CHAPTER 18

Vector Calculus

In this chapter we develop the fundamental theorem of theu@ad in two and three dimensions. This
begins with a slight reinterpretation of that theorem. Gadasthe endpoints, b of the interval[a, b]
fromato b as the boundary of that interval. Then the fundamental #rapin this form:

bdf

(18.1) f(b)— f(a) = | (¥alx.

relates the values of a function at the boundary with theeshf its derivative in the interior. Stated
this way, the fundamental theorems of the Vector Calculug€®'s, Stokes’ and Gauss’ theorems) are
higher dimensional versions of the same idea. However, ghdri dimensions, things are far more
complex: regions in the plane have curves as boundariesfoamdgions in space, the boundary is a
surface, and surfaces in space have curves as boundariisstedjbires a reinterpretation of the term
f(b) — f(a), as asignedsum of the values of on the boundary, the sign being determined by the side
on which the interval lies (it is to the right afand to the left ob). This leads to the understanding that
in higher dimensions both sides will be integrals; for exéamfor a regiorR in the plane withC as its
boundary, the ternf(b) — f(a) becomes an integral over the cu@eAnd in three dimensions, we will
have two versions of the fundamental theorem, one relatiteggials over a region with integrals over
the bounding surface, and another relating integrals awésises with integrals over the bounding curve
(and with the relation involving some form of differentiati).

We will not give derivations, or even intuitive arguments fbe proofs of these theorems. First
of all, the idea of the proof is to reduce the theorem to thevaréable fundamental theorem; in this
process, the notational complexity is constantly thraateto get out of hand. The proofs then become
masterful displays of technical control, and provideditthsight. The insight comes from the physical
interpretation of these theorems (indeed, so also did thigdiipofs), particularly in terms of fluid flows.
For example, Gauss’ theorem simply says that, for a fluid iw flee can measure the rate of change of
the amount of fluid in a given region in two ways: directly otlee region, or instead, by measuring the
rate of passage through the boundary.
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§18.1. Vector Fields

A vector fieldis an association of a vector to each poinof a regionR;
(18.2) F(xY,2) = P(x,y,2)l + Q(x,Y,2) I+ R(x,y,2K .
For example, the vector field

(18.3) X(%,Y,2) =X +yJ+zK

is the field of vectors pointing outward from the origin, whdength is equal to the distance from the
origin. The fieldU = (1/r)X (wherer(x,y,2) = (X +y? 4+ 22)¥/?) is the unit vector field with the same
direction.

Example 18.1 (Gravitation). According to Newton’s Law of gravitationya bodies attract each other
with a force proportional to the product of the masses, awdrsely proportional to the square of the
distance between them. Suppose one body, of mbsssituated at the origin. Then another body of
massm, situated at the poirX experiences the gravitational force duévo

GMm
(18.4) F=——-U,
r
whereG is Newton’s universal constant of gravitation, adds the unit vector pointing the direction
of X. If we want to concentrate on the effect of the miksn bodies in its vicinity, we introduce the

gravitational field of M:
(18.5) G(X):——U:—r—x.
SinceF = mA, a body of massat X accelerates toward the origin with accelerat@®(X).

Definition 18.1 Suppose the region R is filled with a fluid which is in motion. dak describe the
motion by following the individual particles. L&t(X,t) be the position at time t of the particle which
was atX, at time t= 0. Thevelocity field of the motion is the velocity of the particle at positkrat
time t, represented by (X,t) .This is a time-dependent vector field in the region R. Welsatythe flow
is steadyif its velocity field is independent of time.

In studying a fluid in motion, we are not interested in thedmgtof particular particles, but in the
fluid as a whole. Thus, it is the velocity field of the fluid thatthe object of study, rather than the
equations of motion. It can be shown that the velocity fielthptetely determines the motion.

Example 18.2 Suppose a fluid is flowing on the plane radially away from thgior In this case the
origin is called asource if the fluid were flowing toward the origin, we call itgink. The equation of
motion is given by

(18.6) X(Xo,t) = f(t)X, for some scalar functiof with f(0) =1.

Let's look at the casé (t) = e*. We find the velocity field as follows. First, the velocity biet particle
originally atX, is
17}

_ d t _ t
(18.7) X Xot) = (€)X, =ae'X, .
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But this isaX, so the velocity field i3/(X) = aX, and the flow is steady. However, if, séjt) = 1+t
so thatX (X,,t) = (14t)X,,we have
17}

(18.8) X Xo ) =Xo = (1+1)"1X

3

so the flow is time-dependent.

