
CHAPTER 18

Vector Calculus

In this chapter we develop the fundamental theorem of the Calculus in two and three dimensions. This
begins with a slight reinterpretation of that theorem. Consider the endpointsa;b of the interval[a;b]
from a to b as the boundary of that interval. Then the fundamental theorem, in this form:

(18.1) f (b)� f (a) = Z b

a

d f
dx

(x)dx ;
relates the values of a function at the boundary with the values of its derivative in the interior. Stated
this way, the fundamental theorems of the Vector Calculus (Green’s, Stokes’ and Gauss’ theorems) are
higher dimensional versions of the same idea. However, in higher dimensions, things are far more
complex: regions in the plane have curves as boundaries, andfor regions in space, the boundary is a
surface, and surfaces in space have curves as boundaries. This requires a reinterpretation of the term
f (b)� f (a), as asignedsum of the values off on the boundary, the sign being determined by the side
on which the interval lies (it is to the right ofa and to the left ofb). This leads to the understanding that
in higher dimensions both sides will be integrals; for example, for a regionR in the plane withC as its
boundary, the termf (b)� f (a) becomes an integral over the curveC. And in three dimensions, we will
have two versions of the fundamental theorem, one relating integrals over a region with integrals over
the bounding surface, and another relating integrals over surfaces with integrals over the bounding curve
(and with the relation involving some form of differentiation).

We will not give derivations, or even intuitive arguments for the proofs of these theorems. First
of all, the idea of the proof is to reduce the theorem to the one-variable fundamental theorem; in this
process, the notational complexity is constantly threatening to get out of hand. The proofs then become
masterful displays of technical control, and provide little insight. The insight comes from the physical
interpretation of these theorems (indeed, so also did the first proofs), particularly in terms of fluid flows.
For example, Gauss’ theorem simply says that, for a fluid in flow we can measure the rate of change of
the amount of fluid in a given region in two ways: directly overthe region, or instead, by measuring the
rate of passage through the boundary.
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Chapter 18 Vector Calculus 282x18.1. Vector Fields

A vector fieldis an association of a vector to each pointX of a regionR:

(18.2) F(x;y;z) = P(x;y;z)I +Q(x;y;z)J+R(x;y;z)K :
For example, the vector field

(18.3) X(x;y;z) = xI +yJ+zK

is the field of vectors pointing outward from the origin, whose length is equal to the distance from the
origin. The fieldU = (1=r)X (wherer(x;y;z) = (x2+y2+z2)1=2) is the unit vector field with the same
direction.

Example 18.1 (Gravitation). According to Newton’s Law of gravitation, two bodies attract each other
with a force proportional to the product of the masses, and inversely proportional to the square of the
distance between them. Suppose one body, of massM is situated at the origin. Then another body of
massm, situated at the pointX experiences the gravitational force due toM:

(18.4) F =�GMm
r2 U ;

whereG is Newton’s universal constant of gravitation, andU is the unit vector pointing the direction
of X. If we want to concentrate on the effect of the massM on bodies in its vicinity, we introduce the
gravitational field of M:

(18.5) G(X) =�GM
r2 U =�GM

r3 X :
SinceF = mA, a body of massm atX accelerates toward the origin with accelerationG(X).
Definition 18.1 Suppose the region R is filled with a fluid which is in motion. Wecan describe the
motion by following the individual particles. LetX(X0; t) be the position at time t of the particle which
was atX0 at time t= 0. Thevelocity field of the motion is the velocity of the particle at positionX at
time t, represented byV(X; t) .This is a time-dependent vector field in the region R. We say that the flow
is steadyif its velocity field is independent of time.

In studying a fluid in motion, we are not interested in the history of particular particles, but in the
fluid as a whole. Thus, it is the velocity field of the fluid that is the object of study, rather than the
equations of motion. It can be shown that the velocity field completely determines the motion.

Example 18.2 Suppose a fluid is flowing on the plane radially away from the origin. In this case the
origin is called asource; if the fluid were flowing toward the origin, we call it asink. The equation of
motion is given by

(18.6) X(X0; t) = f (t)X0 for some scalar functionf with f (0) = 1 :
Let’s look at the casef (t) = eat. We find the velocity field as follows. First, the velocity of the particle
originally atX0 is

(18.7)
∂
∂ t

X(X0; t) = d
dt

(eat)X0 = aeatX0 :
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But this isaX, so the velocity field isV(X) = aX, and the flow is steady. However, if, sayf (t) = 1+ t
so thatX(X0; t) = (1+ t)X0,we have

(18.8)
∂
∂ t

X(X0; t) = X0 = (1+ t)�1X ;
so the flow is time-dependent.

The terminology may seem confusing: in the first case, the particle’s speed is increasing exponen-
tially, while in the second case the particle’s speed is constant. But, if we look at a particular pointX in
space, then in the first case, the fluid is always moving with the same velocity through that point, while
in the second case, the fluid slows down at that point over time.

Example 18.3 Suppose a fluid is rotating on the plane about the origin in thecounterclockwise direction
at constant angular velocityω . From the description, this is a steady flow; let’s find its velocity field.
At a point X, particles move throughX along the circle of radiusjXj at angular velocityω .Thus the
velocity of the fluid atX is of magnitudeω jXj and in the direction tangent to to the circle throughX, so
V(X) = ωX?.

