Some arithmetic groups that do not act on the circle

Dave Witte Morris

University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Lecture 4

Intro to bounded cohomology (used to prove actions have a fixed point)

Dave Witte Morris (Univ. of Lethbridge) Arithmetic grps do not act on S1 (4/4)

Park City, July 2012 1 / 11

Recall: group cohomology $H^*(\Gamma; \mathbb{R})$

- cochain $c: \Gamma^n \to \mathbb{R}$
- coboundary $\delta: C^n(\Gamma) \to C^{n+1}(\Gamma)$
- $\bullet \ H^{n}(\Gamma; \mathbb{R}) = \frac{Z^{n}(\Gamma; \mathbb{R})}{B^{n}(\Gamma; \mathbb{R})} = \frac{\ker \delta_{n}}{\operatorname{Im} \delta_{n-1}}$

Definition (bounded cohomology)

 $H_h^*(\Gamma;\mathbb{R})$: require all cochains to be *bdd* funcs on Γ^n .

Example

- $\bullet \ H^0(\Gamma; \mathbb{R}) = \mathbb{R} = H^0_h(\Gamma; \mathbb{R}).$
- $H^1(\Gamma; \mathbb{R}) = \{ \text{homomorphisms } c : \Gamma \to \mathbb{R} \}$
- $H_h^1(\Gamma; \mathbb{R}) = \{ bounded \text{ homos } c : \Gamma \to \mathbb{R} \} = \{0\}.$

Interested in $H_h^2(\Gamma)$ – applies to actions on the circle.

Dave Witte Morris (Univ. of Lethbridge) Arithmetic grps do not act on S^1 (4/4)

Park City, July 2012 2 /

Example

Spse Γ acts on circle. I.e., $\Gamma \subset \text{Homeo}_+(\mathbb{R}/\mathbb{Z})$.

Each $g \in \Gamma$ lifts to $\widetilde{g} \in \text{Homeo}_+(\mathbb{R})$.

Not unique: $\hat{g}(t) = \tilde{g}(t) + n$, $\exists n \in \mathbb{Z}$.

Can choose $\tilde{g}(0) \in [0,1)$.

Let
$$c(g,h) = \widetilde{g}(\widetilde{h}(0)) - \widetilde{gh}(0) \in \mathbb{Z}$$
.

Exercise

- c is a 2-cocycle:
 - c(h,k) c(gh,k) + c(g,hk) c(g,h) = 0
- $c(g,h) \in \{0,1\}.$

So $[c] \in H_b^2(\Gamma; \mathbb{Z})$. The bdd Euler class of the action. Well defined: independent of basepoint "0", etc.

Dave Witte Morris (Univ. of Lethbridge) Arithmetic grps do not act on S^1 (4/4)

ark City. July 2012 3 /

Park City. July 2012 5 / 11

Bounded Euler class $c(g,h) = \widetilde{g}(\widetilde{h}(0)) - \widetilde{gh}(0)$

Proposition (Ghys)

[c] = 0 in $H_h^2(\Gamma; \mathbb{Z}) \iff \Gamma$ has a fixed point in S^1 .

Proof.

(\Leftarrow) Wolog fixed point is $\overline{0}$.

Then $\widetilde{g}(0) = 0$, so c(g, h) = 0 for all g, h.

 $(\Rightarrow) c(g,h) = \varphi(gh) - \varphi(g) - \varphi(h), \exists bdd \varphi \colon \Gamma \to \mathbb{Z}.$ Let $\hat{g}(x) = \tilde{g}(x) + \varphi(g), \text{ so}$

- $\hat{g} \hat{h} = \widehat{gh}$, so $\hat{\Gamma}$ is a lift of Γ to Homeo₊(\mathbb{R}), and
- $|\hat{g}(0)| \le |\tilde{g}(0)| + |\varphi(g)| \le 1 + ||\varphi||_{\infty}.$

 $\widehat{\Gamma}$ -orbit of 0 is bdd subset of \mathbb{R} , so has a supremum, which is fixed pt of $\widehat{\Gamma}$; img in S^1 is fixed pt of Γ . \square

Dave Witte Morris (Univ. of Lethbridge) Arithmetic grps do not act on S^1 (4/4

Park City, July 2012 4 /

Proposition (Ghys)

[c] = 0 in $H_h^2(\Gamma; \mathbb{Z}) \iff \Gamma$ has a fixed point in S^1 .

Corollary

 $H_h^2(\Gamma; \mathbb{Z}) = 0 \Rightarrow \text{ every action of } \Gamma \text{ on } S^1 \text{ has fixed pt.}$

Exercise

 $H_b^2(\Gamma; \mathbb{R}) = 0$, $H^1(\Gamma; \mathbb{R}) = 0$, Γ is finitely generated \Rightarrow every action of Γ on S^1 has a finite orbit.

Theorem (Burger-Monod)

Comparison map $H_b^2(\Gamma; \mathbb{R}) \to H^2(\Gamma; \mathbb{R})$ is injective if Γ is large arith group.

Corollary (Ghys, Burger-Monod)

 $\Gamma = large \ arith \ group$ and $H^2(\Gamma; \mathbb{R}) = 0$

 \Rightarrow every action of Γ on S^1 has a finite orbit.

Theorem (Burger-Monod)Comparison map $H_h^2(\Gamma; \mathbb{R})$

Comparison map $H_b^2(\Gamma; \mathbb{R}) \to H^2(\Gamma; \mathbb{R})$ is injective if Γ is large arith group.

