CHAPTER 16

Differentiable Functions of Several Variables

§16.1. The Differential and Partial Derivatives

Let w = f(x,y,2) be a function of the three variablesy,z. In this chapter we shall explore how to
evaluate the change im near a pointx,,Y,,%,), and make use of that evaluation. For functions of one
variable, this led to the derivativelw/dx s the rate of change af with respect tox. But in more than
one variable, the lack of a unique independent variable sitke more complicated. In particular, the
rates of change may differ, depending upon the directionhitivwe move. We start by using the one
variable theory to define changewwith respect to one variable at a time.

Definition 16.1 Suppose we are given a functior=af (x,y,z). Thepartial derivative of f with respect
to x is defined by differentiating f with respect to x, considgn and z as being held constant. That is,
at a point(x,, Yy, %), the value of the partial derivative with respect to x is

of _d _ i FO0 0. ¥0.%9) — F(%0. Y0, %)
(16.1) Ix X0 Y0 %) = g F (%Yo, %) = [im h :

Similarly, if we keepx andz constant, we define thegartial derivative of f with respect toy by

Jf d

and by keeping andy constant, we define thgartial derivative of f with respect toz by

of d

(16.3) 37~ az %Yo -

Example 16.1 Find the partial derivatives df(x,y) = x(1+ xy)2.
Thinking ofy as a constant, we have

(16.4) % = (14+Xy)? + X(2(1+xy)y) = (1+xy)(1+ 3xy) .

235



Chapter 16 Differentiable Functions of Several Variables 362

Now, we think ofx as constant and differentiate with respecy:to

of

(16.5) i

X(2(14 xy)x) = 2X3(1+xy) .

Example 16.2 The partial derivatives of (x,y,z) = xyzare

of _, Of L of_

(16.6) X yz, ay XZ, 7

zy.

Of course, the partial derivatives are themselves funstiand when it is possible to differentiate the
partial derivatives, we do so, obtaining higher order dgiwes. More precisely, the partial derivatives are
found by differentiating the formula foir with respect to the relevant variable, treating the otheate
as a constant. Apply this procedure to the functions so pbthtio get thesecond partial derivatives

0_21‘_001‘ 9%t 9 of 9%t o of 0_21‘_00f

(16.7) he &(5) " dyax 0—},(&)7 oxdy E((d_y) v d_y(d_y)

Example 16.3 Calculate the second partial derivatives of the functioexample 1.
We havef (x,y) = x(1+ xy)?, and have found

of of .,
(16.8) i (1+xy)(1+ 3xy), 3y 2x°(1+xy) .

Differentiating these expressions, we obtain

9%f

(16.9) 2= (14 xy)(3y) + y(1 + 3xy) = 4y + 6xy°
9%f )
(16.10) 3yox = (14 xy)(3X) + X(1+ 3xy) = 4x+ 6x°y
2
(16.11) % = 4X(1+ Xxy) + 2X%y = 4x+ 6x°y
(16.12) A 2X°(x) = 2x° .

Notice that the second and third lines are equal. This is amfact: the mixed partials (the middle
terms above) are equal when the second partials are consnuo

0%t 921

(16.13) oyox  dxoy
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This is not easily proven, but is easily verified by many exspThusd?f /dxdy can be calculated in
whatever is the most convenient order. Finally, we note tamrative notation for partial derivatives;

_of ot 9t 021 021

16.14 fx = —, fx=—== = — =— , et
(16.14) *Tooxt YT oy T oax@ YT oxay Y z?yz‘eC

Example 16.4 Let f(x,y) = ytanx+xseqy. Show thatfyy = fyy.
We calculate the first partial derivatives and then the mpadials in both orders:

(16.15) fy = yse@x+seqy, fy = tanx 4 xsegytany

(16.16) fyx = seéx+seqtany  fyy = seéx+ seg/tany .