Definition 18.2 A differentiable function w= f (x;y;z) has associated to it itsgradient field

(18.9) ∇w= ∂ f
∂x

I + ∂ f
∂y

J+ ∂ f
∂z

K :
The surfaces f(x;y;z) =const. are orthogonal to the vector field (18.9), and are called theequipoten-
tials, and the function f , apotential for the field.

So, the flow associated to a gradient field is easily visualized as being in the direction perpendicular
to these equipotential surfaces. A natural question is: when is a vector fieldF the gradient of a function;
that is, when does a vector field have a potential function? Ifthe vector field with the components
F = PI +QJ+RK is a gradient, so looks like (18.9), then, because of the equality of mixed derivatives,
we must have

(18.10)
∂P
∂y

= ∂Q
∂x

; ∂P
∂z

= ∂R
∂x

; ∂Q
∂z

= ∂R
∂y

:
If these conditions are satisfied, then we can try to find the potential function by integrating one variable
at a time.

Example 18.4 Let F = (2xy+x)I +x2�yJ. Is F a gradient field? If so, find the potential function.
First, we check that the condition (18.10) is satisfied:

(18.11)
∂P
∂y

= ∂
∂y

(2xy+x) = 2x
∂Q
∂x

= ∂
∂y

(x2�y) = 2x :
So, we have a chance of finding a functionf such that∇ f = F. To find f we have to solve the equations

(18.12)
∂ f
∂x

= 2xy+x; ∂ f
∂y

= x2�y :
We can find a function satisfying the first equation by integrating with respect tox; so we try f (x;y) =
x2y�x2=2. Now we see if thisf satisfies the second equation:

(18.13)
∂ f
∂y

= x2 ;
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which unfortunately is notx2�y. However, since the derivative with respect tox of any function ofy is
zero, we could also have tried

(18.14) f (x;y) = x2y+x2=2+φ(y)
for some yet-to-be-determinedφ(y). Now, we have, instead of (18.13),

(18.15)
∂ f
∂y

= x2+φ 0(y) ;

setting that equal toQ gives the equationφ 0(y) = �y, so we can takeφ(y) = �y2=2. We conclude that
our solution is

(18.16) f (x;y) = x2y+ x2

2
� y2

2
+C ;

for any constantC. The reason that the terms involvingx disappear in equation (18.13) is precisely that
the condition∂P=∂y= ∂Q=∂x is satisfied; if it were not, this procedure would break down at this point.

Example 18.5 The procedure in three dimensions is the same, but longer. Suppose we are given the
vector fieldF = (y2z+1)I +(2xyz+z)J+(xy2+y+1)K , and we are told that it is the differential of a
function f . Find f .

Since we are told that there is a potential function, we need not verify conditions (18.10). We start
with

(18.17)
∂ f
∂x

= y2z+1 :
Integrating both sides with respect tox, (thinking ofy andzas constants), we obtain

(18.18) f (x;y;z) = xy2z+x+φ(y;z)
whereφ is an unknown function ofy andz alone. Now, differentiating this equation, since∂ f=∂y =
2xyz+z, we obtain

(18.19) 2xyz+z= 2xyz+ ∂φ
∂y

;
or

(18.20)
∂φ
∂y

= z :
Now we do the same, integrating both sides with respect toy:

(18.21) φ(y;z) = yz+ψ(z) ;
for some unknown functionψ(z). Thus (18.18) now becomes

(18.22) f (x;y;z) = xy2z+x+yz+ψ(y;z) :
Differentiating now with respect toz:

(18.23) xy2+y+1= xy2+y+ ∂ψ
∂z
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so∂ψ=∂z= 1, and thusψ(z) = z+C. Putting this back in (18.22), we have found

(18.24) f (x;y;z) = xy2z+x+yz+z+C :
The reason that the variablex disappeared from (18.19) andx andy from (18.23) is precisely because of
the conditions (18.10); if they did not hold there would be nosuch functionf , and we could not have
solved equations (18.20) and (18.23).

Example 18.6 We point out at this time that these methods make sense only inthe domain in which the
solution functionf is well-defined, even if the given vector field is well-definedin a bigger region. Take,
for example, the polar function

(18.25) θ = arctan
y
x

:
Sinceθ is periodic, it is only well-defined (single-valued) in the plane outside of a ray from the origin,
say the rayx� 0. However,

(18.26) ∇θ =� y
x2+y2 I + x

x2+y2J ;
and this is well-defined in the whole plane, except for the origin. Thus, if we apply the above procedure
to the vector field (18.26), we get (18.25), and we have to picka particular branch of the arc tangent.

Two important concepts associated to a vector fields are itsdivergenceandcurl .

