
LECTURE 3: PROPERTY (τ) AND EXPANDERS (PRELIMINARY
VERSION)

EMMANUEL BREUILLARD

There are many excellent existing texts for the material in this lecture, starting with
Lubotzky’s monograph [11] and recent AMS survey paper [10]. For expander graphs
and their use in theoretical computer science, check the survey by Hoory, Linial and
Wigderson [6]. We give here a brief introduction.

I. Expander graphs

We start with a definition.

Definition 0.1. (Expander graph) A finite connected k-regular graph G is said to be an
ε-expander if for every subset A of vertices in G, with |A| 6 1

2
|G|, one has the following

isoperimetric inequality:

|∂A| > ε|A|,
where ∂A denotes the set of edges of G which connect a point in A to a point in its
complement Ac.

The optimal ε as above is sometimes called the discrete Cheeger constant of the graph:

h(G) = inf
A⊂G,|A|6 1

2
|G|

|∂A|
|A|

,

Just as in Lecture 1, when we discussed the various equivalent definitions of amenabil-
ity, it is not a surprise that this definition turns out to have a spectral interpretation.

Given a k-regular graph G, one can consider the Markov operator (also called averag-
ing operator, or sometimes Hecke operator in reference to the Hecke graph of an integer
lattice) on functions on vertices on G defined as follows:

Pf(x) =
1

k

∑
x∼y

f(y),

where we wrote x ∼ y to say that y is a neighbor of x in the graph.

This operator is easily seen to be self-adjoint on ℓ2(G), which is a finite dimensional
Euclidean space. Moreover it is a contraction, namely ||Pf ||2 6 ||f ||2 and hence its
spectrum is real and contained in [−1, 1]. We can write the eigenvalues of P in decreasing
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order as µ0 = 1 > µ1 > . . . > µ|G|. The top eigenvalue µ0 must be 1, because the
constant function 1 is clearly an eigenfunction of P , with eigenvalue 1. On the other
hand, since G is connected 1 is the only eigenfunction (up to scalars) with eigenvalue 1.
This is immediate by the maximum principle (if Pf = f and f achieve its maximum at
x, then f must take the same value f(x) at each neighbor of x, and this value spreads
to the entire graph). Hence the second eigenvalue µ1 is strictly less than 1.

Instead of P , we may equally well consider ∆ := Id−P , which is then a non-negative
self-adjoint operator. This operator is called the combinatorial Laplacian in analogy
with the Laplace-Beltrami operator on Riemannian manifolds.

∆f(x) := f(x)− 1

k

∑
x∼y

f(y).

Its eigenvalues are traditionally denoted by λ0 = 0 < λ1 6 . . . 6 λ|G| and :

λi(G) = 1− µi(G).

As promised, here is the connection between the spectral gap an the edge expansion.

Proposition 0.2. (Discrete Cheeger-Buser inequality) Given a connected k-regular
graph, we have:

1

2
λ1(G) 6

1

k
h(G) 6

√
2λ1(G)

The proof of this proposition follows a similar line of argument as the proof we gave
in Lecture 1 of the Kesten criterion relating the Folner condition and the spectral radius
of the averaging operator. See Lubotzky’s book [11] for detailed derivation.

We note in passing that, since P is self-adjoint, the following holds:

||P ||ℓ20 = max
i ̸=0

|µi|

where ℓ20 is the space of functions on G with zero average, and

µ1 = sup{⟨Pf, f⟩
||f ||22

;
∑
x∈G

f(x) = 0}

and hence

λ1 = inf{⟨∆f, f⟩
||f ||22

;
∑
x∈G

f(x) = 0} =
1

k
inf{||∇f ||22

||f ||22
;
∑
x∈G

f(x) = 0}.

Expander graphs have many very interesting applications in theoretical computer
science (e.g. in the construction of good error correcting codes, see [6]). There typically
one wants to have a graph of (small) bounded degree (i.e. k is bounded) but whose
number of vertices is very large. For this it is convenient to use the following definition:
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Definition 0.3. (family of expanders) Let k > 3. A family (Gn)n of k-regular graphs is
said to be a family of expanders if the number of vertices |Gn| tends to +∞ and if there
is ε > 0 independent of n such that for all n

λ1(Gn) > ε.

Although almost every random k-regular graph is an expander (Pinsker 1972), the first
explicit construction of an infinite family of expander graphs was given using Kazhdan’s
property (T ) and is due to Margulis [13] (see below Proposition 0.5).

Clearly an ε-expander graph of size N has diameter at most O(1
ε
log |G|). But more

is true. A very important feature of expander graphs is the fact that the simple random
walk on such a graph equidistributes as fast as could be towards the uniform probability
distribution. This is made precise by the following proposition:

Proposition 0.4. (Random walk characterization of expanders) Suppose G is a k-
regular graph such that |µi(G)| 6 1− ε for all i ̸= 0, then there is C = C(ε, k) > 0 such
that if n > C log |G| then

max
x,y

|⟨P nδx, δy⟩ −
1

|G|
| 6 1

|G|10
.

