
LECTURE 2: THE TITS ALTERNATIVE AND KAZHDAN’S
PROPERTY (T ) (PRELIMINARY VERSION)

EMMANUEL BREUILLARD

I. The Tits alternative.

A very interesting large class of groups is provided by the linear groups, namely the
subgroups of GLd(K), for some (commutative) field K. There are few general tools
to study arbitrary finitely generated groups (often one has to resort to combinatorics
and analysis as we did in Lecture 1 above for example). However for linear groups the
situation is very different and a wide range of techniques (including algebraic number
theory and algebraic geometry) become available.

Jacques Tits determined in 1972 which linear groups are amenable by showing his
famous alternative:

Theorem 0.1. (Tits alternative [18]) Let Γ be a finitely generated linear group (overs
some field K). Then

• either Γ is virtually solvable (i.e. has a solvable finite index subgroup),
• or Γ contains a non-abelian free subgroup F2.

Remark. Virtually solvable subgroups of GLd(K) have a subgroup of finite index which
can be triangularized over the algebraic closure (Lie-Kolchin theorem).

In particular (since free subgroups are non-amenable and subgroups of amenable
groups are amenable),

Corollary 0.2. A finitely generated linear group is amenable if and only if it is virtually
solvable.

The proof of the Tits alternative uses a technique called “ping-pong” used to find
generators of a non-abelian free subgroup in a given group. The basic idea is to exhibit
a certain geometric action of the group Γ on a space X and two elements a, b ∈ Γ, the
“ping-pong players” whose action on X has the following particular behavior:

Lemma 0.3. (Ping-pong lemma) Suppose Γ acts on a set X and there are two elements
a, b ∈ Γ and 4 disjoint (non-empty) subsets A+, A−, B+, and B− of X such that

• a maps B+, B− and A+ into A+,
• a−1 maps B+, B− and A− into A−,
• b maps A+, A− and B+ into B+, and
• b−1 maps A+, A− and B− into B−.

Then a and b are free generators of a free subgroup ⟨a, b⟩ ≃ F2 in Γ.
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Proof. The subset A+ is called the attracting set for a and A− the repelling set, and
similarly for the other letters. Pick a reduced word w in a and b and their inverses. Say
it starts with a. Pick a point p not in A+ and not in the repelling set of the last letter
of w (note that there is still room to choose such a p) Then the above ping-pong rules
show that w · p belongs to A+ hence is not equal to p. In particular w acts non trivially
on X and hence is non trivial in Γ. �
Remark. There are also other variant of the ping-pong lemma (e.g. it is enough that
there are disjoint non-empty subsets A and B such that any (positive or negative) power
of a sends B inside A and any power of b sends A inside B (e.g. take A := A+ ∪ A−

and B := B+ ∪B− above). But the above is the most commonly used in practice.

On Tits’ proof. Tits’ proof uses algebraic number theory and representation theory
of linear algebraic groups to construct a local field (R, C or a finite extension of Qp

or Fp((t))) K and an irreducible linear representation of Γ in GLm(K) whose image
is unbounded. If Γ is not virtually solvable, one can take m > 2. Then he shows
that one can change the representation (passing to an exterior power) and exhibit an
element γ of Γ which is semisimple and has the property that both γ and γ−1 have a
unique eigenvalue (counting multiplicity) of maximal modulus (such elements are called
proximal elements). Then one considers the action of Γ on the projective space of the
representation X := P(Km) and observes that the powers γn, n ∈ Z, have a contracting
behavior on X: for example the positive powers γn, n > 1 push any compact set not
containing the eigenline of maximal modulus of γ−1 inside a small neighborhood around
the eigenline of maximal modulus of γ. Using irreducibility of the action, one then find
a conjugate cγc−1 of γ such that a := γn and b = cγnc−1 exhibit the desired “ping-pong”
behavior for all large enough n and thus generate a free subgroup. For details, see the
original article [18] or e.g. [3].

It turns out that one can give a shorter proof of the corollary, which by-passes the
proof of the existence of a free subgroup. This was observed by Shalom [16] and the
argument, which unlike the proof of the Tits alternative does not require the theory of
algebraic groups, is as follows.