Definition 18.3 Let F be a vector field given by

(18.27) F = PI +QJ+RK ;
where P;Q;R are scalar functions. Thedivergenceof F is

(18.28) divF = ∂P
∂x

+ ∂Q
∂y

+ ∂R
∂z

;
and thecurl of F is

(18.29) curlF =�∂R
∂y

� ∂Q
∂z

�
I +�∂P

∂z
� ∂R

∂x

�
J+�∂Q

∂x
� ∂P

∂y

�
K :

These are best interpreted in terms of the velocity field of a fluid flow. The divergence is the rate of
expansion of the fluid at a point. The curl is a vector describing the rotation of the fluid near the point
(the direction of the curl is the axis of rotation and the magnitude is a measure of the rate of rotation).
The flow is calledincompressibleif its divergence is zero, andirrotational if its curl is zero. We note
that the condition (18.10) for a vector field to be a gradient can be expressed as follows:

Proposition 18.1 Given a differentiable function f , its gradient field is irrotational; that is:curl ∇ f = 0.
In order for a vector field to be a gradient field, it must be irrotational.

There is a notation which is very convenient in representingthe gradient, div and curl. We consider
∇ as an operator on functions:

(18.30) ∇ = ∂
∂x

I + ∂
∂y

J+ ∂
∂z

K :
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Then, we have

(18.31) divF = ∇ �F ; curl F = ∇�F :
Two useful formulas are:

∇ � (∇�F) = 0, or div(curl F) = 0.
∇�∇ f = 0, or curl(∇ f ) = 0.
If we are discussing vector fields in two dimensions, we have,for

(18.32) F = P(x;y)I +Q(x;y)J ;
(18.33) divF = ∂P

∂x
+ ∂Q

∂y
;

(18.34) curlF =�∂Q
∂x

� ∂P
∂y

�
K :

Example 18.7 Find the divergence and curl of the velocity fields a) associated to a source (see example
18.2), and for rotation about a point (see example 18.3).

In example 2 we hadV = aX = a(xI +yJ). Then

(18.35) divV = 2a ; curl V = 0 :
Note that in this caseV = ∇r2=2, so the field has the circles centered at the origin as equipotentials. In
example 3,V = ωX? = ω(�yI +xJ)), so that

(18.36) divV = 0 ; curl V = 2ωK ;
and the vector field is not a gradient.x18.2. Line Integrals and Work

SupposeF is a vector field defined on a regionR, andC is a curve lying inR. We define the line integral
of F alongC, by analogy with other integrals as follows.

Definition 18.4 LetX i ;0� i � n be a sequence of points on the curve, withX0;Xn the endpoints. Form
the sum

(18.37)
n

∑
i=1

F(X i) � (X i �X i�1) :
If the limit of this sum exists (as the maximum distance between successive points approaches zero), it is
the line integral of F along C:

(18.38)
Z

C
F �dX = lim

maxj∆Xi j!0

n

∑
i=1

F(X i) �∆X i ;
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where∆X i represents the vector increment between successive points.

If we have a parametric representation of the curve:X(t) = x(t)I + y(t)J+ z(t)K , for a� t � b, where
the functionsx(t);y(t);z(t) are differentiable, then we can compute the line integral byintegration with
respect tot. For, as successive points become arbitrarily close, we canreplace each∆X i by its linear
approximation, and in the limit, we obtain

(18.39) lim
n

∑
i=1

F(X i) �∆X = lim
∆ti!0

n

∑
i=1

F(X(ti)) � dX
dt

(ti)∆ti = Z b

a
F � dX

dt
dt :

Proposition 18.2 If C is a curve parametrized byX = X(t) for a� t � b, andF is a vector field defined
on C, then

(18.40)
Z

C
F �dX = Z b

a
F(X(t)) � dX

dt
dt :

Example 18.8 Find
R
C F � dX whereC is the curveX(t) = t2I + (t + 1)J; 0 � t � 3, andF(x;y) =

x2I +xyJ.
Here

(18.41)
dX
dt

= 2tI +J

and, alongC,

(18.42) F(x;y) = x2I +xyJ = (t2)2I + t2(t +1)J
so

(18.43)
Z

C
F �dX = Z 3

0
F � dX

dt
dt = Z 3

0
((t2)2(2t)+ t2(t +1))dt

(18.44) = Z 3

0

�
2t5+ t3+ t

�
dt =� t6

3
+ t4

4
+ t2

2

�3

0
= 9

�
27+ 9

4
+ 1

2

�= 267:75 :
To summarize, line integrals are computed this way. LetF = PI +QJ+RK be a vector field in three

dimensions, and suppose thatC is given parametrically by the equationX(t) = x(t)I +y(t)J+z(t)K , for
a� t � b, where the functionsx(t);y(t);z(t) are differentiable. Then

(18.45)
Z

C
F �dX = Z b

a
F � dX

dt
dt = Z b

a

�
P

dx
dt

+Q
dy
dt

+R
dz
dt

�
dt :

If the curve is given as the graphy= y(x); z= z(x), then we still use the same formula, thinking of the
parameter asx and the trajectory given byX(x) = xI + y(x)J+ z(x)K . Of course, as we have defined
the line integral, it is independent of the parametrizationof the curve, and depends only on the direction
along the curve in which we integrate.
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The line integral (18.45) may appear in several different forms. First, if we want to interpret the line
integral as the integral of a differential (as in all cases ofintegration), we write (18.45) as

(18.46)
Z b

a
Pdx+Qdy+Rdz;

as the integral of the differentialPdx+Qdy+Rdz. To calculate the integral, we choose a convenient
parametrization and calculate as in (18.45). it is also useful to refer to the parametrization by arc length.
SincedX=ds= T whereT is the unit tangent to the curve. we can writedX = Tdsand the line integral
is

(18.47)
Z

C
F �dX = Z

C
F �Tds:

This expresses the line integral as the integral with respect to arc length of the component of the field in
the direction of the curve. Finally we note that the integralis additive over curves.