The partial derivatives of a functiom = f(x,y,z) tell us the rates of change ofin the coordinate
directions. But there are many directions at a point on tla@elor in space: how do we find these
rates in other directions? More generally, if two or thredalales are changing, how do we explore the
corresponding changewf? The answer to these questions starts with the generaliagtthe idea of the
differential as linear approximation. For a function of asagiable, a functionv = f (x) is differentiable

if it is can be locally approximated by a linear function
(16.17) W= W + M(X — X,)

or, what is the same, the graphwtf= f(x) at a point(x,,Y,) is more and more like a straight line, the
closer we look. The line is determined by its slape= f'(x,). For functions of more than one variable,
the idea is the same, but takes a little more explanation atatian.

Definition 16.2 Let w= f(x,y,z) be a function defined near the poify,,y,,z,). We say that f is
differentiable if it can be well- approximated nedx,, y,,z,) by a linear function

(16.18) W—Wy = a(X—X,) +b(y—Yp) +¢(z— 7)) .

In this case, we call the linear function thifferential of f at (x,,Y,,Z,), denoted df(X,, Yy, 7). It
is important to keep in mind that the differential is a funatiof a vector at the point; that is, of the

incrementsx — X,,Y — Yo, Z— Z)-

If f(x,y) is a function of two variables, we can consider tiraph of the function as the set of
points(x,y,z) such thaz = f(x,y). To say thatf is differentiable is to say that this graph is more and
more like a plane, the closer we look. This plane, calleddmgent planeto the graph, is the graph of
the approximating linear function, the differential. Foprecise definition of what we mean by “well”
approximated, see the discussion in section 16.3. Theaimlilpexample illustrates this meaning.

Example 16.5 Let f(x,y) = x?+y. Find the differential off at the point (1,3). Find the equation of the
tangent plane to the graph ot f(x) at the point.
We have(x,,y,) = (1,3), andz, = f(X,,Y,) = 4. Expresg — 4 in terms ofx — 1 andy — 3:

(16.19) Z-4=XP+y-4=(1+(x-1)?+3+(y-3) 4
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(16.20) =1+2(x—1)+(x—1)>+3+(y—3), simplifing to

(16.21) z-4=2(x—1)+y—3+(x—1)%.

Comparing with (16.18), the first two terms give the diffeiah (x— 1)? is the error in the approxima-
tion. The equation of the tangent plane is

(16.22) z—4=2(x—1)+y—3 or z=2x+y—1.

If we just follow the function along the line wheye=y,, z= z,, then (16.18) becomes just-w, =
a(x— x,); comparing this with definition 16.1, we see tlags the derivative ofv in thex-direction, that
isa= dw/dx. Similarly b= dw/dy andc = dw/dz Finally, since the variables y, z are themselves
linear, we have thalx is x— X,,and so forth. This leads to the following restatement ofdéfnition of
differentiability:

Proposition 16.1 Suppose that w- f(x,y,2) is differentiable at(x,,Y,,7,). Then

of of of

There are a variety of ways to use formula (16.23), which we tastrate.
Example 16.6 Let

(16.24) z=f(xy) =X —xy+y°.

Find the equation of the tangent plane to the graph at the (i1).
At (Xo,¥o) = (2, 1), we havez, = f(X,,Y,) = 6. We calculate

of of
=2, 6—y—7x+3y2,

(16.25)
so, at (2,-1)¢f/dx=5, df/dy = 1. Substituting these values in (16.18) we obtain
(16.26) z—6=5x—-2)+(y+1) or z=5x+y—3.

An alternative approach is to differentiate equation (4pighplicitly:

(16.27) dz= 2xdx— xdy— ydx+ 3y?dy .

Evaluating at (2,-1), we hawg = 6, anddz= 4dx— 2dy+ dx+ 3dy. This is the equation of the tangent
plane, with the differentialdx, dy,dzreplaced by the incrememts- 2,y + 1,z—5:

(16.28) z—6=4(x—2)-2(y+1)+ (x—-2)+3(y+1),
which is the same as (16.26).