Kernel of the comparison map

Let $c \in Z_b^2(\Gamma; \mathbb{R})$. Assume [c] = 0 in $H^2(\Gamma; \mathbb{R})$. I.e., $c = \delta \alpha$, $\exists \alpha \in C^1(\Gamma)$. So $|\alpha(gh) - \alpha(g) - \alpha(h)| = |\delta \alpha(g,h)| \le ||c||_{\infty}$ is bdd. α is almost a homo — a quasimorphism.

Exercise

 $\textit{Kernel of } H^2_b(\Gamma) \to H^2(\Gamma) \textit{ is } \frac{\text{Quasimorphisms}(\Gamma, \mathbb{R})}{\text{NearHom}(\Gamma, \mathbb{R})}.$

NearHom(Γ , \mathbb{R}) = { α : $\Gamma \to \mathbb{R} \mid bdd \ dist \ from \ homo}}$

Dave Witte Morris (Univ. of Lethbridge) Arithmetic grps do not act on S^1 (4/4)

Park City, July 2012 6

Exercise

Kernel of $H_b^2(\Gamma) \to H^2(\Gamma)$ *is* $\frac{\text{Quasimorphisms}(\Gamma, \mathbb{R})}{\text{NearHom}(\Gamma, \mathbb{R})}$

Example: $H_b^2(F_2)$ is infinite-dimensional.

Proof. Construct lots of quasimorphisms (not homos). Homo $\varphi_a(x) =$ the (signed) # occurrences of a in x. E.g., $\varphi_a(a^2ba^3b^{-3}a^{-7}b^2) = 2 + 3 - 7 = -2$. Every homo $F_2 \to \mathbb{R}$ is a linear comb of φ_a and φ_b . $\varphi_{ab}(x) =$ # occurrences of ab in x (reduced) E.g., $\varphi_{ab}(a^2ba^3b^{-3}a^{-7}b^2) = 1 - 1 = 0$.

Exercise: 1) φ_w is a quasimorphism, \forall reduced w. 2) φ_{a^k} is not within bdd distance of lin span of $\{\varphi_b, \varphi_a, \varphi_{a^{k+1}}, \varphi_{a^{k+2}}, \varphi_{a^{k+3}}, \ldots\}$.

Dave Witte Morris (Univ. of Lethbridge) Arithmetic grps do not act on S^1 (4/4)

Park City, July 2012 7 / 11

Example: homomorphism $\varphi: \Gamma \to \mathbb{R}$

 \Rightarrow { $g \in \Gamma \mid \varphi(g) > 0$ } is normal semigroup.

Exercise: Spse $\varphi: \Gamma \to \mathbb{R}$ unbdd quasimorphism. *Stabilize:* let $\overline{\varphi}(g) = \lim \varphi(g^n)/n$.

- \bullet $\overline{\varphi}$ is unbounded quasimorphism.
- $\{g \in \Gamma \mid \overline{\varphi}(g) > C\}$ is normal semigroup.

Open Problem. For $\Gamma = SL(3, \mathbb{Z})$:

- Every normal semigroup in Γ is a subgroup.
- $\forall g \in \Gamma$, e is a product of conjugates of g.
- \nexists (nonempty) *bi*-invariant *partial* order on Γ .

All are equivalent. (\$100 for solution)

Dave Witte Morris (Univ. of Lethbridge) Arithmetic grps do not act on S1 (4/4)

Park City, July 2012 8

Exercises

- 1) $H_b^2(\Gamma; \mathbb{R}) = 0$, $H^1(\Gamma; \mathbb{R}) = 0$, Γ is finitely gen'd \Rightarrow every action of Γ on S^1 has a finite orbit. [Hint: Short exact sequence $0 \to \mathbb{Z} \to \mathbb{R} \to \mathbb{T} \to 0$ yields long exact sequence $H_b^1(\Gamma; \mathbb{T}) \to H_b^2(\Gamma; \mathbb{Z}) \to H_b^2(\Gamma; \mathbb{R})$.]
- 2) Every quasimorphism is bounded on the set of commutators $\{x^{-1}y^{-1}xy\}$.
- 3) $SL(3, \mathbb{Z})$ has no unbounded quasimorphisms. [*Hint:* Use the fact that it is boundedly gen'd by elementary mats.]

Dave Witte Morris (Univ. of Lethbridge) Arithmetic grps do not act on S^1 (4/4)

Park City, July 2012 9 / 11

Further reading

- M. Gromov: Volume and bounded cohomology. *Publ. Math. IHES* 56 (1982) 5-99. http://archive.numdam.org/article/PMIHES_1982__56__5_0.pdf
- N. Monod: An invitation to bounded cohomology. *Proc. Internat. Congress Math.*, Madrid, Spain, 2006. http://www.mathunion.org/ICM/ICM2006.2/Main/icm2006.2.1183.1212.ocr.pdf

Dave Witte Morris (Univ. of Lethbridge) Arithmetic grps do not act on S^1 (4/4)

Park City, July 2012 10 / 11

- D.W.Morris: Can lattices in $SL(n, \mathbb{R})$ act on the circle?, in *Geometry, Rigidity, and Group Actions*, University of Chicago Press, Chicago, 2011. http://arxiv.org/abs/0811.0051
- D. Witte: Products of similar matrices. *Proc.*Amer. Math. Soc. 126 (1998), no. 4, 1005–1015.

 http://dx.doi.org/10.1090/
 S0002-9939-98-04368-8