Sketch of a direct proof of Corollary 0.2. Let us first assume that Γ is an unbounded
subgroup of GLn(k), for some local field k, which acts strongly irreducibly (i.e. it does
not preserve any finite union of proper linear subspaces). If Γ is amenable, then it must
preserve a probability measure on P(kn). However recall:

Lemma 0.4. (Furstenberg’s Lemma) Suppose µ is a probability measure on the projec-
tive space P(kn). Then the stabilizer of µ in PGLn(k) is compact unless µ is degenerate
in the sense that it is supported on a finite number of proper (projective) linear subspaces.

For the proof of this lemma, see Zimmer’s book [20] or try to prove it yourself. Clearly
the stabilizer of a degenerate measure preserves a finite union of proper subspaces. This
contradicts our assumption.

To complete the proof, it remains to see that if Γ is not virtually solvable, then we
can always reduce to the case above. This follows from two claims.
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Claim 1. A linear group is not virtually solvable if and only if it has a finite index
subgroup which has a linear representation in a vector space of dimension at least 2
which is absolutely strongly irreducible (i.e. it preserves no finite union of proper vector
subspaces defined over any field extension).

Claim 2. If a finitely generated subgroup Γ of GLd(K) acts absolutely strongly irre-
ducibly on Kd, d > 2, and K is a finitely generated field, then K embeds in a local field
k in such a way that Γ is unbounded in GLd(k). �

Exercise. Prove Claim 1.

The proof of Claim 2 requires some basic algebra and number theory as proceeds as
follows.

Exercise. Prove that if a subgroup of GLd(K) acts irreducibly (K=algebraic closure)
and all of its elements have only 1 in their spectrum (i.e. are unipotents), then d = 1
(hint: use Burnside’s theorem that the only subalgebra of Mn(K) acting absolutely
irreducibly is all of Mn(K).)
Exercise. Show that a finitely generated field K contains only finitely many roots of
unity and that if x ∈ K is not a root of unity, they there is a local field k with absolute
value | · | such that K embeds in k and |x| ̸= 1 (hint: this is based on Kronecker’s
theorem that if a polynomial in Z[X] has all its roots within the unit disc, then all its
roots are roots of unity; see [18, Lemma 4.1] for a full proof).
Exercise. Use the last two exercises to prove Claim 2.

II. Kazhdan’s property (T )

Let us go back to general (countable) groups and introduce another spectral prop-
erty of groups, namely Kazhdan’s property (T ). Our goal here is to give a very brief
introduction. Many excellent references exist on property (T ) starting with the 1989
Asterisque monograph by de la Harpe and Valette [?], the recent book by Bekka-de la
Harpe-Valette for the classical theory; see also Shalom 2006 ICM talk for more recent
developments.

Let π be a unitary representation of Γ on a Hilbert space Hπ. We say that π admits
(a sequence of) almost invariant vectors if there is a sequence of unit vectors vn ∈ Hπ

(||vn|| = 1) such that ||π(γ)vn − vn|| converges to 0 as n tends to +∞ for every γ ∈ Γ.

Definition 0.5. (Kazhdan’s property (T )) A group Γ is said to have Kazhdan’s property
(T ) if every unitary representation π admitting a sequence of almost invariant vectors
admits a non-zero Γ-invariant vector.

Groups with property (T ) are sometimes also called Kazhdan groups.

A few simple remarks are in order following this definition:
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• The definition resembles that of non-amenability, except that we are now consid-
ering all unitary representations of Γ and not just the left regular reprensentation
ℓ2(Γ) (given by λ(γ)f(x) := f(γ−1x)). Indeed by Proposition ??(3) above shows
that a group is amenable if and only if the regular representation on ℓ2(Γ) admits
a sequence of almost invariant vectors.

• Property (T ) is inherited by quotient groups of Γ (obvious from the definition).
• Finite groups have property (T ) (simply average an almost invariant unit vector
over the group).

• If Γ has property (T ) and is amenable, then Γ is finite (indeed ℓ2(Γ) has a non-
zero invariant vector iff the constant function 1 is in ℓ2(Γ) and this is iff Γ is
finite).

A first important consequence1 of property (T ) is the following:

Proposition 0.6. Every countable group with property (T ) is finitely generated.