Example 16.7 Find the equation of the tangent plane to the graph of thetiomz = x? + xy -y at
(2,-1,2).
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First, we calculate the differential
(16.29) dz= 2xdx+ xdy-+ ydx— dy
and then evaluate it at the point:
(16.30) dz= 4dx+ 2dy— dx— dy= 3dx+dy.
We now get the equation of the tangent plane by replacingitfexehtials by the increments:
(16.31) z-1=3(x—2)+(y+1) or z=3x+y—4.

Example 16.8 Find the points at which the graph bf= f(x,y) = X2 — 2xy+ y has a horizontal tangent
plane.

The horizontal plane through the poif%,,y,,z,) has the equation— z, = 0. Thus our points are
those whera f = 0; i.e., solutions of the pair of equations

of _, of _

(16.32) X i 0.

Calculating, we get2—2y=0, —2x+1=0,sox=1/2, y=1/2 and our pointig1/2,1/2).

Example 16.9 Given the functiorz = x> — xy+ Y3, in what direction, at the point (1,1,1) is the rate of
change oz equal to zero?

The differential ofzis dz= (2x— y)dx+ (—x+ 3y?)dy, so at (1,1,1), we havéz= dx+ 2dy. This is
zero for the direction in whicdx = —2dy; that is along the line of slope -1/2. Thus the answer is given
by a vector in that direction, for example2l + J.

Example 16.10 Suppose that we have designed a cylindrical silo of basesa#imeters and height 10
meters, and we are asked to increase the radius by .25 m ahdigi by .2 m. By (approximately) how
much do we increase the volume?

The volume of a cylinder of radiusand heightiis V = rr?h. To answer this question, we consider
the linear approximation of volume, so we take the diffeisdmif V:

(16.33) dV = 2mrhdr + mr?dh.
Now, in our case = 5, h= 10, dr = .25, dh= .2, so we calculate
(16.34) dV = 2m1(5)(10)(.25) + 11(5)%(.2) = m(25+5) = 30T cubic meters

By looking at figure 1, we can identify the two terms in the gmment of volume: the first is the volume
of the shell of widthdr around the cylinder, and the second is the volume of the céightdh. The
negligible part is the volumergirdh of the washer at the top of widtr and heightdh.
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Figure 16.1

= r—dr—

Proposition 16.2 (The Chain Rule). Let w f(x,y,z) be a function defined in a region R in space. Sup-
pose thaty is a curve in R given parametrically by=xx(t), y = y(t). z= z(t), with t = 0 corresponding
t0 (X9, Y, %) Then, considering w: f(x(t),y(t),z(t)) as a function of t along, we have

dw oJwdx oJwdy odJdwdz
(16.35) E*EE*WE*E&'

That is, the rate of change of with respect ta alongy is given by (16.35). We shall give an
explanation of this formula in section 3.

Example 16.11 Letw = f(x,y,2) = xy+y?z. Consider the curve given parametrically Yy t, y =
t2, z=Int. Finddw/dt att = 2.

Differentiating,
ow ow ow
(16.36) &,y, a_y,x+2yz, E,y?‘
dx dy dz_ 1

(16.37) a,1, E*Zt’ Frin
S0

dw 1
(16.38) Tt =YD+ X+ 22)(2) +YA(7)

Att =2 we calculatex= 2, y =4 andz = In 2, giving

dw

(16.39) Gt = 4+ (2+8In2)(4) +16/2= 20+ 32In2.

Example 16.12 Letz= x?>+y?. Find the maximum value of on the ellipse given parametrically by
X = cog, y=2sint.
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We need to find the points at whictz/dt = 0. Now

0z 0z dx . dy

: o =2, —=2Y, —=- — =2 ,
(16.40) ox 2x, ay 2y, at sint , at cod ,
and thus

dz .
(16.41) rri —2xsint + 4ycod .

