Some arithmetic groups that do not act on the circle

Dave Witte Morris

University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Lecture 2: Proof for SL $(2, \mathbb{Z}[\alpha])$ using bounded generation

wa Witte Morrie (Univ. of Lathbridge). Arithmetic gross do not act on Cl. (2/4).

ek City Inly 2012 1 / 1

Bounded generation by unip subgrps

Note: Invertible matrix --- Id by row operations.

Key fact: $g \in SL(2, \mathbb{Z}) \rightsquigarrow Id$ by integer (\mathbb{Z}) row ops.

Example

$$\begin{bmatrix} 13 & 31 \\ 5 & 12 \end{bmatrix} \sim \begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} \sim \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

 \overline{U} and V generate $SL(2,\mathbb{Z})$.

But # steps is not bounded:

 \overline{U} and \underline{V} do **not** boundedly generate $SL(2, \mathbb{Z})$.

a Witta Morrie (Univ. of Lathbridga). Arithmatic gross do not act on \$\frac{1}{2} (2/4)

Oarle City Inly 2012 4.

Theorem (Liehl [1984])

 $SL(2, \mathbb{Z}[1/p])$ bddly gen'd by elem mats. I.e., $T \rightsquigarrow Id$ by $\mathbb{Z}[1/p]$ col ops, # steps is bdd.

Proof.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad q = a + kb \text{ prime, } p \text{ is prim root}$$

$$\sim \begin{bmatrix} a & b \\ * & * \end{bmatrix} \qquad p^{\ell} \equiv b \pmod{q}; \quad p^{\ell} = b + k'q$$

$$\sim \begin{bmatrix} a & p^{\ell} \\ * & * \end{bmatrix} \qquad p^{\ell} \text{ unit: can add } anything \text{ to } q$$

$$\sim \begin{bmatrix} 1 & p^{\ell} \\ * & * \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Recall

 $\Gamma = \text{large arithmetic group}$ $\doteq SL(3, \mathbb{Z}), SL(2, \mathbb{Z}[\alpha]), \text{ etc.}$ $\alpha = \text{irrational, algebraic, real}$

Conjecture

 Γ does not act on \mathbb{R} . (faithfully – no kernel) \nexists faithful homomorphism $\phi \colon \Gamma \to \operatorname{Homeo}_+(\mathbb{R})$

Proposition (Witte [1994])

 Γ does not act on \mathbb{R} if $\Gamma \doteq SL(3, \mathbb{Z})$.

Theorem (Lifschitz-Morris [2004])

 Γ does not act on \mathbb{R} if $\Gamma \doteq SL(2, \mathbb{Z}[\alpha])$.

Witta Marris (Univ. of Lathbridge). Arithmetic gross do not act on C1 (2/4). Dar

Dark City Inh. 2012 2 /

Key fact: $g \in SL(2, \mathbb{Z}) \rightsquigarrow Id$ by integer (\mathbb{Z}) row ops, but # steps is *not bounded*.

Remark: In $SL(3, \mathbb{Z})$, # steps is bounded [Carter-Keller, 1983].

Theorem (Liehl [1984], Carter-Keller-Paige [1995?]) *For* $\mathbb{Z}[\alpha]$ *row operations, # steps is bounded.*

 $\exists n, \ \forall g \in \mathrm{SL}(2, \mathbb{Z}[\alpha]), \ g = u_1 v_1 u_2 v_2 \cdots u_n v_n.$ I.e., \overline{U} and \underline{V} boundedly gen $\Gamma = \mathrm{SL}(2, \mathbb{Z}[\alpha]).$ So $\mathrm{SL}(2, \mathbb{Z}[\alpha]) = \overline{U} \, \underline{V} \, \overline{U} \, \underline{V} \cdots \overline{U} \, \underline{V}.$

us Witte Morris (Univ. of Lethbridge). Arithmetic grass do not act on \$\frac{1}{2} \langle 1/4 \rangle

Park City Inly 2012 5 / 1

- Bdd generation: $\Gamma = \overline{U}\underline{V}\overline{U}\underline{V}\cdots\overline{U}\underline{V}$.
- ullet Bdd orbits: \overline{U} -orbits and \underline{V} -orbits are bounded.