Conversely for every C > 0 there is ε = ε(C, k) > 0 such that if the k-regular graph G
satisfies

max
x

|⟨P 2nδx, δx⟩ −
1

|G|
| 6 1

|G|10
,

for some n 6 C log |G|, then G satisfies |µi(G)| 6 1− ε for all i ̸= 0 (and in particular
is an expander).

Here ⟨P nδx, δy⟩ can be interpreted in probabilistic terms as the transition probability
from x to y at time n, namely the probability that a simple (=equiprobable nearest
neighbor) random walk starting at x visits y at time n.

The condition here that ||P || = maxi ̸=0 |µi(G)| 6 1− ε is only slightly stronger than
being an expander. The only difference is that we require the smallest eigenvalue µG
to be bounded away from −1 as well. In practice this is often satisfied and one can
always get this by changing G into the induced k2-regular graph obtained by connecting
together vertices at distance 2 in G (which has the effect of changing P into P 2, hence
squaring the eigenvalues).

The exponent 10 in the remainder term is nothing special and can be replaced by any
exponent > 1.

Proof. The function fx := δx − 1
|G|1 has zero mean on G, hence

|⟨P nδx, δy⟩ −
1

|G|
| = |⟨P nfx, δy⟩| 6 ||P ||n||fx||||δy|| 6

√
2(1− ε)n.

Now this is at most 1/|G| as some as n > Cε log |G| for some Cε > 0.
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Conversely observe that trace(P 2n) =
∑

x∈G⟨P 2nδx, δx⟩, and hence summing the es-
timates for ⟨P 2nδx, δx⟩, we obtain

|trace(P 2n)− 1| 6 1

|G|9
,

But on the other hand trace(P 2n) = 1 + µ2n
1 + . . .+ µ2n

|G|, hence

max
i ̸=0

|µi|2n 6 µ2n
1 + . . .+ µ2n

|G| 6
1

|G|9
,

thus recalling that |G|1/ log |G| = e, we obtain the desired upper bound on maxi̸=0 |µi|. �
This fast equidistribution property is usually considered as a feature of expander

graphs, a consequence of the spectral gap. We will see in the last lecture, when ex-
plaining the Bourgain-Gamburd method, that the proposition can also be used in the
reverse direction and be used to establish the spectral gap.

For more about random walks on finite graphs and groups and the speed of equidis-
tribution (the cut-off phenomenon, etc) see the survey by Saloff-Coste [14].

II. Property (τ)

Margulis [13] was the first to construct an explicit family of k-regular expander graphs.
For this he used property (T ) through the following observation:

Proposition 0.5. ((T ) implies (τ)) Suppose Γ is a group with Kazhdan’s property (T )
and S is a symmetric set of generators of Γ of size k = |S|. Let Γn 6 Γ be a family of
finite index subgroup such that the index [Γ : Γn] tends to +∞ with n. Then the family
of Schreier graphs S(Γ/Γn, S) forms a family of k-regular expanders.

Recall that the Schreier graph of a coset space Γ/Γ0 associated to a finite symmetric
generating set S of Γ is the graph whose vertices are the left cosets of Γ0 in Γ and one
connects gΓ0 to hΓ0 if there is s ∈ S such that gΓ0 = shΓ0.

Proof. The group Γ acts on the finite dimensional Euclidean space ℓ20(Γ/Γn) of ℓ
2 func-

tions with zero average on the finite set Γ/Γn. Denote the resulting unitary represen-
tation of Γ by πn. Property (T ) for Γ gives us the existence of a Kazhdan constant
ε = ε(S) > 0 such that maxs∈S ||π(s)v − v|| > ε||v|| for every unitary representation
π of Γ without invariant vectors. In particular, this applies to the πn since they have
no non-zero Γ-invariant vector. This implies that the graphs Gn := S(Γ/Γn, S) are

ε-expanders, because if A ⊂ Gn has size at most half of the graph, then v := 1A − |A|
|G|1

is a vector in ℓ20(Γ/Γn) and ||πn(s)v − v||2 = ||πn(s)1A − 1A||2 = |sA∆A|, while

||v||2 = 2|A|(1− |A|
|Gn|) > |A|. In particular |∂A| > ε2|A|. �

So we see that Cayley graphs (or more generally Schreier graphs) of finite quotients
of finitely generated groups can be yield families of expanders. This is the case for the
family of Cayley graphs of SL3(Z/mZ) associated to the reduction mod m of a fixed
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generating set S in SL3(Z). To characterize this property, Lubotzky introduced the
following terminology:

Definition 0.6. (Property (τ)) A finitely generated group Γ with finite symmetric gen-
erating set S is said to have property (τ) with respect to a family of finite index normal
subgroups (Γn)n if the family of Cayley graphs G(Γ/Γn, Sn), where Sn = SΓn/Γn is the
projection of S to Γ/Γn, is a family of expanders. If the family (Γn)n runs over all finite
index normal subgroups of Γ, then we say that Γ has property (τ).

