EXERCISE SHEET 2

EMMANUEL BREUILLARD

1. Some facts on expanders

1) (Schreier graphs as expanders) Suppose G is a finite group with symmetric generating set S and $\mathcal{C}(G, S)$ is its Cayley graph. Suppose G acts transitively on a set X and let $\mathcal{S}(X, S)$ be the Schreier graph of this action, namely the graph with vertex set X and edges given by $x \simeq y$ iff there is $s \in S$ s.t. $x = s \cdot y$.

Show that $\lambda_2(\mathcal{S}(X,S)) \leq \lambda_2(\mathcal{C}(G,S))$. In particular the quotient Schreier graphs obtained from a family of expanders Cayley graphs are expander graphs. (hint: show that every eigenvalue of the Schreier graph is an eigenvalue of the Cayley graph).

Deduce that if Γ is a finitely generated group which has property (τ) with respect to a family of finite index normal subgroups $(\Gamma_i)_i$ which is such that every finite index subgroup of Γ contains some Γ_i , then Γ has property (τ) . In particular the Selberg property for an arithmetic lattice combined with the congruence subgroup property imply property (τ) .

2. Some basics on approximate groups

3) (Ruzsa's triangle inequality) Given two finite sets A, B in an ambient group G, we set

$$d(A, B) := \log \frac{|AB^{-1}|}{|A||B|},$$

a quantity called the *Ruzsa distance* between the sets A and B.

1) Show the triangle inequality: given any three finite sets A, B, C in G.

$$d(A,C) \leqslant d(A,B) + d(B,C),$$

[hint: consider the map $(b, x) \mapsto (a_x^{-1}b, b^{-1}c_x)$, where $a_x^{-1}c_x$ is a representation of $x \in A^{-1}C$.]

2) Deduce that if A is a finite subset of G such that $|AAA| \leq K|A|$ for some real number $K \geq 0$, then for every integer $n \geq 3$ we have $|A^n| \leq K^{2n-5}|A|$.

4) (Sets of small doubling)

Date: July 19th 2012.

EMMANUEL BREUILLARD

0) Let A be a finite subset of a group G such that |AA| = |A|. Show that A = aH, where H is a finite group and a normalizes H.

Now suppose we only know that

$$|AA| \leqslant K|A|,$$

for some $K \ge 1$.

1) Show that $|A^{-1}A| \leq K^2|A|$.

2) Show that if K is close enough to 1, then the only such sets A must be contained in a coset of a subgroup H of G of size at most 2|A| (hint: show that $A^{-1}A$ is a group).

3) Push the argument to prove that $|AA| < \frac{3}{2}|A|$ if and only if there is a subgroup H of G and a in the normalizer of H in G such that $A \subset aH$ and $|A| > \frac{2}{3}|H|$ (hint: show first that $A^{-1}A = AA^{-1}$).

References

E-mail address: emmanuel.breuillard@math.u-psud.fr