Corollary

 $φ: Γ → Homeo_+(\mathbb{R}) \Rightarrow every Γ-orbit on \mathbb{R} is bdd$ ⇒ Γ has a fixed point.

Corollary

 Γ cannot act on \mathbb{R} .

Proof. Spse \exists nontrivial action.

It has fixed points: Remove them:

Take a connected component:

 Γ acts on open interval ($\approx \mathbb{R}$) with no fixed pt. $\rightarrow \leftarrow$

to Morris (Univ. of Lethbridge). Arithmetic gross do not act on S¹ (2/4). Park City, July 2012

Theorem (Lifschitz-Morris [2004])

 Γ does not act on \mathbb{R} if $\Gamma \doteq SL(2, \mathbb{Z}[\alpha])$.

Proof combines bdd generation and bdd orbits.

Unipotent subgroups: $\overline{U} = \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}$, $\underline{V} = \begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix}$.

Theorem (Carter-Keller-Paige, Lifschitz-Morris)

- \overline{U} and \underline{V} boundedly generate Γ (up to finite index).
- Γ acts on $\mathbb{R} \implies \overline{U}$ -orbits (and \underline{V} -orbits) are bdd.

va Witta Morrie (Univ. of Lathbridge). Arithmetic gross do not act on \$\frac{1}{2} (2/4).

Dark City July 2012 3

Theorem (Liehl [1984])

 $SL(2,\mathbb{Z}[1/p])$ bddly gen'd by elem mats. I.e., $T \leadsto Id$ by $\mathbb{Z}[1/p]$ col ops, # steps is bdd.

Easy proof

Assume Artin's Conjecture:

 $\forall r \neq \pm 1$, perfect square,

 $\exists \infty$ primes q, s.t. r is primitive root modulo q: $\{r, r^2, r^3, \ldots\}$ mod $q = \{1, 2, 3, \ldots, q - 1\}$ Assume $\exists q$ in every arith progression $\{a + kb\}$.

 $\exists q = a + kb, \underline{p}$ is a primitive root modulo q.

itta Morrie (Univ. of Lathbridga). Arithmatic gross do not set on C¹ (2/4). Park City. July 2012 - 6/1

Bounded orbits

Theorem (Lifschitz-Morris [2004])

 $\Gamma = SL(2, \mathbb{Z}[1/p])$ acts on $\mathbb{R} \Rightarrow every \overline{U}$ -orbit bdd.

$$\overline{u} = \begin{bmatrix} 1 & u \\ 0 & 1 \end{bmatrix}, \ \underline{v} = \begin{bmatrix} 1 & 0 \\ v & 1 \end{bmatrix}, \ \boldsymbol{p} = \begin{bmatrix} p & 0 \\ 0 & 1/p \end{bmatrix}$$

Assume \overline{U} -orbit and \underline{V} -orbit of x not bdd above.

Assume p fixes x. (p does have fixed pts, so not an issue.)

- Wolog $\overline{u}(x) < v(x)$.
- Then $\mathcal{P}^n(\overline{u}(x)) < \mathcal{P}^n(\underline{v}(x))$.
- LHS = $\mathcal{P}^n(\overline{u}(x)) = (\mathcal{P}^n \overline{u} \mathcal{P}^{-n})(x) \to \overline{\infty}(x) \to \infty$.
- RHS = $\mathcal{P}^n(v(x)) = (\mathcal{P}^n v \mathcal{P}^{-n})(x) \to 0(x) < \infty$.

→←

Sitta Morrie (Hniv. of Lathbridga). Arithmatic grow do not act on C¹ (2/4). Dark City. Inly 2012. 0.

Other arithmetic groups of higher rank **Proposition**

Suppose $\Gamma_1 \subset \Gamma_2$.

- If Γ_2 acts on \mathbb{R} , then Γ_1 acts on \mathbb{R} .
- If Γ_1 does not act on \mathbb{R} , then Γ_2 does not act on \mathbb{R} .

