
EXERCISES FOR THE PCMI SUMMER SCHOOL

EMMANUEL BREUILLARD

1. Amenability, paradoxical decompositions and Tarski numbers

In this exercise, we prove yet another characterization of amenability, which is due
to Tarski [7, 4] and states that a group is non-amenable if and only if it is paradoxical.

Let Γ be a group acting on a set X. This Γ-action is said to be N -paradoxical if one
can partition X into n+m 6 N disjoint pieces

X = A1 ∪ . . . ∪ An ∪B1 ∪ . . . ∪Bm

in such a way that there are elements a1, . . . , an ∈ Γ and b1, . . . , bm ∈ Γ such that

X =
n∪

i=1

aiAi and
m∪
j=1

bjBj

We say that Γ is paradoxical if it is N -paradoxical for some finite N ∈ N for the
action of Γ on itself by left translations.

1) Prove that the non-abelian free group F2 and in fact any group Γ containing the
free group F2 is 4-paradoxical.

2) Suppose that Γ is a 4-paradoxical group and Γ = A1∪A2∪B1∪B2 is a paradoxical
decomposition as defined above. Show that Γ plays ping-pong on itself, where the ping-
pong players are a := a−1

1 a2 and b := b−1
1 b2 .Deduce that Γ contains a non-abelian free

subgroup F2.

3) Define the Tarski number T (Γ) of a group Γ to be the smallest integer N if it
exists such that Γ is N -paradoxical. By the above T (Γ) = 4 if and only if Γ contains
F2. Show that if Γ is amenable, then T (Γ) = +∞.

4) Suppose that Γ is finitely generated with symmetric generating set S and is en-
dowed with the corresponding word metric d (i.e. d(x, y) := inf{n ∈ N, x−1y ∈ Sn}).
Show that T (Γ) is finite if and only if there exists a surjective 2-to-1 mapping ϕ : Γ → Γ
with the property that supγ∈Γ d(γ, ϕ(γ)) < +∞.

5) Given k ∈ N, let Gk be the bi-partite graph obtained by taking two copies Γ1 and
Γ2 of Γ as the left and right vertices respectively and by placing an edge between γ ∈ Γ1
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and γ′ ∈ Γ2 if and only if d(γ, γ′) 6 k in the word metric of Γ. Show that if there is
some finite k ∈ N such that Gk admits a (2, 1) perfect matching1, then Γ is paradoxical.

6) Prove the following version of Hall’s marriage lemma for infinite bi-partite graphs.
Let k be a positive integer (we will need the result for k = 2 only). Suppose B is a
bi-partite graph whose set of left vertices is countable infinite as is the set of right
vertices. Suppose that for every finite subset of left vertices L, the number of right
vertices connected to some vertex in L has size at least k|L|, while for every finite
subset R of right vertices, the number of left vertices connected to some vertex in R has
size at least |R|. Show that B admits a (k, 1) perfect matching. [Hint: first treat the
case k = 1, then reduce to this case.]

7) Using 6) that if Γ is a non-amenable finite generated group, then there is k > 1
such that Gk has a (2, 1) perfect matching.

8) Conclude the proof of Tarski’s theorem for arbitrary (not necessarily finitely gen-
erated) groups.

2. Kazhdan’s property (T ) for SLn(Z) via bounded generation

The goal of this exercise is to show how bounded generation can be useful to establish
property (T ) and to provide a proof (due to Shalom [6]) that SLn(Z), n > 3, has property
(T ) along these lines.

I. Preliminaries for general G.
1) Show that property (T ) for a finitely generated group G is equivalent to the

following. Given a finite generating set S, there is C > 0 such that for any ε > 0 and
any unitary representation (π,Hπ) of G, if v ∈ Hπ satisfies ||π(s)v − v|| 6 ε for all
s ∈ S, then there is an G-invariant vector w ∈ Hπ such that ||v − w|| 6 Cε.

2) Let ε 6 1. Suppose (π,Hπ) is a unitary representation of G and v is a unit vector
in Hπ such that supg∈G ||π(g)v − v|| 6 ε. Show that G admits a non-zero invariant
vector w with ||v − w|| < ε. (Hint: use the circumcenter).

3) Suppose G admits finitely (or compactly) generated subgroups H1, . . . , Hn with
property (T ) such that G = H1 . . . Hn in the sense that any element of G can be written
as a product h1 · . . . · hn with hi ∈ Hi (i.e. G is boundedly generated by the Hi’s). Show
that G has property (T ).

Deduce from this that in order to prove that SLn(R) has property (T ) it is enough
to prove that SL3(R) has property (T ).

4) A pair (G,H) of groups, where H is a subgroup of G, is said to have relative
property (T ) if any unitary representation of G with almost invariant vectors admits an

1By definition this is a subset of edges of Gk such that the induced bi-partite graph has the property
that every vertex on the left hand side is connected to exactly two vertices on the right hand side,
while every vertex on the right hand side is connected to exactly one vertex on the left hand side.
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H-invariant vector. Show that if G is boundedly generated by subgroups H1, . . . , Hn

and each Hi is normalized by a finitely (or compactly) generated subgroup Li 6 G such
that (Li, Hi) has relative property (T ), then G has property (T ).