Proof. Let Sn be an increasing family of finite subsets of Γ such that Γ =
∪

n Sn. Let
Γn := ⟨Sn⟩ be the subgroup generated by Sn. We wish to show that Γn = Γ for all
large enough n. Consider the left action of Γ on the coset space Γ/Γn and the unitary
representation πn it induces on ℓ2 functions on that coset space, ℓ2(Γ/Γn). Let π = ⊕nπn

be the Hilbert direct sum of the ℓ2(Γ/Γn) with the natural action of Γ on each factor.
We claim that this unitary representation of Γ admits a sequence of almost invariant
vectors. Indeed let vn be the Dirac mass at [Γn] in the coset space Γ/Γn. We view vn as
a (unit) vector in π. Clearly for every given γ ∈ Γ, if n is large enough γ belongs to Γn

and hence preserves vn. Hence ||π(γ)vn−vn|| is equal to 0 for all large enough n and the
(vn)n form a family of almost invariant vectors. By Property (T ), there is a non-zero
invariant vector ξ :=

∑
n ξn. The Γ-invariance of ξ is equivalent to the Γ-invariance of

all ξn ∈ ℓ2(Γ/Γn) simultaneously. However observe that if ξn ̸= 0, then Γ/Γn must be
finite (otherwise a non-zero constant function cannot be in ℓ2). Since there must be
some n such that ξn ̸= 0, we conclude that some Γn has finite index in Γ. But Γn itself
is finitely generated. It follows that Γ is finitely generated. �

So let Γ have property (T ), and let S be a finite generating set for Γ. Then from the
very definition we observe that there must be some ε = ε(S) > 0 such that for every
unitary representation π of Γ without non-zero Γ-invariant vectors, one has:

max
s∈S

||π(s)v − v|| > ε||v||,

for every vector v ∈ Hπ.
And conversely it is clear that if there is a finite subset S in Γ with the above property,

then every unitary representation of Γ with almost invariant vectors has an invariant
vector. Hence this is equivalent to Property (T ).

1This was in fact the reason for its introduction by Kazhdan in 1967 (at age 21). He used it to prove
that non-uniform lattices in (higher rank) semisimple Lie groups are finitely generated. Nowadays new
proofs exist of this fact, which are purely geometric and give good bounds on the size of the generating
sets, see Gelander’s lecture notes from the PCMI summer school.
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Definition 0.7. (Kazhdan constant) The (optimal) number ε(S) > 0 above is called a
Kazhdan constant for the finite set S.

Another important property of Kazhdan groups is that they have finite abelianization:

Proposition 0.8. Suppose Γ is a countable group with property (T ). Then Γ/[Γ,Γ] is
finite.

Proof. Indeed, Γ/[Γ,Γ] is abelian hence amenable. It also has property (T ), being a
quotient of a group with property (T ). Hence it is finite (see itemized remark above). �

This implies in particular that the non-abelian free groups do not have property
(T ) although they are non-amenable. In fact Property (T ) is a rather strong spectral
property a group might have. I tend to think of it as a rather rare and special property
a group might have (although in some models of random groups, almost every group
has property (T )).

Exercise. Show that if Γ has a finite index subgroup with property (T ), then it has
property (T ). And conversely, if Γ has property (T ), then every finite index subgroup
also has property (T ).

In fact establishing Property (T ) for any particular group is never a simple task. In
his seminal paper in which he introduced Property (T ) Kazhdan proved that Property
(T ) for simple Lie groups of rank2 at least 2. Then he deduced (as in the above exercise)
that Property (T ) is inherited by all discrete subgroups of finite co-volume in the Lie
group G (i.e. lattices).

Theorem 0.9. (Kazhdan 1967) A lattice in a simple real Lie group of real rank at least
2 has property (T ).

There are several proofs of Kazhdan’s result for Lie groups (see e.g. Zimmer’s book
[20] and Bekka-delaHarpe-Valette [2] for two slightly different proofs). They rely of
proving a “relative property (T )” for the pair (SL2(R)nR2,R2). This relative property
(T ) means that every unitary representation of the larger group with almost invariant
vectors admits a non-zero vector which is invariant under the smaller group. One proof
of this relative property makes use of Furstenberg’s lemma above (Lemma 0.4). The
proof extends to simple groups defined over a local field with rank at least 2 (over this
local field).