Our methods require Γ to have a unipotent subgrp. Such arithmetic groups are called *noncocompact*.

Theorem (Chernousov-Lifschitz-Morris [2008]) *Spse* Γ *is a noncocompact arith group of higher rank.* Then $\Gamma \supset SL(2, \mathbb{Z}[\alpha])$

or noncocpct arith grp in $SL(3, \mathbb{R})$ or $SL(3, \mathbb{C})$.

Open Problem

Show noncocpt arith grps in $SL(3,\mathbb{R})$ and $SL(3,\mathbb{C})$ cannot act on \mathbb{R} .

Conjecture (Rapinchuk [~1990])

These arith grps are boundedly generated by unips.

Rapinchuk Conjecture implies no action on \mathbb{R} if Γ noncocompact of higher rank.

Cocompact case will require new ideas.

Open Problem

Find cocompact arithmetic group Γ , such that finite-index subgroups of Γ do not act on \mathbb{R} .

Exercises

- 1) Assume Γ boundedly generated (by cyclic subgrps). (I.e., $\Gamma = H_1 H_2 \cdots H_n$ with H_i cyclic.) If Γ acts by *isometries* on metric space X, and every cyclic subgroup has a bdd orbit on X, then every Γ -orbit on X is bounded.
- 2) $SL(n, \mathbb{Z})$ bdd gen by unips
 - \implies SL $(n+1,\mathbb{Z})$ bdd gen by unips (if $n \ge 2$).
- 3) Γ bdd gen (by cyclic subgrps)
 - \Leftrightarrow finite-index subgroup $\dot{\Gamma}$ bdd gen.
- 4) (harder) Free group F_2 not bdd gen (by cyclic subgrps).
- 5) \overline{U} and V do not bddly gen $SL(2,\mathbb{Z})$. (Use prev exer.)

Optional exercises

- 6) (harder) Assume Γ bdd gen (by cyclic subgrps). Show $\langle a^n \mid a \in \Gamma \rangle$ has finite index in $\Gamma (\forall n \in \mathbb{Z}^+)$.
- 7) Assume:
 - Γ_1 and Γ_2 are arith subgrps of G_1 and G_2 , resp.
 - G_1 and G_2 are simple Lie grps of higher real rank.
 - Γ_1 is cocompact, but Γ_2 is *not* cocompact.

Use the Margulis Superrigidity Theorem to show Γ_2 is *not* isomorphic to a subgroup of Γ_1 .

Related reading

- \square D. W. Morris: Can lattices in $SL(n, \mathbb{R})$ act on the circle?, in Geometry, Rigidity, and Group Actions, University of Chicago Press, Chicago, 2011. http://arxiv.org/abs/0811.0051
- L. Lifschitz and D. Witte: Isotropic nonarchimedean S-arithmetic groups are not left orderable, C. R. Math. Acad. Sci. Paris 339 (2004), no. 6, 417-420. http://arxiv.org/abs/math/0405536

Further reading

- D. W. Morris: Bounded generation (unpublished). http://people.uleth.ca/~dave.morris/ banff-rigidity/morris-bddgen.pdf
- \blacksquare D. W. Morris: Bounded generation of SL(n, A)(after D. Carter, G. Keller and E. Paige). New York *I. Math.* 13 (2007) 383-421. http: //nyjm.albany.edu/j/2007/13-17.html
- L. Lifschitz and D. W. Morris: Bounded generation and lattices that cannot act on the line, Pure and Applied Mathematics Quarterly 4 (2008), no. 1, part 2, 99-126. http://arxiv.org/abs/math/0604612

V. Chernousov, L. Lifschitz, and D. W. Morris: Almost-minimal nonuniform lattices of higher rank, Michigan Mathematical Journal 56, no. 2, (2008), 453-478.

http://arxiv.org/abs/0705.4330

A. Ondrus: Minimal anisotropic groups of higher real rank, Michigan Math. J. 60 (2011), no. 2, 355-397.