The terminology may seem confusing: in the first case, théghels speed is increasing exponen-
tially, while in the second case the particle’s speed is @omisBut, if we look at a particular poiX in
space, then in the first case, the fluid is always moving wighstime velocity through that point, while
in the second case, the fluid slows down at that point over.time

Example 18.3 Suppose a fluid is rotating on the plane about the origin ictlumterclockwise direction
at constant angular velocity. From the description, this is a steady flow; let's find itsoodty field.
At a pointX, particles move througK along the circle of radiusxX| at angular velocityw.Thus the
velocity of the fluid atX is of magnitudew|X| and in the direction tangent to to the circle throdghso
V(X) = wX*t.

Definition 18.2 A differentiable function we f(x,y,z) has associated to it itgradient field

Loty oty o
Cox 9y 0z

The surfaces (,y,z) =const. are orthogonal to the vector field (18.9), and areazhliheequipoten-
tials, and the function f, potential for the field.

(18.9) Ow K.

So, the flow associated to a gradient field is easily visudlaebeing in the direction perpendicular
to these equipotential surfaces. A natural question is:nvidna vector field- the gradient of a function;
that is, when does a vector field have a potential functionthdfvector field with the components
F =Pl + QJ+ RK is a gradient, so looks like (18.9), then, because of thel#goé mixed derivatives,
we must have

P 4Q 9P AR  4Q 4R

dy  ox 9z 9x’ 9z ady’

If these conditions are satisfied, then we can try to find therg@@l function by integrating one variable
at a time.

(18.10)

Example 18.4 LetF = (2xy+x)| +x2—yJ. IsF a gradient field? If so, find the potential function.
First, we check that the condition (18.10) is satisfied:

oP 0 oQ J,,
18.11 — = —(2x = 2X = = (X%—y)=2X.
(18.11) ay = oy 2YHY ax oy X Y=
So, we have a chance of finding a functibsuch thatdf = F. To find f we have to solve the equations
of of 5
(18.12) Iy = 2YHX 5y = X —y

We can find a function satisfying the first equation by intéggawith respect tog; so we tryf(x,y) =
x?y —x?/2. Now we see if thif satisfies the second equation:

of

(18.13) 5y =~
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which unfortunately is nat? — y. However, since the derivative with respecktof any function ofy is
zero, we could also have tried

(18.14) f(x,y) = X2y +X2/2+ @(y)
for some yet-to-be-determinegly). Now, we have, instead of (18.13),

of _ .
(18.15) oy Xt o) ;
setting that equal t@ gives the equatio/ (y) = —y, so we can take(y) = —y?/2. We conclude that
our solution is

VAR

(18.16) f(x,y) :x2y+7—7+C,

for any constan€. The reason that the terms involvirglisappear in equation (18.13) is precisely that
the conditiordP/dy = dQ/dx is satisfied,; if it were not, this procedure would break dowiis point.

Example 18.5 The procedure in three dimensions is the same, but long@pdse we are given the
vector fieldF = (y?z+ 1)1 + (2xyz+2)J + (xy* + y+ 1)K, and we are told that it is the differential of a
functionf. Find f.

Since we are told that there is a potential function, we nexderify conditions (18.10). We start
with

of
(18.17) i y’z+1.
Integrating both sides with respecttp(thinking ofy andz as constants), we obtain
(18.18) f(X,y,2) = xy’Z+ X+ @(y,2)

whereg is an unknown function o§ andz alone. Now, differentiating this equation, sin@é/dy =
2xyz+ z, we obtain

(18.19) Xyz+z=2xyz+ ?—(5 ;
or

o0
(18.20) o z.
Now we do the same, integrating both sides with respegt to
(18.21) oy, 2) =yz+ Y(2) ,

for some unknown functiogy(z). Thus (18.18) now becomes
(18.22) f(X,y,2) = Xy°Z+ X+ yz+ Y(y,2) .
Differentiating now with respect ta

oy

(18.23) Xy? +y+ 1:xy?+y+E
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sody/dz=1, and thusp(z) = z+C. Putting this back in (18.22), we have found
(18.24) f(X,y,2) = Xy’Z+X+yz+z+C.

The reason that the variablelisappeared from (18.19) amdndy from (18.23) is precisely because of
the conditions (18.10); if they did not hold there would besugh functionf, and we could not have
solved equations (18.20) and (18.23).

Example 18.6 We point out at this time that these methods make sense ottlg idomain in which the
solution functionf is well-defined, even if the given vector field is well-defined bigger region. Take,
for example, the polar function

(18.25) 0= arctarXX .

Since® is periodic, it is only well-defined (single-valued) in thiape outside of a ray from the origin,
say the rayx > 0. However,

___y X
(18.26) 06 =~

and this is well-defined in the whole plane, except for thgiariThus, if we apply the above procedure
to the vector field (18.26), we get (18.25), and we have to piplrticular branch of the arc tangent.

Two important concepts associated to a vector fields adhiesgenceandcurl.
Definition 18.3 LetF be a vector field given by
(18.27) F=PI+QJ+RK,

where PQ,R are scalar functions. ThdivergenceofF is

. dP 0Q OR
(18.28) divF = ox + dy + 57
and thecurl of Fis
_ (0R 0Q P IR oQ 0P
(18.29) curlF = <dy 02) I+ (02 dx) J+ <0x dy) K.

