes.

Proof. Let S be a symmetric generating set for Γ. By the Tits alternative (or using the
fact that SL2(Z) is virtually free), there is N = N(Γ) > 0 such that SN contains two
generators of a free group a, b. Now in order to prove the spectral gap for the action
of S on ℓ2(Γ/Γp) it is enough to prove a spectral gap for the action of a and b. Indeed
suppose there is f ∈ ℓ20(Γ/Γp) such that maxs∈S ||s · f − f || 6 ε||f ||. Then writing a
and b as words in S of length at most N , we conclude that ||a · f − f || 6 Nε||f || and
||b · f − f || 6 Nε||f ||. Since N depends only on Γ and not on p we have reduced the
problem to proving spectral gap for ⟨a, b⟩ and we can thus assume that Γ = ⟨a, b⟩ is a
2-generated free subgroup of SL2(Z).

Then it is easy to verify that the logarithmic girth condition holds for this new
Γ. Indeed the size of the matrices w(a, b), where w is a word of length n do not
exceed max{||a±1||, ||b±1||}n, hence w(a, b) is not killed modulo p if p is larger that
max{||a±1||, ||b±1||}n, that is if n is smaller that τ log p for some τ = τ(a, b) > 0. We
can then apply the theorem and we are done. �

Before we go further, let us recall the following:

Theorem 0.3. (Strong Approximation Theorem, Nori [9], Weisfeiler [15]) Let Γ be a
Zariski-dense subgroup of SLd(Z). Then its projection modulo p via the map SLd(Z) →
SLd(Z/pZ) is surjective for all but finitely many primes p.

This is a deep result (see also alternate proofs by Hrushovski-Pillay via model theory
and by Larsen-Pink), which in the special case of SL2(Z) is in fact just an exercise
(once one observes that the only large subgroups of SL2(Z/pZ) are dihedral, diagonal,
or upper triangular). It will be important for us, because it says that Γ/Γp = SL2(Z/pZ)
as soon as p is large enough, and we will use several key features of SL2(Z/pZ) in the
proof of Theorem 0.1.

We are now ready for a sketch of the Bourgain-Gamburd theorem.

Let ν = 1
|S|

∑
s∈S δs be the symmetric probability measure supported on the generat-

ing set S. Our first task will be to make explicit the connection between the decay of
the probability of return to the identity and the spectral gap, pretty much as we did in
Lecture 3. We may write:
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ν2n(e) = ⟨P 2n
ν δe, δe⟩ =

1

|Gp|
∑
x∈Gp

⟨P 2n
ν δx, δx⟩

where we have used the fact that the Cayley graph is homogeneous (i.e. vertex tran-
sitive) and hence the probability of return to the e starting from the e is the same as
the one of returning to x starting from x, whatever x ∈ Gp may be, so ⟨P 2n

ν δe, δe⟩ =
⟨P 2n

ν δx, δx⟩.

A key ingredient here is that we will make use of an important property of finite
simple groups of Lie type (such as SL2(Z/pZ)) which is that they have no non-trivial
finite dimensional complex representation of small dimension. This is due to Frobenius
for SL2(Z/pZ) and to Landazuri and Seitz for arbitrary finite simple groups of Lie
type. For SL2(Z/pZ) this says that the dimension of a non-trivial irreducible (complex)
representation is always at least p−1

2
.

A consequence of this fact is the following high multiplicity trick : the eigenvalues of
Pν on ℓ20(Γ/Γp) all appear with multiplicity at least p−1

2
. Indeed, first by the above

strong approximation theorem Γ/Γp = Gp := SL2(Z/pZ) and the regular representation
ℓ2(SL2(Z/pZ)) can be decomposed into irreducible (complex) linear representations,
each of which appears with a multiplicity equal to its dimension1. The operator Pν

preserves each one of these invariant subspaces, and hence its non-trivial eigenvalues
appear with a multiplicity at least equal to p−1

2
. Since p−1

2
≃ |Gp|

1
3 , we get

ν2n(e) =
1

|Gp|
(µ2n

0 + µ2n
1 + . . .+ µ2n

|Gp|−1) ≫ µ2n
1

|Gp|
1
3

|Gp|
where the µi’s are the eigenvalues of Pν , µ0 = 1 and Gp = SL2(Z/pZ), and ≫ means
larger than up to a positive multiplicative constant.