Proposition 0.5 above shows that every group with property (T ) has property (τ).
The converse is not true and property (τ) is in general a weaker property which holds
more often. For example Lubotzky and Zimmer showed that an irreducible lattice in a
semisimple real Lie group has property (τ) as soon as one of the simple factors of the
ambient semisimple Lie group is of real rank at least 2 (and hence has property (T ) by
Kazhdan’s theorem).

Property (τ) is stable under quotients and under passing to and from a finite index
subgroup. In particular groups with property (τ) have finite abelianization, just as
Kazhdan’s groups.

Arithmetic lattices in semisimple algebraic groups defined over Q admit property (τ)
with respect to the family of all congruence subgroups. Namely:

Theorem 0.7. (Selberg, Burger-Sarnak, Clozel) Let G ⊂ GLd is a semisimple algebraic
Q-group, Γ = G(Z) = G(Q) ∩GLd(Z) and Γm = Γ ∩ ker(GLd(Z) → GLd(Z/mZ)), then
Γ has property (τ) with respect to the Γm’s.

This property is also called the Selberg property because in the case of G = SL2 it
follows (see below) from the celebrated theorem of Selberg, which asserts that the non-
zero eigenvalues of the Laplace-Beltrami laplacian on the hyperbolic surfaces of finite
co-volume H2/ ker(SL2(Z) → SL2(Z/mZ)) are bounded below by a positive constant
independent of m (in fact 3

16
). The general case was established by Burger-Sarnak and

Clozel.

This connects property (τ) for lattices with another interesting feature of some lat-
tices, namely the congruence subgroup property. This property of an arithmetic lattice
asks that every finite index subgroup contains a congruence subgroup (i.e. a subgroup
of the form G(Z) ∩ ker(GLd(Z) → GLd(Z/mZ)). It is easy to see that if G(Z) has both
the Selberg property and the congruence subgroup property, then it has property (τ)
(with respect to all of its finite index subgroups). See the exercise sheet.

An interesting open problem in this direction is to determine whether or not lattices
in SO(n, 1) can have property (τ) or not. Lubotzky and Sarnak conjecture that they
do not, and this would also follow from Thurston’s conjecture that such lattices have a
subgroup of finite index with infinite abelianization.

The link between Selberg’s 3
16

theorem and property (τ) is provided by the following
general fact, which relates the combinatorial spectral gap of a Cayley (or Schreier) graph
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of finite quotients of the fundamental group of a manifold with the spectral gap for the
analytic Laplace-Beltrami operator on the Riemannian manifold.

Recall that given a connected Riemannian manifold M the Laplace-Beltrami operator
is a non-negative self-adjoint operator for L2 functions with respect to the Riemannian
volume measure and that if M is compact, its spectrum is discrete λ0(M) = 1 <
λ1(M) 6 . . . (e.g. see [1]).

The fundamental group Γ = π1(M) acts freely and co-compactly on the universal

cover M̃ by isometries (for the lifted Riemannian metric on M̃). Given a base point

x0 ∈ M̃ , the set

FM = {x ∈ M̃ ; d(x, x0) < d(x, γ · x0) ∀γ ∈ Γ \ {1}}

is a (Dirichlet) fundamental domain for the action of Γ on M̃ . Moreover the group Γ
is generated by the finite symmetric set S := {γ ∈ Γ; γFM ∩ FM ̸= ∅}. We can now
state:

Theorem 0.8. (Brooks [3], Burger [4]) Let M be a compact Riemannian manifold
with fundamental group Γ = π1(M). Let S be the finite symmetric generating set of Γ
obtained from a Dirichlet fundamental domain FM as above. Then there are constants
c1, c2 > 0 depending on M only such that for every finite cover M0 of M

c1λ1(M0) 6 λ1(G(Γ/Γ0, S)) 6 c2λ1(M0),

where Γ0 is the fundamental group of M0 and G(Γ/Γ0, S)) the Schreier graph of the
finite coset space Γ/Γ0 associated to the generating set S.

We deduce immediately:

Corollary 0.9. Suppose (Mn)n is a sequence of finite covers of M . Then there is a
uniform lower bound on λ1(Mn) if and only if Γ := π1(M) has property (τ) with respect
to the sequence of finite index subgroups Γn := π1(Mn).

The proof consists in observing that the Schreier graph can be drawn on the mani-
fold M0 as a dual graph to the decomposition of M0 into translates of the fundamental
domain FM . The inequality on the left hand side is easier as one can use the inter-
pretation in terms of Cheeger constants and given a set A of vertices with |∂A| 6 ε|A|
one can look at the corresponding union of fundamental domains in M0 and see that
its boundary has small surface area compared to its volume. The other direction is a

bit more involved and requires comparing the Rayleigh quotients ||∇f ||
||f || of a function

on M0 with the combinatorial Rayleigh quotients of the function on the vertices of the
graph obtained by averaging f over each fundamental domain. The result also extends
to non-compact hyperbolic manifolds of finite co-covolume (see [2, Section 2] and [5,
Appendix]).

For more on property (τ) we refer the reader to the book by Lubotzky and Zuk [12].
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