These are best interpreted in terms of the velocity field ofiid flow. The divergence is the rate of
expansion of the fluid at a point. The curl is a vector desaglihe rotation of the fluid near the point
(the direction of the curl is the axis of rotation and the niagie is a measure of the rate of rotation).
The flow is calledncompressibleif its divergence is zero, anidotational if its curl is zero. We note
that the condition (18.10) for a vector field to be a gradiemt be expressed as follows:

Proposition 18.1 Given a differentiable function f, its gradient field is itational; thatis: curl Of = 0.
In order for a vector field to be a gradient field, it must be tetional.

There is a notation which is very convenient in represerttieggradient, div and curl. We consider
O as an operator on functions:
0 0 7}

(18.30) 0=t a0+ 5K
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Then, we have
(18.31) divF=0-F, curlF=0OxF.

Two useful formulas are:
0-(O0xF)=0,ordiv(curlF) =0.
Ox Of =0, orcurl(Of) =0.
If we are discussing vector fields in two dimensions, we hfore,

(18.32) F=PXy)I+Q(xy)J,
0P dQ
(18.33) divF = - + oy
_ (0Q P
(18.34) curlF = <ﬁ - 0_y> K.

Example 18.7 Find the divergence and curl of the velocity fields a) astedito a source (see example
18.2), and for rotation about a point (see example 18.3).
In example 2 we half = aX = a(xl +yJ). Then

(18.35) divw =2a, curlV=0.

Note that in this cas¥ = [0r?/2, so the field has the circles centered at the origin as etgripials. In
example 3V = wX* = w(—yl +xJ)), so that

(18.36) divw =0, curlV =2wK ,

and the vector field is not a gradient.

§18.2. Line Integrals and Work
Supposé- is a vector field defined on a regiét andC is a curve lying inR. We define the line integral
of F alongC, by analogy with other integrals as follows.

Definition 18.4 LetX;,0 <i < n be a sequence of points on the curve, WighXn the endpoints. Form
the sum

(18.37) _iF(Xi) (X = Xi_1) -

If the limit of this sum exists (as the maximum distance kervgeccessive points approaches zero), it is
theline integral of F along C:

n

(18.38) '/CF-dX = ol 3 FOX) 8%
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whereAX; represents the vector increment between successive points

If we have a parametric representation of the cuXé) = x(t)I + y(t)J + z(t)K, fora <t < b, where
the functions«(t), y(t), z(t) are differentiable, then we can compute the line integrahkggration with
respect td. For, as successive points become arbitrarily close, we@place eacthX; by its linear
approximation, and in the limit, we obtain

(18.39) nmzil: Joax = fim S Ex() - Xeat = /F —dt

t—»O '

Proposition 18.2 If C is a curve parametrized by = X(t) fora<t < b, andF is a vector field defined
on C, then

(18.40) / F.dX = / F(X —dt

Example 18.8 Find [-F-dX whereC is the curveX(t) = t? + (t +1)J, 0 <t < 3, andF(x,y) =

X214+ xyJ.

Here

dX
(18.41) EAREAER
and, aloncC,
(18.42) F(x,y) = X2l +xyd = (t2)? +t2(t+1)J
SO
(18.43) /F dX — / F. —dt—/ ((t2)2(2t) +t2(t + 1))dlt
3 t® t* 2 9 1
_ 5 3 I - - — = ) =

(18.44) _/0 (2°+€+t)dt= <3+ —+ 2>0 9(27+4+2> 267.75.

To summarize, line integrals are computed this way.R.etPl + QJ + RK be a vector field in three
dimensions, and suppose tiais given parametrically by the equatiatit) = x(t)! +y(t)J + z(t)K, for
a <t < b, where the functions(t),y(t),z(t) are differentiable. Then

(18.45) /F dX = /F —dt—/ ( dx Q— 3:) dt .

If the curve is given as the graph= y(x), z= z(x), then we still use the same formula, thinking of the
parameter ag and the trajectory given b}{(x) = xI + y(x)J + z(x)K. Of course, as we have defined
the line integral, it is independent of the parametrizatibthe curve, and depends only on the direction
along the curve in which we integrate.
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The line integral (18.45) may appear in several differentf® First, if we want to interpret the line
integral as the integral of a differential (as in all casemudgration), we write (18.45) as

b
(18.46) / Pdx+ Qdy-+ Rdz,
a

as the integral of the differenti#dx+ Qdy+ Rdz To calculate the integral, we choose a convenient
parametrization and calculate as in (18.45). it is alsouldefrefer to the parametrization by arc length.
SincedX/ds= T whereT is the unit tangent to the curve. we can wiité¢ = Tdsand the line integral

is

(18.47) /F-dX: /F-Tds.
Jc Jc
This expresses the line integral as the integral with redpearc length of the component of the field in

the direction of the curve. Finally we note that the integgadditive over curves.