Using a more precise understanding of the irreducible unitary representations of sim-
ple real Lie groups of rank one Kostant was able to prove that the rank one groups
Sp(n, 1) and F−20

4 have property (T ). However the other rank one groups SU(n, 1) and
SO(n, 1) (including SL2(R)) do not have property (T ).

2In fact he proved it for rank at least 3 by reducing the proof to SL3(R) since every simple real Lie
group of rank at least 3 contains a copy of SL3(R), but it was quickly realized by others (treating the
case of Sp4(R)) that the argument extends to groups of rank 2 as well.



6 EMMANUEL BREUILLARD

The discrete group SLn(Z) is a lattice in SLn(R) and hence has property (T ) by
Kazhdan’s theorem. Nowadays (following Burger and Shalom) they are more direct
proofs that SLn(Z) has property (T ) (see the exercise sheet for Shalom’s proof using
bounded generation). Other examples of groups with property (T ) include

Recently property (T ) was established for SLn(R), n > 3, where R is an arbitrary
finitely generate commutative ring with unit, and even for ELn(R) for certain non-
commutative rings R. For example:

Theorem 0.10. (Ershov and Jaikin-Zapirain [?]) Let R be a (non-commutative) finitely
generated ring with unit and ELn(R) be the subgroup of n×n matrices generated by the
elementary matrix subgroups Idn +REij. If n > 3, then ELn(R) has property (T ).

In particular, if Z⟨x1, . . . , xk⟩ denotes the free associative algebra on k generators,
ELn(Z⟨x1, . . . , xk⟩) has property (T ) for all k > 0 and n > 3. As an other special case,
the so-called universal lattices ELn(Z[x1, ..., xk]) = SLn(Z[x1, ..., xk]), where Z[x1, ..., xk]
is the ring of polynomials on k (commutative) indeterminates has property (T ) when
n > 3. This remarkable result extends earlier works of Kassabov, Nikolov and Shalom
on various special cases. The Kazhdan constant in this case behave asymptotically as

1√
n+k

for large n and k.

An important tool in some of these proofs (e.g. see Shalom ICM talk [17]) is the
following characterization of property (T ) in terms of affine actions of Hilbert spaces.

Theorem 0.11. (Delorme-Guichardet) A group Γ has property (T ) if and only if every
action of Γ by affine isometries on a Hilbert space must have a global fixed point.

See [?] or [2] for a proof. Kazhdan groups enjoy many other fixed point properties
(e.g. Serre showed that they cannot act on trees without a global fixed point) and
related rigidity properties (see e.g. the lectures by Dave Morris in this summer school).

Although the above class of examples of groups with property (T ) all come from
the world of linear groups, Kazhdan groups also arise geometrically, for example as
hyperbolic groups through Gromov’s random groups. For example the following holds:

Theorem 0.12. In the density model of random groups, if the density is < 1
2
, then the

random group is infinite and hyperbolic with overwhelming probability. If the density is
> 1

3
, then the random group has property (T ) with overwhelming probability.

It is unknown whether 1
3
is the right threshold for property (T ). Below 1

12
random

groups have small cancellation C ′(1/6) and Ollivier and Wise proved that below 1
6
they

act freely and co-compactly on a CAT (0) cube complex and are Haagerup, hence they
do not have property (T ).

For a proof of the above see Zuk [?], Ollivier [?], Gromov [?] and Ghys’ Bourbaki talk
[?]. In fact Zuk proved a similar result for a slightly different model of random groups
(the so-called triangular model) and Ollivier sketches a reduction of the above to Zuk’s
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theorem in [?]. The proof of this result is based on a geometric criterion for property
(T ) (due to Zuk, Ballmann-Zwiatkowski, originating in the work of Garland).

Let Γ be a group generated by a finite symmetric set S (with e /∈ S). Let L(S) be
the finite graph whose vertices are the elements of S and an edge is drawn between
two vertices s1 and s2 iff s−1

1 s2 belongs to S. Suppose that L(S) is connected (this is
automatic if S is replaced say by S ∪ S2 \ {e}).

Theorem 0.13. (local criterion for property (T )) Let Γ be a group generated by a finite
symmetric set S (with e /∈ S) such that the first non-zero eigenvalue of the Laplacian
on the finite graph L(S) is > 1

2
. Then Γ has property (T ).