Sincex = cog andy = 2sint, this givesdz/dt = —2sint cost + 8sintcos . Set this equal to zero to
obtain 6siricost = 0, or 3sin(2t) = 0, which has the solutiorts= 0, + /2, 1, andx=+1, y=0or
x=0, y=+2. The corresponding values pére thus 1 and 4, so 1 is the minimum value and 4 is the
maximum value on the ellipse.

We can think of an equation of the forfifx,y,z) = 0 as definingimplicitly as a function ok andy,
in the sense that we could solve Ipgiven specific values ofandy. However, just as in one dimension,
we need not solve farto find the partial derivatives. If we take the differentiétioe defining equation
f(x,y,2) = 0 we get

f
(16.42) fxdx+ fydy+ f,dz=0 sothat dz= —%dx— f—ydy.
z z
The coefficient ofixis thusdz/dx, and the coefficient adlyis dz/dy. Of course iff, = 0, these are not
defined. But iff; # 0, then this method works.

Proposition 16.3 Suppose that f is a differentiable function(afy,z) near the point(x,,Y,,%,), and
that %((Xy, Yo%) # 0. Then the equation(k,y,z) = 0 defines z implicitly as a function ofiand

oz f 0z fy

(16.43) w-1 ad o=

Example 16.13 Given f(x,y,2) = 2> + 3xZ + y°z, find expressions fodz/dx and dz/dy wherez is
defined implicitly as a function afx,y) by the equatiorf (x,y,z) = 5. Evaluate these at the point (1,1,1).
First we calculate the partial derivatives:

af af af
(16.44) > = 37, FYi 2z, o= 37 + 62x+ Y2,
so that
(16.45) oz_ 8% 0z 2z

X 32+6zx+y2 dy  32+6zx+y?

The values at (1,1,1) aiz/dx = —3/10, dz/dx = —1/10.
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§16.2. Gradients and Vector methods

Letw = f(x,y,2), wheref is a differentiable function. To put the formula for the diféntial,(16.23), in
vector form, we introduce thgradient of the functionf:

of of of
16.4 Of=—I1+—J+—K
(16.46) dx+dyJ+dz ,
and the vector differentialX = dxl + dyJ + dZK. We interpretdX as a small change in the veciér
Then (16.17) can be rewritten as

(16.47) dw= 2 axt 91

i
ax X 5y dy+ g7d7= (0f) -dX.

This leads to the following vectorial form of the chain rule.

Proposition 16.4 (The Gradient Form of the Chain Rule). Let=wf(x,y,z) be a function defined
in a region R in space. Suppose thats a curve in R given parametrically by = X(t), witht=0
corresponding tX,. Then, considering w f(X(t)) as a function of t along, we have

dw dX

(16.48) Ef(Df)-a ,

evaluated aK,.

The partial derivatives tell us the rate of change of the fiencf in the coordinate directions. Using
the gradient, we can calculate the rate of change in anytitirec

Definition 16.3 Let w= f(x,y,2) be differentiable in a neighborhood &f,. For any vectorV, let
X(t) = X, +tV parametrize the line througK, in the directionV. Thederivative of f along Vis

(16.49) Dy (%) =lim % “\? — X

Propostion 16.5 Given the differentiable functioh and a vectoK, we have
(16.50) Dy f(Xy) =0f-V.

The right hand side of (16.49) is the derivative fohlong the line in the direction of. That line is
parametrized b (t) = X, +tV, sodX/dt = V. Now, by the chain rule

:%f(X(t))— ofdx, 01dy, 9192 5t X gty

(16.51) Dy, f(Xo) “axdt Toydt T azat dt

If we replaceV by a unit vectoiJ, then the parametérepresents distance along the line, sitXé) —
Xl = t|U] =t. We say that the line is parametrized by arc length, and tefex, f as thedirectional
derivative of f in the directionU.