Proposition 18.3 If the curve C can be written as a finite succession of curyes CC, such that the
initial point of each Cis the same as the terminal point of its predecessor, therarip vector fied-
defined on C:

(18.48) [Frax= [ Frax++ [ Foax.
c c, Cn

Example 18.9 Find [- F-dX, whereF(x,y) = xyi +y2J, andC is the triangle from (0,0) to (2,0) to (3,0)
and back to (0,0).
C consists of three line segments:

2
3

We calculate the three integrals separately, and then,&48), take their sum. O@,, we takex as the
parameter, andy = 0.

(18.49) C,:0<x<2,y=0 C,:0<y<3, x=2-35y C:3>y>0,x=0.

2
(18.50) / F-dX:/ xydx+y2dy:/ 0dx=0.
. Cl . Cl JO

OnC, we takey as the parameter, and we halbe= —(2/3)dy.

3 2
2_%

(18.51) /CZF-dX: /szydx+y2dy: /O ( 3y)(—§)dy+y2dy

(18.52) :/03 <%+%y+y2> dy= (gy+§y2+§> ‘Z: 11.

Finally, sincex = 0 onCj:

(18.53) /CsF-dX - /Csyzdy: /:yzdy: o,
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and

(18.54) /F-dX:/ F-dX+/ F-dX+/ F.dX=0+11-9=2.
c c, c, c

Example 18.10 Find [-F-dX, whereF(x,y) =yl +xJ, andC is the curve given parametrically as
x=1+3cod, y=3sin2t).
We first calculate the differentiatbx= —3sintdt, dy = 6 cog2t)dt, so

(18.55) F-dX = 3sin(2t)(—3sintdt) + (1+ 3cog)(6 cog2t)dt)

(18.56) = (—9sin(2t) sint + 6 cog2t) + 18 cog2t) sin(t))dt .

Performing the integration, we gt F - dX = —.00111.

If Fis a force field in the plane in space, then the work done in nwfriom one poinkX, to another
point X, is W = F - (X; — X,), since the action of the force is only in the direction frofg to X;.
Now, if X(t) represents a curv@ then the contribution to work along a small piece of the cutXeis
dW = F -dX. We find thetotal work done by the force along the trajectory as the integral:

(18.57) Work = / F.dX .
JC

Example 18.11 LetF = —zl +xJ + K be a force field in space. How much work is done by this force
in moving an object from the origin to the point (1,1,1) aldhg pathC : y= x?, z= x3?
First we expres€ parametrically byX = xl + x?J+x3K, 0 < x < 1, so thatdX /dx = | + 2xJ + 3x°K.
The force alon@ is, in terms of the parametgr F = —x3| +xJ + K. Then, the work done by this force
is
T 2 o2 .3 17
(18.58) /F-dX:/ (=3 + 2X(X) + 3% )dx:/ (5 — ) dx = ~— .
c 0 0 12
Recall that the kinetic energy of a particle of mass m in moisd1/2)m|V|?, whereV is its velocity.
If we differentiate this with respect tg and use Newton’s Second l&w= mA, we have:

d /1 dXx
(18.59) a<§mv-v)mA-VF-E.
This expresses the law of conservation of energy for a paitianotion in the presence of a force field:
the change in the kinetic energy along the trajectory is Eguhe work done to the particle. For suppose
that the particle travels along the patrom timet = atot = b. We integrate (18.40) along the path,
getting

(18.60) g\V(b)F—g\V(a)F:/CF-dX.

Example 18.12 A particle of mass 2 g. moves around the circle of radius Jherptane in the presence
of a centripetal force field (keeping it on the circle) andtuf force fieldF(x,y) = (1+y)l +y2J (where
the magnitude is in newtons). Suppose that at time0 the particle is at the point (1,0) travelling at a
speed of 3 cm/sec. What is its speed the next time it passasgihthe point (1,0)?
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We parametrize the path using polar coordin&esx = cosf, y = sinf for 0 < 6 < 27t. In terms of
this parametrization,

(18.61) F=(1+sinB)l + (sinB)J, 3_)9( = —sinBl +cos6J .

Since the centripetal force is orthogonabid/d6, the work done in this motion is

21
(18.62) /F-dX:/ (—SinG +sir? 6 + sinBcos)dd = .
JC JO

Sincem = 2, lettingb be the time the particle next passes through (1,0), (18 ¥B¥ais

(18.63) %|V(b)\2 =+ %(3)2 =7.6515,

so|V(b)| = 3.909 cnysec.