Hence

µ2n
1 ≪ ν(e)2n|G|

2
3

So if we knew that

ν2n(e) ≪ 1

|Gp|1−β

for some small β < 1
3
and for n of size say at most C log |Gp| for some constant C > 0,

we would deduce the following spectral gap:

µ1 6 e−
1/3−β

C < 1

(recall that |Gp|
1

log |Gp| equals e and is independent of |Gp| ;-))

1This is a standard fact from the representation theory of finite groups, see e.g. Serre [11].
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Therefore, thanks to this high multiplicity trick, proving a spectral gap boils down
to establishing rapid decay of the probability of return to the identity in a weaker sense
than what we had in Lecture 3, namely it is enough to establish that

ν2n(e) ≪ 1

|Gp|1−β
(0.3.1)

for some n 6 C log |Gp| and some β > 0, where C and β are constants independent
of p.

Now we have not used the girth assumption yet (in fact we will use it one more
time towards the end of the argument). This tells us that the Cayley graph looks like
a tree (a 2k-regular homogeneous tree) on any ball of radius < τ log p (note that the
Cayley graph is vertex transitive, so it looks the same when viewed from any point).
In particular the random walk behaves exactly like a random walk on a free group on
k-generators at least for times n < τ log p. However, we saw in Lecture 1, that

ν2n(e) 6 ρ(ν)2n

for every n, where ρ(ν) is the spectral radius of the random walk. For the simple random

walk on a free group Fk, the spectral radius is ρ = e−Ck :=
√
2k−1
k

< 1 (as was computed
by Kesten, see [8]). Hence for n ≃ τ log p ≃ τ

3
log |Gp| we have:

ν2n(e) ≪ 1

|Gp|α
(0.3.2)

where α = α(τ) = Ckτ/3 > 0.
However α(τ) will typically be small, and our task is now to bridge the gap between

(0.3.2), which holds at time n ≃ τ log p and (0.3.1), which we want to hold before C log p
for some constant C independent of p.

Hence we need ν2n(e) to keep decaying at a certain controlled rate for the time period
τ log p 6 n 6 C log p. This decay will be slower than the exponential rate taking place
at the beginning thanks to the girth condition, but still significant. And this is where
approximate groups come into the game.

II. Approximate groups

Approximate groups were introduced around 2005 by T. Tao, who was motivated
both by their appearance in the Bourgain-Gamburd theorem and because they form a
natural generalization to the non-commutative setting of the objects studied in additive
combinatorics such as finite sets of integers with small doubling.

Definition 0.4. Let G be a group and K > 1 a parameter. A finite subset A ⊂ G is
called a K-approximate subgroup of G if the following holds:

• A−1 = A, 1 ∈ A
• there is X ⊂ G with X = X−1, |X| 6 K, such that AA ⊂ XA.
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Here K should be thought as being much smaller than |A|. In practice it will be
important to keep track of the dependence in K. If K = 1, then A is the same thing
as a finite subgroup. Another typical example of an approximate group is an interval
[−N,N ] ∈ Z, or any homomorphic image of it. More generally any homomorphic image
of a word ball in the free nilpotent group of rank r and step s is a C(r, s)-approximate
group (a nilprogression). A natural question regarding approximate groups is to classify
them and Tao coined this the “non-commutative inverse Freiman problem” (in honor
of G. Freiman who classified approximate subgroups of Z back in the 60’s, see [13]).
Recently Breuillard-Green-Tao proved such a classification theorem [6] for arbitrary
approximate groups showing that they are essentially built as extensions of a finite
subgroup by a nilprogression.

For linear groups and groups of Lie type such as SL2(Z/pZ) a much stronger classi-
fication theorem can be derived:

Theorem 0.5. (Pyber-Szabo [10], Breuillard-Green-Tao [5]) Suppose G is a simple
algebraic group of dimension d defined over a finite field Fq (such as SLn(Fq)). Let A
be a K-approximate subgroup of G(Fq). Then

• either A is contained in a proper subgroup of G(Fq),
• or |A| 6 KC,
• or |A| > |G(Fq)|/KC.

where C = C(d) > 0 is a constant independent of q.

This result can be interpreted by saying that there are no non-trivial approximate
subgroups of simple algebraic groups (disregarding the case when A is contained in a
proper subgroup).

Theorem 0.5 was first proved by H. Helfgott for SL2(Fp), p prime, by combinatorial
means (using the Bourgain-Katz-Tao sum-product theorem [2]). The general case was
later established independently by Pyber-Szabo and Breuillard-Green-Tao using tools
from algebraic geometry and the structure theory of simple algebraic groups.

Let us now go back to the proof of the Bourgain-Gamburd theorem. The connection
with approximate groups appears in the following lemma:

Lemma 0.6. (ℓ2-flattening lemma) Suppose µ is a probability measure on a group G
and K > 1 is such that

||µ ∗ µ||2 >
1

K
||µ||2.