Example 16.14 Let f(x,y) = x> — 3x?+xy+7 andU = 0.6] — 0.8J. FindD, f(1,—2).
We havefy = 3x? — 6x+Y, f, = x. Evaluating at (1,-2), we havéef (1, —2) = —5| +J. Thus

(16.52) D,f(1,-2) =0f(1,—-2)-U=-3-0.8=—38.
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Example 16.15 For f as above, find the directidd at (1,-2) in whichD, f = 0.
LetU = al + bJ. We must solve

(16.53) 0f(1,-2)-U= (=5l +J-(al +bJ)= —5a+b=0.

This givesb = 5a. SinceU is a unit vector, we hava? + b? = 26a? = 1, soa = 1/1/26, b = 5/1/26 will
do Thus
_1+45)

V26

We also have the answeiU. Notice that both these vectors are unit vectors in the tioeof Of .

(16.54) U

Example 16.16 Let y be parametrized b (t) =2l 4 IntJ+tK, and letw = f(x,y) = xyz Finddw/dt
alongy. What is the rate of change wfwith respect td at the point = 2?
To use (16.48), we calculate

dXx 1

(16.55) Of =yd +xad 43K, o =21+ 2 +K,
so that
(16.56) z—\;v:(Df)-Z—T:ZyZ+ XTZ+Xy:3tZ(Int+1),

sincex =12, y=Int andz=t. Att = 2, we getdz/dt = 12(In2+1).

Example 16.17 Let X(t) = cogt| + sintJ parametrize the unit circle, and I&tx,y) = x? + 2xy. Find
the maximum value of on the unit circle.
The functionz = f(X(t)) has a maximum whedz/dt = 0. We calculate:

(16.57) Of = (2x+ 2y)l +2xJ = 2((cog + sint)l +2codJ ,
(16.58) Z—T = —sintl +codJ ,

so that

(16.59) g—tz = (Of)- %—T = 2((cost + sint)(—sint) + 2cogt .

To solvedz/dt = 0 we use double angle formulas:
(16.60) 2 (cost + sint)(—sint) + 2cogt = —2cog sint + 2(cogt — sirft) = — sin(2t) + 2cog2t)

which is zero when taf2t) = 2, ort =31.7°,211.7°. The corresponding values ot cogt, y = sint are
x = =+.526 y = +.851. Calculating the values afat these points gives the maximum 1.172.

For a functionw = f(x,y,z) of three variables defined near the poXy : (X,,¥.%), let w, =
f (X, Yo, Zy)- The equationv = w is the level surfac&of w at (x,,Y,,%,)- For f differentiable at a point
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X, the fact thatf can be approximated by a linear function implies that théaseiS looks more and
more like a plane, the closer we look. This plane, given byetiigatiord f(X ) = 0, is thetangent plane

to SatX,. We now note that the gradient bfis the normal to this surface, and points in the direction of
maximum increase of.

Proposition 16.5 Let f be a function differentiable in a neighborhood of thénp,.
a) Of(X,) points in the direction of maximum increase of the functicat X ,.
b) Of(X,) is the normal to the tangent plane of the level set of f throXigh

To show a), start with a unit vectat. From (16.50) we have
(16.61) Dy(X,) =0Of-U = |0Of|cosB

wheref is the angle betweenif andU (since|U| = 1). This takes its greatest value when Bos 0,
thatisU = Of. To show b), letV be a vector on the tangent plane. By definitidi(X,)(V) = 0, so

(16.62) Of(Xg) -V =df(Xg)(V)=0.

ThusOf (X,) is orthogonal to every vector in the tangent plane, so caakentto be its normal. Now, a
pointX lies in the tangent plane if and only if the veckr- X lies on the tangent plane, or

(16.63) Of(Xp) - (X=X,) =0,
which is thus the equation of the tangent plane.

Example 16.18 Let f(x,y) = x° + 3x?y? + 2y. Find the equation of the line tangent to the curve
f(x,y) =9 at (2,-1).

The above discussion for three dimensions holds just asmt@lo dimensions. Thus, by proposition
16.6, the normal to the tangent line to the curv&lisWe calculateédf = (3x? + 6xy?)| + (6x%y + 2)J;
which atx =2, y = —1 is the vector 24— 22]. Now, the equation of the tangent line is given by (16.63),
whereX, = 2| — Jis the vector to the point (2,-1):

(16.64) (24 —223) - (x=2)I +(y+1)J)=0 or 24x—-2)-22(y+1)=0,
which simplifies to 2& — 22y = 70.