§18.3. Independence of Path

In this and the next section, we shall restrict attentionato tdimensions. First, let us summarize the
preceding sections. A vector field defined in a redibis of the formF = Pl + QJ whereP andQ are
scalar functions oR. If C is a curve inR parametrized b (t) = x(t)I +y(t)J, a<t < b, then

b/ dx _dy
(18.64) /F-X: /F-Tds:/de+Qdy:/ LI A
C (of a dt dt

This is the integral with respect to arc length of the commboéF in the direction of the curve. F is
a force field, this is the work done by the force along the c@vH F is interpreted as the velocity field
of a flow, this is the total flow of fluid in the direction of therwe.

We might also be interested in the flow of the fluid across theegithis is the integral of the com-
ponent ofF orthogonal to the curve; that ig,F - NdswhereN is the normal to the curve. Since there
are two unit normals to the curve, we must specify the dioecim which the curve is crossed. For this
discussion we shall take the normal pointing to the righhefdirection in which the curve is traversed.
SinceTds= dx + dyJ, we are takindNds= dyl — dxJ, so that-- Nds= det(F,dX).

Definition 18.5 LetF = Pl + QJ be a vector field defined in a region R, and C a curve in R. The
circulation of F along C is

(18.65) /F-Tds:/F-dX:/de+Qdy.
C C

Theflux of F across C from left to right is

(18.66) /F-Nds:/cdet(F,dX) :/C—de+ Pdy.

Example 18.11 Calculate the circulation and flux & = x? — xyJ across the line from (0,0) to (3,4).
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The line is easily parametrized b= 3t, y = 4t, 0 <t < 1, so thadx= 3dt, dy=4dt. Then

1
(18.67) Circulation— / x2dx— xydy— / 2(3dt) — (3t)(4t) (4dt) = /O (27— 48)t%dt — —
(18.68)  Flux— / xydx+ x2dy = / 4t)(3dt) — (3t)2(4dt) = /0 36+ 362t — 24.

Proposition 18.4 If the vector field- is the gradient of a function in R, then, for any path C,
(18.69) /F-dX = £(X) — F(X,)
JC

whereX, is the initial point of the path, an¥, is its endpoint.

To see this, le€C have the parametrizatiofi(t) = x(t)I + y(t)J fora <t < b, so thatX, = X(a) and
X, = X(b). We have
of  of

18.7 F=—"—|4+—
(18.70) 0x+dyJ

so that

of dx dfdy _(Pd _
(18.71) /F dX — / <ax = aya> dt= [ S FXW)dt= T (X(b) = F (X (@) .

by the fundamental theorem of the Calculus.

Definition 18.6 A region D is callecconnectedif, for any two points P and Q in D, there is a curve C
with endpoints P and Q. A differential PexQdy+ Rdz is said to béndependent of pathin D if the
integral [ Pdx+ Qdy+ Rdz is the same for all curves C with the same endpoints. éetiffial is said to
beexactif it is the differential of a function; that is, there is a fotion f such that d = Pdx+ Qdy+ Rdz.

A vector fieldF is calledconservativeif [ F-dX is independent of path.

Proposition 18.5 A differential form Pdx Qdy+ Rdz defined on a connected region D is independent
of path there if and only if it is exact. Equivalently, givenector fieldF, the line integral [~ F - dX is
independent of path if and onlyif= Of for some function f (called its potential).

T above proposition tells us that gradient fields are inddpatof path. Now, we must show that if
the differential formPdx+ Qdyis independent of path iB, then it is a gradient. Fix a poirfk,, Y,) in
D, and define the functioh by f(x,y) = [ Pdx+ QdywhereC is any path joiningX,,Y,) to (X.y). To
show that f /dx = P, we take a pointx+ h,y) near(x,y), and consider the pat® which isC followed
by the line segmerit from (x,y) to (x+ h,y) (see the figure). Then

(18.72)  f(x+hy) :/ Pdx+ Qdy— /de+Qdy+/de+Qdy: f(x,y)+/de+Qdy.
JC! JC JL JL

Now, we can parametrideby (x(t),y(t)) = (x+t,y), 0 <t < h. Sincedy= 0 alongL, we have

f(x+h, y)—f(xy

(18.73) - / P(x+1,y)dX,
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which converges t®(x,y). Similarly,df/dy = Q.

Definition 18.7 A curve C is said to belosedif its endpoints are the same (under any parametrization).
The integral over a closed curve is denoted

Proposition 18.5 can be restated this way: we Havef if and only if the line integralf. F - dX
over every closed curve is zero.

Example 18.12 Let F = —yl +xJ andC be the boundary of the ellipse= 2cog, y=sint, 0<t < 21t.
Then

2m
(18.74) %F-dx = 7{ —ydx+ xdy= / —sint(—2sint)dt+ 2 cod costdt =
JC JC J0O

(18.75) 2/02n(sin2t+co§t)dt — 4.