II. Bounded generation for SLn(Z).
1) Prove that SLn(R), n > 2, is boundedly generated by its elementary subgroups,

namely the subgroups Hij of the form Idn + REij, where Eij is the elementary n × n
matrix all of whose entries are 0 except the ij entry.

2) Using elementary operations on rows and columns, show that in order to prove
that SLn(Z), n > 3, is boundedly generated by its elementary subgroups Id + ZEij, it
is enough to do this for n = 3. (hint: reduce to the case when the first n− 1 entries of
the bottom row of a given matrix in SLn(Z) are relatively prime).

We won’t do the n = 3 case here. Anybody interested in advised to look at [1, Lemma
4.1.6] or the original article [3].

III. Relative property (T ) for SL2(Z)n Z2.
We want to prove that if (π,H) is a unitary representation of SL2(Z)nZ2 with almost

invariant vectors, then there is a Z2 invariant vector. We follow an argument due to M.
Burger [2].

The restriction π|Z2 is a unitary representation of Z2. The dual of Z2 is the torus

T := Ẑ2 = (R/Z)2. Recall that according to the spectral theorem, there exists a
resolution of identity E : T → B(H), which assigns to every Borel set Ω ⊂ T a self-
adjoint projection E(Ω) : H → H, such that

a) E(∅) = 0, E(T ) = Id, E(A ∩ B) = E(A)E(B), and E(A ∪ B) = E(A) + E(B) if
A ∩B = ∅.

b) for every v, w ∈ H, Ω 7→ (E(Ω)v, w) is complex measure and for all ξ ∈ Z2

(π(ξ)v, w) =

∫
T

e2iπξ·ω(E(dω)v, w)

The idea of the proof is to study the probability measures µv(Ω) := (E(Ω)v, v) when
v is an almost invariant vector and to show, using the action of SL2(Z), that they must
charge {0}, implying that π|Z2 has invariant vectors. Now come the details.

1) Verify that a) and b) imply that given ω ∈ T , l’image ImE({ω}) is the joint
eigenspace of Z2 with eigenvalue e2iπω·ξ (i.e. ∀ξ ∈ Z2, π(ξ)v = e2iπω·ξv iff v ∈ ImE({ω})).
In particular E({0}) is the orthogonal projection to the invariant vectors.

2) Let v ∈ H be a unit vector and µv be the probability measure on T given by
Ω 7→ (E(Ω)v, v). Show that |µv(B)−µw(B)| 6 2||v−w|| for every Borel set B ⊂ T and
all v, w ∈ H. Also check that g∗µv = µπ(g)v, where g ∈ SL2(Z) acts on T in the natural
way and g∗µ(Ω) := µ(g−1Ω).
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3) Given a sequence of almost invariant unit vectors (vk)k for SL2(Z)nZ2, show that
µvk converges weakly to the Dirac mass at 0 ∈ T .

4) If π has no Z2 invariant vectors, show that µv({0}) = 0 for every v.

5) Let a := Id+2E12 and b := Id+2E21 be two elementary matrices in SL2(Z). Show
the following lemma (which is one way to show that SL2(Z) has no invariant measure
on the projective line P(R2) and hence is non-amenable). There is ε0 > 0 such that for
every probability measure µ on R2 \ {0}, there is a Borel subset Y ⊂ R2 \ {0} such that
|µ(gY )− µ(Y )| > ε0 for some g ∈ {a±1, b±1}.

6) Conclude.

IV. Property (T ) for SLn(Z). Show finally that SLn(Z) has property (T ) using
bounded generation of the elementary subgroups Idn + ZEpq and relative property (T )
for the pair (SL2(Z)nZ2,Z2). (hint: set the Hi’s to be the subgroups generated by two
distinct elementary subgroups and find subgroups Li in SLn(Z) such that Hi ≃ Z2 is
normal in Li ≃ SL2(Z)n Z2, then use I.4. to conclude.)

Does this work for SLn(R) ?

3. Harmonic functions and property (T )

One of the amazing things about property (T ) is that it can be used to prove theorems
that at first sight seem far removed from any question involving spectral gaps or unitary
representations. The most outstanding example of this is Margulis’ famed proof of the
Normal Subgroup Theorem (which states that a normal subgroup in a higher rank
lattice is either finite or of finite index). Margulis’ proof proceeds by showing that any
quotient of the lattice by a non-central subgroup is both amenable and has property
(T ) hence is finite.

Another such example is the following fact, which is a key step in Kleiner’s proof of
Gromov’s polynomial growth theorem ([5] and the references therein):

Theorem2: Any finitely generated infinite group admits a non-constant Lipschitz har-
monic function.

