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Abstract. The group SL(3,7) cannot act (nontrivially) on the
circle (by homeomorphisms). We will see that many other
arithmetic groups also cannot act on the circle. The
discussion will involve several important topics in group
theory, such as amenability, Kazhdan’s property (T), ordered
groups, bounded generation, and bounded cohomology.

Lecture 1: Introduction

In Geometric Group Theory (and elsewhere):

Study group I by looking at spaces it can act on.
X = H", CAT(0) cube cplx, Euclidean bldg, etc.

Question

¢ 3 (faithfun) action of T on X ? (faithful: no kernel)

In these lectures:
o I = arithmetic group = SL(n,Z) or ...
o X = simplest possible space
= connected manifold of dim’'n 1
= circle or line

1 t
= (f;ip;l?ul) homo ¢: T — Homeo, (R) ? or Homeo. (S!)?

Question
¢ 3 (ainrun action of T on R or S12(r = arith grp = SL(n, 7))

Fact

FactsonR < T actsonS! GET ¢ SL(2,R))

Proof (=).

I acts on one-pt compactification of R ~ S™. |

Theorem (Ghys, Burger-Monod, Bader-Furman)

M actson S' = 13 finite orbit
= [ has a fixed point.

(ifr ¢ SL(2,R))

Proof of Fact («).

ractson S!' — (fixed pt) ~ R. ]
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Question

¢ 3 (faithful) action of T on R ? (r = arith grp)

Example
SL(2,7) does not act on R.

Proof.
1
-1 0
0o -1
But Homeo, (R) has no elt’s of finite order:
®P0) >0 = @2(0)>@0)>0 = @30)>0
= ... = @"(0)>0. O

= 1. So SL(2,Z) has elt’s of finite order.

Example
I = SL(2,Z) finite-index subgrp can be a free group.
Has many actions on R.
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Example
I = SL(2,Z) finite-index subgrp can be a free group.
Has many actions on R.

Example (Agol, Boyer-Rolfsen-Wiest)

rc SO(1,3) = ractsonR (becausel —» 7)

Arith grps known to act on R are “small’ (c so(1,n)?)

Conjecture

irreducibl
Irreducible,
nk > 1 _cannot act on R

r=SL(3,Z) or T =SL 2,Z[x] or ...
« = real, irrat alg’ic integer.
r (Z So(lln)l SU(lln)l Sp(lyn)y F4,1-

Large arithmetic groups
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Algebraic translation of conjecture
Definition
Assume [ acts (faithfully) on R.

a<b < a(0)<b(0) or ... (breakties)

Exercise
< is a total order onT that is left-invariant.
(a <b = ca< Cb) Hint: orient-pres: sx <y = c(x) <c(y).

Note:a,b e = ab>a>e and e>a L

Exercise (assume ' countable)

I acts faithfully on R < 3 left-inv’t order onT.
Hint: (I, <) = (Q, <) = Dedekind completion of T is R.

Conjecture
A left-inv’t order forT = large arith grp = SL(3,7), etc.

Proposition (Witte, 1994)
A left-inv’t order onT = SL(3,7).

Notation Lo o

17 7
H = Heisenberg grp = El 1 7 EI

1 1 1 1
110 100 1
x=H1 o y=H11H z=H
1 1

Exercise
0 z=[x,v]l=x"yxy € Z(H).
o (optional) H has left-inv’t order.
(N, G/N left ord’ble = G left ord’ble [“lexicographic order"])

Lemma
[ —1
i z z
V left-ordering of H = I% L zH
1
Is e {x*L,y*}, z«s, ie,z"<s, VneZz.
Proof.

Replace x, y, z with inverse.)
1

Wolog x,y,z >~ e. Interchange x and y: [y,x] =z~
z=x'ylxy =xy=yxz
2
> x"y" = yhxnzh (Recall z € Z(H))
2
=> xMyhtx "y =z7", (quadratic)
Suppose z? > x and z9 > y.
Therefore e < x71zP, y~1z4, x, y
=>e < xT Yy (x71zP)n (y~lza)n
=x" y" x "N yfn Zpn+aqn
= z~ "’ z(p+a)n  _ negative

- O

Spse 3 left- 1th order on SL(3,7Z) =

% @
* Ok
@ @ @ —Helsenberg group. @ ¥

There are actually 6 Heisenberg groups in I':

@.®, B .00

®©.60.60 60600 600
@,@,@=Heis(§rp > @ <<®0r® < @

Wolog .
@,®),@® =Heisgrp > B <Qor R «@.

Must have 3) < (@). etc.

®<<®<<@<<®<<@<<@<<® ®<<@
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Conjecture
I does not act on R if T = large arithmetic group.

Proposition (Witte, 1994)
I does notacton R if T = SL(3,Z) or Sp(4,7Z)
or contains either. Le., rankqg(T) = 2.

Remark O O
o Proposition does not apply to SL 2,7[«] .
o G/T compact = proposition never applies.

Open problem

Find arith group ', such that G/I is compact, and
finite-index subgroups of T does not act on R.
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Conjecture
I does not act on R (or SY) if T = large arith group.

Remark
Large arithmetic groups usually have
Kazhdan’s Property (T).

Open problem

¢ Groups with Kazhdan’s Property (T) have
no actions on R or S ?

Theorem (Navas)
Groups with Kazhdan’s Property (T) have
rio C? actions on S*.
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Conjecture
I does not act on R (or SY) if T = large arith group.

Coming up: O
o Tues: proof for SL 2,Z[
o bounded generation
o Thurs: What is an amenable group?
o used in proof of Ghys (3 finite orbit)
o Fri: Intro to bounded cohomology (quasimorphisms)
o used in proof of Burger-Monod (3 finite orbit)

O
]

(and others)

All lectures are essentially independent.

Exercises

1) Show I acts (faithfully) on R iff I is left-orderable.
(For =, need to show that ties can be broken in a consistent way.)

2) In the Heisenberg group H, show:
a) z=[x,y] e Z(H).
b) xkyt = ylxkzkl for k, £ € 7.
¢) H is left-orderable.

3) The proof tq_a_LIF = SL(3, %ot left—ordﬁble:

a) Verify: @@@ , @,@,@ , etc

are all isomorphic to the Heisenberg grp H.
b) Generalize proof to finite-index subgroups.

4) Every fin gen free group has a faithful action on R.
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Optional exercises
5) Torsion-free, abelian groups are left-orderable.
6) Torsion-free, nilpotent groups are left-ord’ble.
7) (narder) Some torsion-free, solvable groups are
not left-orderable!

8) Locally left-orderable = left-orderable.
(Assumption: every finitely generated subgrp of T is left-ord’ble.)
9) Residually left-ord’ble = left-ord’ble.
(Assumption: Vg €T, 3 homo @: T — H, such that ¢ (g) # e and
H is left-orderable.)
10) Locally indicable => left-orderable.

(Assumption: the abelianization of every nontrivial, finitely
generated subgroup is infinite.)

] C
11) SL(3,Z) notisomorphic to subgrp of SL 2, Z[ «]
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