§18.4. Green’s Theorem in the Plane

Suppose thdD is a region in the plane whose boundary is a curve, which wiealwlays consider to be
directed so thaD always lies to the left of its boundary. We use the notafibrto represent the boundary
of D so directed. To put it another way: férandN the unit tangent and normal @as defined in the
preceding section is to the right of T, so points out oD. For this reasom is called the exterior
normal.The boundary of a domain is a closed curve (or sewdvakd curves). From the discussion
in the preceding section, we know thatffis a gradient field defined oD, then ¢,  F-dX = 0 and
curl F = 0. The connection between these two statements is much daegés embodied in Green’s
theorem which relates the line integral 8B with the double integral of cuff on the domairD. First
we state the theorem in differential form.

Proposition 18.6 (Green’s Theorem) Let D be a region, whose boundtbdyis oriented so that D lies
to the left ofdD. Suppose that Pdx Qdy is a differential defined on the region D. Then

(18.76) ?{m Pdx+ Qdy= //D @—S _ Z—D dA.

Example 18.13 Let's redo example 14 using Green’s theorem, wherepresents the region bounded
by the ellipse:

(18.77) fF-dx - 7{ —ydx+ xdy= // (1+ 1)dxdy= 47,
c c E
since the area df is 2.

Example 18.14 Given the differentiak’dx— xdy, andD be the rectangle £ x < 3, 1 <y < 4, we have

3 4
(18.78) 74 x2dx— xdy= //(—1+ 2x)dxdy:/ / (—1+ 2x)dydx=18.
JaD J JD J1 J1
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We now restate Green’s theorem in two ways in vector form.

Proposition 18.7 (Stokes’ Theorem in the Plane). Let D be a region with boundd@®. LetF be a
vector field defined on D. Then

(18.79) ]{ F-dX:j{ F.-Tds= // curl F-KdA.
oD oD D

This follows directly from (18.76), for if we writé = Pl + QJ in component form, we have-dX =
Pdx+Qdyand curlF-K = dQ/dx— dP/dy. In terms of fluid flows, this theorem state that the circlatio
of the fluid around the curv@ can be obtained by integrating the curl over the region bedryC. If
we think ofC as the boundary of a small disc around a point, this explamséfinition of curl: its value
is approximately the rate at which the fluid “curls” around ffoint.

Equally interesting is the rate at which fluid passes thrabglboundary, given by F-Nds Using
the expressioiNds= dyl — dxJ, andF = PI + QJ, we have

Proposition 18.8 (Gauss’ Divergence Theorem in the Plane). Let D be a regidh bdundaryD. Let
F be a vector field defined on D. Then

(18.80) ﬁDF-Nds: éD(7de+ Pdy) = //D (% + %3) dA= //Ddiv FdA.

This is interpreted as saying (in terms of fluid flow) the ratelmange of the amount of fluid inside the
regionD is equal to the flux of the fluid through the boundary.

Example 18.15 Let D be the disc of radius 1 centered at the point (0,1), an€Ibe its boundary
oriented counter clockwise. Suppoge= —yl is the velocity field of a flow in the upper half plane.
Calculate the circulation alorg and the flux througk.

First of all, we see that the the fluid is moving from right tét llong the linesy = const at speed
proportional to the distance to thxeaxis. Since fluid enters the disc from the right along anyhdire
at the same speed as it leaves the disc, we should expect the e zero. On the other hand, the
fluid is moving to the left faster on the upper part of the @r@hich is oriented to the left) than on the
lower part of the circle, so we should expect a positive d¢atton. According to Stokes’ theorem, the
circulation is

(18.81) 7§v Tds= // curlV-KdA.

JC J JD
Now, since curlV = K, this becomes simply
(18.82) fv Tds= // dA= 11,

c D
the area oD. According to the Divergence theorem, the flux ouDos
(18.83) fF-Nds: // divFdA=0,
c D

since the divergence &f is zero.
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As a verification of these theorems, we also compute thediregrals. For that we use this parametriza-
tion of C: X(t) = costl + (1+sint)J. ThendX = (—sintl + costJ)dt, and sinc&/ = —yl = —(1+sint)I
alongC, we have

2n 2 q
(18.84) fv-dx :/ (1+sint)(sint)dt:/ Sdt=rr
C 0 o 2
Now, to calculate the flux througb out of D, we haveNds= cost| + sintJ, and
2m
(18.85) 7§v ‘Nds= / —(1+sint)(cogt)dt = 0.
JC J0O

A simple application of Green’s theorem leads to a way ofudating area by line integrals.

Proposition 18.9 Let D be a region in the plane. Then the area of D is given by dtlyase line integrals
over its boundarygD:

(18.86) AreaD) — 74 xdy = —74 ydx= 174 —ydx+ xdy,
Jop Jop 2 Jop

for in each of these cases the fod®/dy — dP/ox = 1.
Example 18.16 Find the area of the regidRbounded by the curves= x? andy = 1.