Proposition 18.3 If the curve C can be written as a finite succession of curves C1; : : : ;Cn such that the
initial point of each Ci is the same as the terminal point of its predecessor, then, for any vector fiedF
defined on C:

(18.48)
Z

C
F �dX = Z

C1

F �dX + � � �+Z
Cn

F �dX :
Example 18.9 Find

R
C F �dX, whereF(x;y) = xyI +y2J, andC is the triangle from (0,0) to (2,0) to (3,0)

and back to (0,0).
C consists of three line segments:

(18.49) C1 : 0� x� 2; y= 0 C2 : 0� y� 3; x= 2� 2
3

y C3 : 3� y� 0; x= 0 :
We calculate the three integrals separately, and then, by (18.48), take their sum. OnC1, we takex as the
parameter, anddy= 0.

(18.50)
Z

C1

F �dX = Z
C1

xydx+y2dy= Z 2

0
0dx= 0 :

OnC2 we takey as the parameter, and we havedx=�(2=3)dy.

(18.51)
Z

C2

F �dX = Z
C2

xydx+y2dy= Z 3

0
(2� 2

3
y)(�2

3
)dy+y2dy

(18.52) = Z 3

0

��4
3
+ 4

3
y+y2

�
dy=��4

3
y+ 2

3
y2+ y3

3

����3
0
= 11 :

Finally, sincex= 0 onC3:

(18.53)
Z

C3

F �dX = Z
C3

y2dy= Z 0

3
y2dy=�9 ;
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and

(18.54)
Z

C
F �dX = Z

C1

F �dX +Z
C2

F �dX +Z
C3

F �dX = 0+11�9= 2 :
Example 18.10 Find

R
C F � dX, whereF(x;y) = yI + xJ, andC is the curve given parametrically as

x= 1+3cost; y= 3sin(2t).
We first calculate the differentialsdx=�3sintdt; dy= 6cos(2t)dt, so

(18.55) F �dX = 3sin(2t)(�3sintdt)+(1+3cost)(6cos(2t)dt)
(18.56) = (�9sin(2t)sint +6cos(2t)+18cos(2t)sin(t))dt :
Performing the integration, we get

R
C F �dX =�:00111.

If F is a force field in the plane in space, then the work done in moving from one pointX0 to another
point X1 is W = F � (X1�X0), since the action of the force is only in the direction fromX0 to X1.
Now, if X(t) represents a curveC then the contribution to work along a small piece of the curvedX is
dW= F �dX. We find thetotal work done by the force along the trajectory as the integral:

(18.57) Work= Z
C

F �dX :
Example 18.11. Let F =�zI +xJ+K be a force field in space. How much work is done by this force
in moving an object from the origin to the point (1,1,1) alongthe pathC : y= x2; z= x3?
First we expressC parametrically byX = xI +x2J+x3K ; 0� x� 1, so thatdX=dx= I +2xJ+3x2K .
The force alongC is, in terms of the parameterx: F =�x3I +xJ+K . Then, the work done by this force
is

(18.58)
Z

C
F �dX = Z 1

0
(�x3+2x(x)+3x2)dx= Z 1

0
(5x2�x3)dx= 17

12
:

Recall that the kinetic energy of a particle of mass m in motion is(1=2)mjVj2, whereV is its velocity.
If we differentiate this with respect tot, and use Newton’s Second lawF = mA, we have:

(18.59)
d
dt

�
1
2

mV �V�= mA �V = F � dX
dt

:
This expresses the law of conservation of energy for a particle in motion in the presence of a force field:
the change in the kinetic energy along the trajectory is equal to the work done to the particle. For suppose
that the particle travels along the pathC from time t = a to t = b. We integrate (18.40) along the path,
getting

(18.60)
m
2
jV(b)j2� m

2
jV(a)j2 = Z

C
F �dX :

Example 18.12. A particle of mass 2 g. moves around the circle of radius 1 on the plane in the presence
of a centripetal force field (keeping it on the circle) and of the force fieldF(x;y) = (1+y)I +y2J (where
the magnitude is in newtons). Suppose that at timet = 0 the particle is at the point (1,0) travelling at a
speed of 3 cm/sec. What is its speed the next time it passes through the point (1,0)?
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We parametrize the path using polar coordinatesC : x = cosθ ; y = sinθ for 0� θ � 2π . In terms of
this parametrization,

(18.61) F = (1+sinθ )I +(sinθ )J ; dX
dθ

=�sinθ I +cosθJ :
Since the centripetal force is orthogonal todX=dθ , the work done in this motion is

(18.62)
Z

C
F �dX = Z 2π

0
(�sinθ +sin2 θ +sinθ cosθ )dθ = π :

Sincem= 2, lettingb be the time the particle next passes through (1,0), (18.45) gives us

(18.63)
1
2
jV(b)j2 = π + 1

2
(3)2 = 7:6515;

so jV(b)j= 3:909 cm=sec.x18.3. Independence of Path

In this and the next section, we shall restrict attention to two dimensions. First, let us summarize the
preceding sections. A vector field defined in a regionD is of the formF = PI +QJ whereP andQ are
scalar functions onR. If C is a curve inRparametrized byX(t) = x(t)I +y(t)J; a� t � b, then

(18.64)
Z

C
F �X = Z

F �Tds= Z
C

Pdx+Qdy= Z b

a

�
P

dx
dt

+Q
dy
dt

�
dt :

This is the integral with respect to arc length of the component of F in the direction of the curve. IfF is
a force field, this is the work done by the force along the curveC. If F is interpreted as the velocity field
of a flow, this is the total flow of fluid in the direction of the curve.