Let Γ be a group generated by a finite symmetric set S = {s±1
1 , . . . , s±1

k }. A function
on Γ is said to be harmonic if for all x ∈ Γ

f(x) =
1

|S|
∑
s∈S

f(xs)

We say it is Lipschitz if |f(x) − f(y)| 6 Cd(x, y) for some C > 0 and all x, y ∈ Γ,
where d(x, y) is the word metric induced by S on Γ.

2This result is almost a counter-example to the somewhat provocative assertion I once heard according
to which there is no property that is both non-trivial and holds for all finitely generated groups.



EXERCISES FOR THE PCMI SUMMER SCHOOL 5

The goal of this exercise will be to prove this theorem. The proof splits in two parts:
first we treat the case when Γ is non-amenable. Then the case when Γ does not have
property (T ). A finitely generated group which does not fall into one of these two
categories must be finite, hence the result.

0) First prove that on a finite group, every harmonic function is constant (hint:
maximum principle).

I. The non-amenable case.
1) (Bogolyubov) Let µ be the symmetric and finitely supported measure µ := 1

|S|
∑

s∈S δs
on Γ. Show that every action of Γ by homeomorphisms on a compact space X admits
a stationnary measure, namely a Borel probability measure ν on X such that µ ∗ ν = ν
(i.e. 1

|S|
∑

s∈S ν(sA) = ν(A) for every Borel subset A ⊂ X).

2) (Building bounded harmonic functions) Let ν is a stationary measure for µ on
a compact Γ-space X. Show that for every bounded continuous function f on X the
function ϕf : γ 7→

∫
X
f(γ · x)dν(x) is harmonic and bounded on Γ.

3) Use 1) and 2) to prove that if Γ is non-amenable, then Γ admits a non-constant
bounded harmonic function.

II. Negating Property (T ).
Recall that according to the Delorme-Guichardet theorem, Γ has property (T ) if and

only if every affine isometric action of Γ on a Hilbert space has a global fixed point
(property (FH)). We will need the following stronger fact: if Γ does not have property
(T ), then there is an affine isometric action on some Hilbert space H such that the
ℓ2-displacement function

DS(x) :=
(∑

s∈S

d(x, s · x)2
) 1

2

is everywhere positive and attains its minimum at some point x0 ∈ H. Here d(x, y)2 =
||x − y||2 is the (square of the) distance in the Hilbert space H and γ · x denotes the
affine action of Γ in H.

The proof we give below of this strengthening of (FH) ⇒ (T ) uses ultralimits, which
are an extremely useful tool in all sorts of contexts when one wants to make uniform a
seemingly non-uniform statement.

We briefly recall the construction of an ultralimit of metric spaces. We refer the
reader to Misha Kapovich notes from this year’s Park City summer school for more
details. A non-principal ultrafilter ω is a set of subsets of N such that a) A ∈ ω and
A ⊂ B ⇒ B ∈ ω, b) if A,B ∈ ω, then A ∩ B ∈ ω, c) for every A ⊂ N, either A or
Ac belongs to ω, and d) no singleton belongs to ω (check that this is equivalent to the
definition in terms of {0, 1}-valued finitely additive measures given in Misha’s notes).
The existence of a non-principal ultrafilter is guaranteed by Zorn’s lemma.



6 EMMANUEL BREUILLARD

Given a sequence of pointed metric spaces (Xn, dn, xn) recall that their ultralimit along
ω is defined as the set of equivalence classes of sequences (yn)n such that ∀n, yn ∈ Xn

and supn dn(yn, xn) < +∞, where (yn) and (y′n) are equivalent if limω dn(yn, y
′
n) = 0.

Let now H be a Hilbert space endowed with an affine isometric action of Γ. Let d
be the Euclidean distance on H. Given a sequence of scalars λn > 0, and a sequence
of base points xn ∈ Hn, we can form the ultralimit of the sequence of pointed metric
spaces (H, λnd, xn), say (Hω, dω, xω) = limω(H, λnd, xn).

1) Show that (Hω, dω, xω) is again a Hilbert space endowed with an affine isometric
action of Γ.

2) Let H be a Hilbert space endowed with an affine isometric action of Γ admitting
no global fixed point. Show that for every n ∈ N, there is xn ∈ H such that for every y
in the ball of radius nDS(xn) one has

DS(y) > (1− 1

n
)DS(xn).

3) Prove the aforementioned strengthening of (FH) ⇒ (T ) using an ultralimit of a
renormalised sequence of pointed Hilbert spaces contradicting the uniformity.

4) Show that if x0 realizes the minimum of DS(x) and DS(x0) > 0, then for every
v ∈ H the map γ 7→ Re(γ · x0, v) (Re = real part) is harmonic and Lipschitz (hint:
differentiate DS(x)

2).

5) Conclude the proof of the theorem from the introduction. Can one make the
harmonic function unbounded ?
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