We do this using Green’s theorem. The boundarR &f in two piecesC, :y = 1, with x going from
1to-1,andC,:y=x3,—1<x< 1. Sincedy= 0 onC,, we have

1
(18.87) Area:f xdy:/ xdy:/ X(2xdx) = :
JorR Jc, J-1 3

Example 18.19 We can verify that the area of an ellipse with major radiasmd minor radiu® is rmab
by Green’s theorem and this parametrization of the bounitiiecellipse:

(18.88) Xx=acos, y=bhsint, 0<t<2rm.
Then
1 1 p2m
(18.89) Area= 57{ —ydx+ xdy= §/ (—bsint)(—asint)dt+ (acog)(bcost)dt =
JOE J0O
1 p2m
(18.90) . / ab(sirt + codt)dt = mab.
JO

§18.5. Stokes’ and Gauss’ theorems in three dimensions

When we move from two to three variables, the two interpi@tatof Green’s theorem become two quite
different theorems. Stokes’ theorem relates integratiora gurface with an integral on its bounding
curve, and Gauss’ theorem relates integration over a regitbran integral on its bounding surface. We
shall state these theorems and illustrate their use threxammples, but shall not attempt to give proofs.
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§18.5.1 Surface Integrals

LetF be the velocity field of a flow in three dimensions, &l surface in the region of flow. We want to
calculate the rate at which fluid is passing through the serfahis is called th8ux of the flow through

S. Take a small rectangle of ar@& on the surface. In an in interval of time of length the fluid which
passes through the sruface is very nearly that inside thel@lgsiped whose base is the rectangle and
whose side is the vectdfAt. This volume isAV = (F - N)ASAt, so

(18.91) % = (F-N)AS.

Now, if we sum these terms over a grid of rectangleScemnd take the limit as the grid becomes fine we
get

Proposition 18.10 LetF be a vector field defined in a neighborhood of the surface So&ha normal
N to S. Thdlux of F over S in the directioi is

(18.92) Fqu://S(F-N)dS.

In order to calculate this, we assume that the surfasegiven parametrically bX = X(u,v), for
(u,v) in aregionRin u,v space. We have

Xu X Xy

18.93 N= 28X2  gs— Xy x Xy/dudv,

( ) ‘XUXXV| | u V‘

SO

(18.94) Fqu://(F-N)dS: //F-(Xuxxv)dudv.
S R

Example 18.17 LetF = 22| + J+x?K, andH the upper hemispher& + y* 4+ 7> = 1, z> 0. Find the
flux of F throughH from the inside of the sphere.
We parametrizél using spherical coordinates:

(18.95) H: X(@,0)=cosBsingl +sinBsingJ + cospK
for0< @ < m/2, 0< 6 < 2. Differentiating:

(18.96) Xop= cosB cosgl + sinB cospd — singK ,

(18.97) Xy = —sin@singl +cosBsingJ .

Check that the direction through from the interior of the sphere is that Kfq, x Xg. Thus we must
compute

cog @ 1 co€Osir’ ¢
(18.98) F-(X,xXg) =det| cosfcosp sinfcosp —sing
—sin@sing cosBsing 0
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(18.99) = cos @sir? cosh — sir’siné + sin® pcospcos 6 .

To calculate the integral (18.94), we first integrate withprect to8. The first two terms integrate to zero,
and sincef{"cos 6d6 = 1, we obtain

/2 T
(18.100) //(F-N)dS: n/ sin® pcospde = 7
s 0

§18.5.2 Stokes’ theorem

Now, suppose thak is a vector field defined on a surfagen three dimensions, anflis bounded by
a curve, denotedS. As in two dimensions, Stokes’ theorem relates the cirmiadboutdS with the

integral of curlF on S. For this to work we have to be sure that the direction of iraégn ondSis

consistent with the choice of normal %

Proposition 18.11 (Stokes’ Theorem). Suppose tkat a vector field defined on the surface S with the
boundarydS. Choose the direction of the tang@nto S and the normaN to the surface so that the
vectorN x T points into the surface S. Then

(18.101) / F-dX://CurIF-NdS.
S S

Example 18.18 Let Sbe the part of the plane= 2x+ 3y + z= 12 which lies in the first quadrant. Let
F =yl +2J+ xK. Verify Stokes’ theorem.