Then there is a KC-approximate subgroup A of G such that

• µ(A) ≫ 1
KC

• |A| ≪ KC ||µ||−2
2 ,

where C and the implied constants are absolute constants.
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For the proof of this lemma, see the original paper of Bourgain-Gamburd [1] or [14,
Lemma 15]. It is based on a remarkable graph theoretic lemma, the Balog-Szemeredi-
Gowers lemma, which allows one to show the existence of an approximate group when-
ever we have a set which only statistically looks close to an approximate group. Namely
if A ⊂ G is such that the probability that ab belongs to A for a random choice (with
uniform distribution) of a and b in A is larger than say 1

K
, then A has large intersection

with some KC-approximate group of comparable size.

The above lemma combined with Theorem 0.5 implies the desired controlled decay
of ν2n(e) in the range τ log p 6 n 6 C log p, namely (recall that ν2n(e) = ||νn||22):

Corollary 0.7. There is a constant ε > 0 such that

||νn ∗ νn||2 6 ||νn||1+ε
2

for all n > τ log p and as long as ||νn||22 > 1

|Gp|1−
1
10

say.

Indeed, if the lower bound failed to hold at some stage, then by the ℓ2-flattening
lemma, there would then exist an pε-approximate subgroup A of Gp of size < |Gp|1−

1
10

such that νn(A) > 1
pCε . By the classification theorem, Theorem 0.5, A must be a

contained in a proper subgroup of SL2(Z/pZ). But those all have a solvable subgroup
of bounded index. In fact proper subgroups of SL2(Z/pZ) are completely known (see
e.g. [1, Theorem 4.1.1] and the references therein) and besides a handful of bounded
subgroups, they are contained either in the normalizer of the diagonal subgroup, or in
a Borel subgroup (upper triangular matrices). Hence there is 2-step solvable subgroup
A of Gp such that νn(A) > 1

pCε for some n between τ log p and C log p. But νn(A)

is essentially non-increasing, that is νn(A) =
∑

x ν
m(x−1)νn−m(xA) 6 max νn−m(xA)

and so ν2(n−m)(A) > νn−m(xA)2 > (νn(A))2 > 1
p2Cε for all m. In particular there is

n0 = n − m < τ
10
log p for which νn0(A) > 1

pCε . However at time n0, we are before

the girth bound and the random walk is still in the tree. But in a free group the only
2-step solvable subgroups are cyclic subgroups, so subsets of elements whose second
commutator vanish must in fact commute and occupy a very tiny part of the free group
ball of radius n0. This contradicts the lower bound 1

pCε . See the original paper for the

details.

The proof is now complete as we have now a device, namely Corollary 0.7, to go from
(0.3.2) to (0.3.1) by applying this upper bound iteratively a bounded number of times.
We are done.

III. Super-strong approximation

The Bourgain-Gamburd method has been used and refined by many authors in the
past few years. We briefly mention two recent results (among many others) which use
these ideas to establish further examples of expander Cayley graphs and groups with
property (τ).



PCMI LECTURE NOTES 7

The first states that random Cayley graphs of finite simple groups of Lie type of
bounded rank are uniformly expanders. Or more formally:

Theorem 0.8. (Random Cayley graphs, Breuillard-Green-Guralnick-Tao [7]) Given
k > 2 and d > 1, there is ε, γ > 0, such that the probability that k elements cho-
sen at random in G(Fq) generate G(Fq) and turn it into an ε-expander is at least
1−O( 1

|G(Fq)|γ ). Here G is any simple algebraic group of dimension at most d over Fq.

The second deals with the property (τ) for thin groups, that is discrete Zariski-dense
subgroups of semisimple Lie groups which are not lattices.

Theorem 0.9. (Super-strong approximation, Bourgain-Varju [3]) If Γ 6 SLd(Z) is a
Zariski-dense subgroup, then it has property (τ) with respect to the family of congruence
subgroups Γ ∩ ker(SLd(Z) → SLd(Z/nZ)), where n is an arbitrary integer.

This theorem can be viewed as a vast generalization of Selberg’s theorem, and indeed
it gives a different proof (via the Brooks-Burger dictionary mentioned in Lecture 3) of
the uniform spectral gap for the first eigenvalue of the Laplacian on the congruence
covers of the modular surface H2/ SL2(Z) (although not such a good bound as 3

16
of

course). Despite its resemblance with Corollary 0.2, the proof of this theorem is much
more involved, in particular the passage from n prime to arbitrary n requires much
more work (see already Varju’s thesis [14] for the special case of square free n).
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