We might also be interested in the flow of the fluid across the curve; this is the integral of the com-
ponent ofF orthogonal to the curve; that is,

R
F �Nds whereN is the normal to the curve. Since there

are two unit normals to the curve, we must specify the direction in which the curve is crossed. For this
discussion we shall take the normal pointing to the right of the direction in which the curve is traversed.
SinceTds= dxI +dyJ, we are takingNds= dyI �dxJ, so thatF �Nds= det(F;dX).
Definition 18.5 Let F = PI +QJ be a vector field defined in a region R, and C a curve in R. The
circulation of F along C is

(18.65)
Z

F �Tds= Z
C

F �dX = Z
C

Pdx+Qdy:
Theflux of F across C from left to right is

(18.66)
Z

F �Nds= Z
C

det(F;dX) = Z
C
�Qdx+Pdy:

Example 18.11 Calculate the circulation and flux ofF = x2I �xyJ across the line from (0,0) to (3,4).
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The line is easily parametrized byx= 3t; y= 4t; 0� t � 1, so thatdx= 3dt; dy= 4dt. Then

(18.67) Circulation= Z
C

x2dx�xydy= Z 1

0
(3t)2(3dt)� (3t)(4t)(4dt) = Z 1

0
(27�48)t2dt =�7 :

(18.68) Flux= Z
C

xydx+x2dy= Z 1

0
(3t)(4t)(3dt)� (3t)2(4dt) = Z 1

0
(36+36)t2dt = 24 :

Proposition 18.4 If the vector fieldF is the gradient of a function in R, then, for any path C,

(18.69)
Z

C
F �dX = f (X1)� f (X0)

whereX0 is the initial point of the path, andX1 is its endpoint.

To see this, letC have the parametrizationX(t) = x(t)I +y(t)J for a� t � b, so thatX0 = X(a) and
X1 = X(b). We have

(18.70) F = ∂ f
∂x

I + ∂ f
∂y

J

so that

(18.71)
Z

C
F �dX = Z b

a

�
∂ f
∂x

dx
dt

+ ∂ f
∂y

dy
dt

�
dt = Z b

a

d
dt

f (X(t))dt = f (X(b))� f (X (a)) ;
by the fundamental theorem of the Calculus.

Definition 18.6 A region D is calledconnectedif, for any two points P and Q in D, there is a curve C
with endpoints P and Q. A differential Pdx+Qdy+Rdz is said to beindependent of pathin D if the
integral

R
C Pdx+Qdy+Rdz is the same for all curves C with the same endpoints. A differential is said to

beexactif it is the differential of a function; that is, there is a function f such that d f=Pdx+Qdy+Rdz.
A vector fieldF is calledconservativeif

R
C F �dX is independent of path.

Proposition 18.5 A differential form Pdx+Qdy+Rdz defined on a connected region D is independent
of path there if and only if it is exact. Equivalently, given avector fieldF, the line integral

R
C F �dX is

independent of path if and only ifF = ∇ f for some function f (called its potential).

T above proposition tells us that gradient fields are independent of path. Now, we must show that if
the differential formPdx+Qdy is independent of path inD, then it is a gradient. Fix a point(x0;y0) in
D, and define the functionf by f (x;y) = R

C Pdx+QdywhereC is any path joining(x0;y0) to (x;y). To
show that∂ f=∂x= P, we take a point(x+h;y) near(x;y), and consider the pathC0 which isC followed
by the line segmentL from (x;y) to (x+h;y) (see the figure). Then

(18.72) f (x+h;y) = Z
C0 Pdx+Qdy= Z

C
Pdx+Qdy+Z

L
Pdx+Qdy= f (x;y)+Z

L
Pdx+Qdy:

Now, we can parametrizeL by (x(t);y(t)) = (x+ t;y); 0� t � h. Sincedy= 0 alongL, we have

(18.73)
f (x+h;y)� f (x;y)

h
= 1

h

Z h

0
P(x+ t;y)dx ;
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which converges toP(x;y). Similarly,∂ f=∂y= Q.

Definition 18.7 A curve C is said to beclosedif its endpoints are the same (under any parametrization).
The integral over a closed curve is denoted

H
C.

Proposition 18.5 can be restated this way: we haveF = ∇ f if and only if the line integral
H
C F �dX

over every closed curve is zero.