Example 16.19 Let f(x,y,2) = xyz Find the gradient of. Find the equation of the tangent plane to
the level surface (x,y,z) = 2 at the poin¥, : (1,2,1).
We calculate:
of of of

(16.65) Df:&wa—quK:yz + X204+ XK .

At X, Of =21 +J+ 2K, so the equation of the tangent planélis- (X — X)) = 0:
(16.66) IXx—1+(y—-2)+2(z—1)=0 or X+y+2z=5.

Example 16.20 Letw = x+ xy— yZ. Find the equation of the tangent plane to the surfaee?2 at
(3,1,2).

We calculatédw = (1+y)l 4 (x— 2%)J — 2zyK.. At the given point (3,1,2);Jw = 2| —J — 6K. This
is the normal to the tangent plane Xgf = 3l +J + 2K, so the equation of that plane is
(16.67) Ow- (X =Xy =2(x-3) - (y—1)-6(z-2)=0

3
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orx—y—6z+7=0.

Example 16.21 Let Sbe the spher# +y?+ 722 = a?, a > 0. Show that at any poiX on the sphere,
the vectoiX is orthogonal to the sphere.
Letw = X2 +y?+ 7, so thatSis the level setv = a2. ThenOw is normal toSatX = xl +yJ + zK. But

(16.68) Ow = 2Xl + 2yJ + 2ZK = 2X .

Example 16.22 Let S, be the sphere? +y? + Z2 = 4 andS, the cylinderx? +y?> = 1. LetX =
xI +yJ +zK be a point on the curvg of intersection of the surface&; andsS,. Find a vector tangent to
yatX.

Letw, = X% +y?+ 2, w, = X2 +y?, so thaty is the intersection of the level satg = 4 andw, = 1.
ThenOw,; andOw, are both orthogonal to the tangentytoso Ow,; x 0w, points in the direction of the
tangent toy. We calculate:

(16.69) Ow, x 0w, = 2(x1 +yd + 2K ) x 2(xI +yJ) = 4(—yZ +27) .

In the above, we have considered a surface as a graph or aslad&t\wof a function. Surfaces
can also be giveparametrically. Let u andv be the variables in a regioR of the plane, and let
X(u,v) = x(u,v)l +y(u,v)J + z(u,v)K be a vector-valued function oR. Then the set of values of
X(u,Vv), as(u,v) ranges oveR describes a surface in space.

Example 16.23 Consider the functioX (u,v) = (u— V)l + (u+v)J 4+ uwK defined in(u,v) space. In
coordinates, this is given by the equations

(16.70) X=U—V Yy=U+V Z=uv.
We can solve fou andv in terms ofx andy;

S XY XY

(16.71) 5 V=

putting these in the formula for z we have

X+y—X+y —xX2+y?

16.72 =uv= =
(16.72) Z=uv 5 > 7 ,

so the surface is the hyperbolic paraboloid=dy? — x°.

Now, in general it may not be so easy (or simple) to realize ramatric surface as a level set;
however, we can use the parametric equations to , for exafimudethe tangent plane to the surface at a
point.

Proposition 16.6 Let X(u,v) = x(u,v)l +y(u,v)J + z(u,v)K be a vector-valued function defined on a
region in R-space. Define
ox, oy 0z

(16.73) Xu:%|+%J+%K ,
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_Ox o0y . 0z
(16.74) Xy= oI+ 503+ 5K

a) The vectoiX x Xy is normal to the surface.
b) If w= f(x,y,2) is a function defined near the surface, we can consider it ametion of u and v by
writing w = f(x(u,v),y(u,v),z(u,v)). Then

ow ow

(16.75) S0 = WXy oo =0W-Xy .