We want to calculate both sides of (18.101) and see that tpeeaFirst, the surface integral. We write
the surface parametrically as

(18.102) X(%y) =X +yJ+ (12— 2x—3y)K ,

for (x,y) in the triangleT with vertices (0,0),(6,0), (0,4). We'll need the partiatigatives

(18.103) Xx=1-2K, Xy=J-3K.
Now, we calculate cuff = —| —J —K, so
-1 -1 -1
(18.104) F-(Xuyx Xy) =det 1 0 -2 | =-6.
0 1 -3

Then, using (18.94)

(18.105) //CurIF-NdS: 76//dxdy: 72,
J JS J JT

since the area of is 12.
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Now, to calculate the boundary integral, we represent thentary as composed of the three line
segments

(18.106) C,:0<x<6, z=12-2x y=0,; dz=-2dx,dy=0,
12-3 3

(18.107) Ci0<y<4, x== Y =0 dx=—>dy, dz=0,

(18.108) C,:0<z<12 y= 123_2, x=0; dy:—%z, dx=0

Then, recalling thalF = yl + zJ + xK:

6

(18.109) /ClF-dX:/O x(—2dx) = —36,
43

(18.110) /CzF-dX_/O Y(-5dy) =12,
12 dz

(18.111) /CsF-dx/O 2(-5) = -24.

The sum of these is -72, so Stokes’ theorem is verified.

Example 18.19 Calculate/ —ydx+ xdy+ dzwhereC is the curve of intersection of the hyperboloid

JC
z=x%—y? and the cylinder? + y? = 1.
Let F = —yl + xJ + K. Then this can be viewed as the integfalX over the boundary of the piece
H of the hyperboloid lying over the disc of radius 1 in thg-plane. We calculate that cufl= 2K, so
the integral is, by Stokes’ Theorem

(18.112) / /H 2K - NdS.

Now, we can parametrizd by X(x,y) = xI +yJ+ (X2 — y?)K, with Xx =1 + 2xK, Xy = J — 2yK, so
that

(18.113) // 2K -NdS= // 2K - (1 + 2xK) x J — 2yK )dxdy— // 2dxdy— 27,
H X2+y?<1 X2+y?
since the area of the disc of radius 1ris

If we parametrize the curve BY(t) = costl 4 sintJ+ (cogt —sir’t)K, 0 <t < 2rrand calculate directly,
we again get 2.
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§18.5.3 Gauss’ theorem

Now, suppose thaR is a region in three dimensions, and the boundarg & a surface which we shall
denote ag'R. If we have a fluid in flow, just as in 2 dimensions we expect Gatleorem to hold: the
calculation of the rate of expansion of the fluidRnwhich is the integral of the divergence, is the same
as the flux througldR.

Proposition 18.12 Gauss’ theorem. Lef be a vector field defined on the region R. We denote the
boundary of R agR, and take the normal to be the exterior norNalThen

(18.114) '/'/aRF-NdS: '/'/'/Rdiv FdV .

Example 18.20 Let Rbe the region inside the comé= x? + y?, bounded by the planes= 0 andz = 2.
LetF = xl +yJ + zK. Verify the divergence theorem in this context.
We easily calculate dif = 3, so the right hand side of (18.94) is 3 times the volume ottree, so

(18.115) ///Rdiv FdV = 3(VolumgR)) = 3%4‘ — 8,

sincer =2, h=2.

To calculate the boundary integral, we turn to cylindricabinates, because of the symmetry
around thez-axis. The boundary has two pieces: the dixc z= 1,r < 1, and the surface of the
coneS: z=r < 1. We can see that the integral o\&is zero, since the vector fiel is tangent to the
cone (itis the tangent vector to the line- r, 8 = 6, which lies on the cone). Thus we need only calculate
the boundary integral ovéd. SinceD lies on the plane = 2, its normal iK. Thus sincd=-K =z=2
on the planeg= 2,

2m 2 r2 2
(18.116) // F-NdS:/ /2rdrd6:4n— — 8.
J Jor Jo Jo 210

One of the main points of the divergence theorem is that inéat use of the geometry involved
simplifies what could otherwise be a complicated calcutatieor example, if we did not observe that
is orthogonal to the normal to the cone, we'd have to do theutation. Just to illustrate the methods we
do it. First of all, we parametrize the cone using cylindrazzordinates:

(18.117) S: X=rcosOl +rsinBJ+rK ,0<0<2m,r<2
and, differentiating, we find
(18.118) Xy =co0s8l +sin8J+ K, Xg,=—rsinbl +rcoshJ.

On the surface, in these coordinakes- r cosfl +rsin8J 4 rK. Now we calculate déF, X,,X,) =0,
or we observe that sinde= rX,, the determinant must be zero.

Example 18.21 Return to example 20, and note that the divergence of thaédnvfeld is 0. By applying
the divergence theorem, whekReis the region bounded bl and thex,y-plane we can replace the
integration of example 20 by the easier integration overpla@mar part of the boundary ¢i. That
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surface is the disD : x?+y? < 1,z= 0. The normal (pointing outside of the regiB®)is —K and on
this disc,F = J + x?K. Thus

21 1 T
(18.119) //F-NdS:—//xsz:—/ / r2coOrdrdg — —*
J Jo J Jo Jo Jo 4

Now, for this example, the divergence theorem tells us that

(18.120) // F-NdS+// F-NdS=0,
H D
which gives the resulf [, F-NdS= /4.