For a short proof, see Gromov’s random walks in random groups paper [?] and the
end of Ghys’ Bourbaki talk [?].

For certain groups of geometric origin, such as Out(Fn) and the mapping class groups,
determining whether they have property (T ) are not can be very hard. For example it
is not known whether Out(Fn) has property (T ) for n > 4 (even open for Aut(Fn), not
true for n = 2, 3 though). For the mapping class group, check the work of Andersen.

III. Uniformity issues in the Tits alternative, non-amenability and Kazh-
dan’s property (T )

A well-known question of Gromov from [12] is whether the various invariants associ-
ated with an infinite group (such as the rate of exponential growth, the isoperimetric
constant of a non-amenable group, the Kazhdan constant of a Kazhdan group, etc) can
be made uniform over the generating set.

For example we say:

Definition 0.14. Consider the family of all finite symmetric generating sets S of a
given finitely generated group. Γ. We say that Γ

• has uniform exponential growth if ∃ε > 0 such that lim 1
n
log |Sn| > ε, for all S,

• is uniformly non-amenable if ∃ε > 0 such that |∂SA| > ε|A| for S,
• has uniform property (T ) if ∃ε > 0 such that maxS ||π(s)v − v|| > ε||v|| for all
S and all unitary representations of Γ with no non-zero invariant vector.

• satisfies the uniform Tits alternative if ∃N ∈ N > 0 such that SN contains
generators of a non-abelian free subgroup F2.

Note that there are some logical implications between these properties. For example if
Γ satisfies the uniform Tits alternative, or if Γ (is infinite and) has uniform property (T ),
then Γ is uniformly non-amenable (exercise). Similarly if Γ is uniformly non-amenable,
then Γ has uniform exponential growth.

Uniform exponential growth holds for linear groups of exponential growth (Eskin-
Mozes-Oh [8]), for solvable groups of exponential growth (Osin), but fails for general
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groups as Wilson gave an example of a non-amenable group (even containing F2) whose
exponential growth is not uniform [19].

The uniform Tits alternative is known to hold for non-elementary hyperbolic groups
(Koubi) and for non-virtually solvable linear group is known by work of Breuillard-
Gelander [4]. In this case the uniformity is even stronger as one has:

Theorem 0.15. (B. [6]) Given d ∈ N, there is N = N(d) ∈ N such that for any field
K and any finite symmetric set S ⊂ GLd(K) one has SN contains two generators of a
non-abelian free subgroup F2 unless ⟨S⟩ is virtually solvable.

The uniformity in the field here requires some non-trivial number theory (see [5]). Of
course this result implies that the rate of exponential growth is also bounded below by
a positive constant depending only on the size of the matrix and not on the field. So the
uniform exponential growth is also uniform in the field. However this is known to hold
only for non-virtually solvable groups. It is an open question as to whether or not it also
holds uniformly over all virtually solvable subgroups of GLd(K) of exponential growth.
In fact even the case of solvable subgroups of GL2(C) is open. One can show however
that if this is indeed the case, then this would imply the Lehmer conjecture from number
theory [7], and that the analogous uniform Tits alternative for free semi-groups does
not hold.

The above uniform Tits alternative has applications outside the world of infinite linear
groups. It turns out that the uniformity in the field allows one to transfer information
from the infinite world to the finite world (we’ll see more of that in the remainder of
this course). For example the following can be derived from Theorem 0.15

Corollary 0.16. There is N = N(d) ∈ N and ε = ε(d) > 0 such that if S is a generating
subset of SLd(Fp) (p arbitrary prime number), then SN contains two elements a, b which
generate SLd(Fp) and have no relation of length 6 (log p)ε. In other words the Cayley
graph G(SLd(Fp), {a±1, b±1}) has girth at least (log p)ε.

It is an open question whether one can take ε = 1 in the above result.

Uniform property (T ) is even more mysterious. Examples where constructed by Osin
and Sonkin [14]. Lattices in semisimple Lie groups with property (T ) do not have
uniform property (T ) in general (examples were constructed by Gelander and Zuk).
But it is an open problem to determine whether SLn(Z) has uniform property (T ) for
n > 3.

1. Lecture 3: Property (τ) and expanders

To be continued...
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