Example 18.12 Let F =�yI +xJ andC be the boundary of the ellipsex= 2cost; y= sint; 0� t � 2π .
Then

(18.74)
I

C
F �dX = I

C
�ydx+xdy= Z 2π

0
�sint(�2sint)dt+2cost costdt =

(18.75) 2
Z 2π

0
(sin2 t +cos2 t)dt = 4π :

x18.4. Green’s Theorem in the Plane

Suppose thatD is a region in the plane whose boundary is a curve, which we will always consider to be
directed so thatD always lies to the left of its boundary. We use the notation∂D to represent the boundary
of D so directed. To put it another way: forT andN the unit tangent and normal toC as defined in the
preceding section,N is to the right ofT, so points out ofD. For this reasonN is called the exterior
normal.The boundary of a domain is a closed curve (or severalclosed curves). From the discussion
in the preceding section, we know that ifF is a gradient field defined onD, then

H
∂D F � dX = 0 and

curl F = 0. The connection between these two statements is much deeper and is embodied in Green’s
theorem which relates the line integral on∂D with the double integral of curlF on the domainD. First
we state the theorem in differential form.

Proposition 18.6 (Green’s Theorem) Let D be a region, whose boundary∂D is oriented so that D lies
to the left of∂D. Suppose that Pdx+Qdy is a differential defined on the region D. Then

(18.76)
I

∂D
Pdx+Qdy= Z Z

D

�
∂Q
∂x

� ∂P
∂y

�
dA :

Example 18.13 Let’s redo example 14 using Green’s theorem, whereE represents the region bounded
by the ellipse:

(18.77)
I

C
F �dX = I

C
�ydx+xdy= Z Z

E
(1+1)dxdy= 4π ;

since the area ofE is 2π .

Example 18.14 Given the differentialx2dx�xdy, andD be the rectangle 1� x� 3; 1� y� 4, we have

(18.78)
I

∂D
x2dx�xdy= Z Z

D
(�1+2x)dxdy= Z 3

1

Z 4

1
(�1+2x)dydx= 18 :
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We now restate Green’s theorem in two ways in vector form.

Proposition 18.7 (Stokes’ Theorem in the Plane). Let D be a region with boundary ∂D. Let F be a
vector field defined on D. Then

(18.79)
I

∂D
F �dX = I

∂D
F �Tds= Z Z

D
curl F �KdA :

This follows directly from (18.76), for if we writeF = PI +QJ in component form, we haveF �dX =
Pdx+Qdyand curlF �K = ∂Q=∂x�∂P=∂y. In terms of fluid flows, this theorem state that the circlation
of the fluid around the curveC can be obtained by integrating the curl over the region bounded byC. If
we think ofC as the boundary of a small disc around a point, this explains the definition of curl: its value
is approximately the rate at which the fluid “curls” around the point.

Equally interesting is the rate at which fluid passes throughthe boundary, given by
R
C F �Nds. Using

the expressionNds= dyI �dxJ, andF = PI +QJ, we have

Proposition 18.8 (Gauss’ Divergence Theorem in the Plane). Let D be a region with boundary∂D. Let
F be a vector field defined on D. Then

(18.80)
I

∂D
F �Nds= I

∂D
(�Qdx+Pdy) = Z Z

D

�
∂P
∂x

+ ∂Q
∂y

�
dA= Z Z

D
div FdA :

This is interpreted as saying (in terms of fluid flow) the rate of change of the amount of fluid inside the
regionD is equal to the flux of the fluid through the boundary.

Example 18.15 Let D be the disc of radius 1 centered at the point (0,1), and letC be its boundary
oriented counter clockwise. SupposeV = �yI is the velocity field of a flow in the upper half plane.
Calculate the circulation alongC and the flux throughC.

First of all, we see that the the fluid is moving from right to left along the linesy = const at speed
proportional to the distance to thex-axis. Since fluid enters the disc from the right along any such line
at the same speed as it leaves the disc, we should expect the flux to be zero. On the other hand, the
fluid is moving to the left faster on the upper part of the circle (which is oriented to the left) than on the
lower part of the circle, so we should expect a positive circulation. According to Stokes’ theorem, the
circulation is

(18.81)
I

C
V �Tds= Z Z

D
curl V �KdA :

Now, since curlV = K , this becomes simply

(18.82)
I

C
V �Tds= Z Z

D
dA= π ;

the area ofD. According to the Divergence theorem, the flux out ofD is

(18.83)
I

C
F �Nds= Z Z

D
div FdA= 0 ;

since the divergence ofV is zero.
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As a verification of these theorems, we also compute the line integrals. For that we use this parametriza-
tion ofC: X(t) = costI +(1+sint)J. ThendX = (�sintI +costJ)dt, and sinceV =�yI =�(1+sint)I
alongC, we have

(18.84)
I

C
V �dX = Z 2π

0
(1+sint)(sint)dt = Z 2π

0

1
2

dt = π

Now, to calculate the flux throughC out ofD, we haveNds= costI +sintJ, and

(18.85)
I

C
V �Nds= Z 2π

0
�(1+sint)(cost)dt = 0 :

A simple application of Green’s theorem leads to a way of calculating area by line integrals.

Proposition 18.9 Let D be a region in the plane. Then the area of D is given by any of these line integrals
over its boundary,∂D:

(18.86) Area(D) = I
∂D

xdy=�I
∂D

ydx= 1
2

I
∂D
�ydx+xdy;

for in each of these cases the form∂Q=∂y�∂P=∂x= 1.

Example 18.16 Find the area of the regionR bounded by the curvesy= x2 andy= 1.
We do this using Green’s theorem. The boundary ofR is in two pieces:C1 : y= 1, with x going from

1 to -1, andC2 : y= x2;�1� x� 1. Sincedy= 0 onC1, we have

(18.87) Area= I
∂R

xdy= Z
C2

xdy= Z 1�1
x(2xdx) = 4

3
:

Example 18.19. We can verify that the area of an ellipse with major radiusa and minor radiusb is πab
by Green’s theorem and this parametrization of the boundar of the ellipse:

(18.88) x= acost ; y= bsint ; 0� t � 2π :
Then

(18.89) Area= 1
2

I
∂E
�ydx+xdy= 1

2

Z 2π

0
(�bsint)(�asint)dt+(acost)(bcost)dt =

(18.90)
1
2

Z 2π

0
ab(sin2 t +cos2 t)dt = πab :

x18.5. Stokes’ and Gauss’ theorems in three dimensions

When we move from two to three variables, the two interpretations of Green’s theorem become two quite
different theorems. Stokes’ theorem relates integration on a surface with an integral on its bounding
curve, and Gauss’ theorem relates integration over a regionwith an integral on its bounding surface. We
shall state these theorems and illustrate their use throughexamples, but shall not attempt to give proofs.



x18.5 Stokes’ and Gauss’ theorems in three dimensions 295x18.5.1 Surface Integrals

Let F be the velocity field of a flow in three dimensions, andSa surface in the region of flow. We want to
calculate the rate at which fluid is passing through the surface - this is called theflux of the flow through
S. Take a small rectangle of area∆Son the surface. In an in interval of time of length∆t, the fluid which
passes through the sruface is very nearly that inside the parallelipiped whose base is the rectangle and
whose side is the vectorV∆t. This volume is∆V = (F �N)∆S∆t, so

(18.91)
∆V
∆t

= (F �N)∆S:
Now, if we sum these terms over a grid of rectangles onS, and take the limit as the grid becomes fine we
get

Proposition 18.10 Let F be a vector field defined in a neighborhood of the surface S. Choose a normal
N to S. Theflux of F over S in the directionN is

(18.92) Flux= Z Z
S
(F �N)dS:

In order to calculate this, we assume that the surfaceS is given parametrically byX = X(u;v), for(u;v) in a regionR in u;v space. We have

(18.93) N = Xu�XvjXu�Xvj ; dS= jXu�Xvjdudv;
so

(18.94) Flux= Z Z
S
(F �N)dS= Z Z

R
F � (Xu�Xv)dudv:

Example 18.17 Let F = z2I +J+x2K , andH the upper hemispherex2+y2+z2 = 1; z� 0. Find the
flux of F throughH from the inside of the sphere.

We parametrizeH using spherical coordinates:

(18.95) H : X(φ ;θ ) = cosθ sinφ I +sinθ sinφJ+cosφK

for 0� φ � π=2; 0� θ � 2π . Differentiating:

(18.96) Xφ = cosθ cosφ I +sinθ cosφJ�sinφK ;
(18.97) Xθ =�sinθ sinφ I +cosθ sinφJ :
Check that the direction throughH from the interior of the sphere is that ofXφ �Xθ . Thus we must
compute

(18.98) F � (Xφ �Xθ ) = det

0@ cos2 φ 1 cos2 θ sin2 φ
cosθ cosφ sinθ cosφ �sinφ�sinθ sinφ cosθ sinφ 0

1A
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(18.99) = cos2 φ sin2 φ cosθ �sin2sinθ +sin3 φ cosφ cos2 θ :
To calculate the integral (18.94), we first integrate with respect toθ . The first two terms integrate to zero,
and since

R 2π
0 cos2 θdθ = π , we obtain

(18.100)
Z Z

S
(F �N)dS= π

Z π=2

0
sin3 φ cosφdφ = π

4
:

x18.5.2 Stokes’ theorem

Now, suppose thatF is a vector field defined on a surfaceS in three dimensions, andS is bounded by
a curve, denoted∂S. As in two dimensions, Stokes’ theorem relates the circulation about∂S with the
integral of curlF on S. For this to work we have to be sure that the direction of integration on∂S is
consistent with the choice of normal toS.

Proposition 18.11 (Stokes’ Theorem). Suppose thatF is a vector field defined on the surface S with the
boundary∂S. Choose the direction of the tangentT to ∂S and the normalN to the surface so that the
vectorN�T points into the surface S. Then

(18.101)
Z

∂S
F �dX = Z Z

S
curl F �NdS:

Example 18.18 Let Sbe the part of the planez= 2x+3y+z= 12 which lies in the first quadrant. Let
F = yI +zJ+xK . Verify Stokes’ theorem.
We want to calculate both sides of (18.101) and see that they agree. First, the surface integral. We write
the surface parametrically as

(18.102) X(x;y) = xI +yJ+(12�2x�3y)K ;
for (x;y) in the triangleT with vertices (0,0),(6,0), (0,4). We’ll need the partial derivatives

(18.103) Xx = I �2K ; Xy = J�3K :
Now, we calculate curlF =�I �J�K , so

(18.104) F � (Xu�Xv) = det

0@ �1 �1 �1
1 0 �2
0 1 �3

1A=�6 :
Then, using (18.94)

(18.105)
Z Z

S
curl F �NdS=�6

Z Z
T

dxdy=�72 ;
since the area ofT is 12.
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Now, to calculate the boundary integral, we represent the boundary as composed of the three line
segments

(18.106) C1 : 0� x� 6; z= 12�2x y= 0 ; ; dz=�2dx ;dy= 0 ;
(18.107) C2 : 0� y� 4; x= 12�3y

2
; z= 0; dx=�3

2
dy; dz= 0 ;

(18.108) C3 : 0� z� 12; y= 12�z
3

; x= 0; dy=�dz
3

; dx= 0 :
Then, recalling thatF = yI +zJ+xK :

(18.109)
Z

C1

F �dX = Z 6

0
x(�2dx) =�36 ;

(18.110)
Z

C2

F �dX = Z 4

0
y(�3

2
dy) =�12 ;

(18.111)
Z

C3

F �dX = Z 12

0
z(�dz

3
) =�24 :

The sum of these is -72, so Stokes’ theorem is verified.

Example 18.19 Calculate
Z

C
�ydx+ xdy+dzwhereC is the curve of intersection of the hyperboloid

z= x2�y2 and the cylinderx2+y2 = 1.
Let F =�yI +xJ+K . Then this can be viewed as the integralF �dX over the boundary of the piece

H of the hyperboloid lying over the disc of radius 1 in thex;y-plane. We calculate that curlF = 2K , so
the integral is, by Stokes’ Theorem

(18.112)
Z Z

H
2K �NdS:

Now, we can parametrizeH by X(x;y) = xI + yJ+(x2� y2)K , with Xx = I +2xK ; Xy = J�2yK , so
that

(18.113)
Z Z

H
2K �NdS= Z Z

x2+y2�1
2K � (I +2xK )�J�2yK)dxdy= Z Z

x2+y2
2dxdy= 2π ;

since the area of the disc of radius 1 isπ .
If we parametrize the curve byX(t)= costI +sintJ+(cos2 t�sin2 t)K ; 0� t � 2π and calculate directly,
we again get 2π .
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Now, suppose thatR is a region in three dimensions, and the boundary ofR is a surface which we shall
denote as∂R. If we have a fluid in flow, just as in 2 dimensions we expect Gauss’ theorem to hold: the
calculation of the rate of expansion of the fluid inR, which is the integral of the divergence, is the same
as the flux through∂R.

Proposition 18.12 Gauss’ theorem. LetF be a vector field defined on the region R. We denote the
boundary of R as∂R, and take the normal to be the exterior normalN. Then

(18.114)
Z Z

∂R
F �NdS= Z Z Z

R
div FdV :

Example 18.20 Let Rbe the region inside the conez2 = x2+y2, bounded by the planesz= 0 andz= 2.
Let F = xI +yJ+zK . Verify the divergence theorem in this context.

We easily calculate divF = 3, so the right hand side of (18.94) is 3 times the volume of thecone, so

(18.115)
Z Z Z

R
div FdV = 3(Volume(R)) = 3

πr2h
3

= 8π ;
sincer = 2; h= 2.

To calculate the boundary integral, we turn to cylindrical coordinates, because of the symmetry
around thez-axis. The boundary has two pieces: the discD : z= 1; r � 1, and the surface of the
coneS: z= r � 1. We can see that the integral overS is zero, since the vector fieldF is tangent to the
cone (it is the tangent vector to the linez= r;θ = θ0 which lies on the cone). Thus we need only calculate
the boundary integral overD. SinceD lies on the planez= 2, its normal isK . Thus sinceF �K = z= 2
on the planez= 2,

(18.116)
Z Z

∂R
F �NdS= Z 2π

0

Z 2

0
2rdrdθ = 4π

r2

2

���2
0
= 8π :

One of the main points of the divergence theorem is that informed use of the geometry involved
simplifies what could otherwise be a complicated calculation. For example, if we did not observe thatF
is orthogonal to the normal to the cone, we’d have to do the calculation. Just to illustrate the methods we
do it. First of all, we parametrize the cone using cylindrical coordinates:

(18.117) S : X = r cosθ I + r sinθJ+ rK ;0� θ � 2π ; r � 2

and, differentiating, we find

(18.118) Xr = cosθ I +sinθJ+K ; Xθ =�r sinθ I + r cosθJ :
On the surface, in these coordinatesF = r cosθ I + r sinθJ+ rK . Now we calculate det(F;Xr ;Xθ ) = 0,
or we observe that sinceF = rXr , the determinant must be zero.

Example 18.21 Return to example 20, and note that the divergence of that vector field is 0. By applying
the divergence theorem, whereR is the region bounded byH and thex;y-plane we can replace the
integration of example 20 by the easier integration over theplanar part of the boundary ofH. That
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surface is the discD : x2+ y2 � 1;z= 0. The normal (pointing outside of the regionR) is �K and on
this disc,F = J+x2K . Thus

(18.119)
Z Z

D
F �NdS=�Z Z

D
x2dA=�Z 2π

0

Z 1

0
r2 cos2 θ rdrdθ =�π

4
:

Now, for this example, the divergence theorem tells us that

(18.120)
Z Z

H
F �NdS+Z Z

D
F �NdS= 0 ;

which gives the result
R R

H F �NdS= π=4.