To see this, fix a poinfu,, V). If we setv = v, and letu vary, we get the curv€ given parameterically
by

(16.76) X(u) = x(u,vo)l +y(u,vg)J + z(u,vy)K .

The tangent vector to this curveXg,, and since the curve lies in the surface, its tangent veietir the
tangent plane. Similarly, considering the cutve u,, we see that the vectot, also lies in the tangent
plane. ThusK, x Xy is normal to the tangent plane. Part b) follows directly frisva chain rule, applied
to the curvesi = uy andv = v,

Example 16.24 Find the equation of the tangent plane to the surface of elea®gat the point (-2,4,3).
From (16.71), this point corresponds to the values 1, v= 3. Now, we differentiate the function
defining the surface, obtaining

(16.77) Xu=14+J+VvK, Xy=-14+J+uK.

The values ati=1, v=3 areX, =1 +J+ 3K, X, = —I +J + K. Thus, a normal to the tangent plane
isN = X, x Xy = =21 —4J + 2K, and the equation of the tangent plane is

(16.78) —2(x+2)—4(y—4)+2(z—3)=0 or z=x+2y—3

Example 16.25 Consider the surface given parametrically by
(16.79) X(u,v) = 3cosucosvl + 4coausinvd + 5sinuk .

Find the normal to the tangent plane ant the point correspgridu = 17/3, v= /6.
Differentiate:

(16.80) Xy = —3sinucosvl — 4sinusinvd + 5coakK |,

(16.81) Xy = —3coausinvl +4coaucosv] .

Evaluating at the given point, we have

Vv3v3, V31 1 9 5
(16.82) Xuf—377l—47§J+5§K7—ZI—\/§J+§K,
11, 13 3
16. Xy=-3221+4223= 2| _
(16.83) v 322+22J 4+\/§J

A normal to the plane il = X, x Xy = —(5/2)v/3l + (15/8)J + 3v/3K.
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§16.3. Theoretical considerations

In order to make the intuitive concept of linear approximatias used above, more precise we start with
the idea of closeness in the space itself. We measure theessi of two points by the length of the
line segment joining the points. Thus, in vectorial ternhg, distance betweenX andX, is [X — X/,
that is, the square root of the sum of the squares of the coemenWe define limits in terms of this
distance.

Definition 16.4 Theball of radius ¢ centered a, (denoted BX ), c)) is the set of all points of distance
less than c fronX,,. Aneighborhoodof X, is any set which contains some ball centereX gt

Definition 16.5 Suppose that f is a function defined in a neighborhoad pfWe say that

(16.84) ) ETO f(X) =L

if we can insure thatf (X) — L| can be made as small as we please by takindose enough tX,. We
say that f iscontinuousat X, if

(16.85) im £(X) = F(Xg).

Just as in one variable, we are assured that all functionhvisan be expressed by polynomials in the
coordinates are continuous.

Definition 16.6 A linear function is a function of the form (X) = C- X, for some vectoC. In
coordinates we have(k,y,z) = ax+ by+ cz, where we have writtdd = al +bJ+cK andX =xl +yJ+
ZK. Its level surface throug, is the plane &x — x,) + b(y —yy) + ¢(z— %) =0, 0rC- (X — X,) = 0.

Now we define differentiability aK, of a functionf: that it can be well- approximated by a linear
function. This is the direct generalization of the definitiaf the derivative in one dimension.

Definition 16.7 Suppose that f is a function defined in a neighborhoad pfWe say that f isliffer-
entiable at X if there is a linear function L such that

=0.

RO = £(Xg) = L(X = X,)|
(16.86) Jm \x(l X, ;

In this case, we call L thdifferential of f atX,, denoted d{X,). We can write L. (X — X,) = Of -
(X =X,), whereldf is thegradient of f.

Now, as we have seen, the calculation of differentials arteotncalculating partial derivatives. To
see this in terms of the above definition, let’s look at theadibn in two variables, writingk = xI + yJ.
Suppose that is differentiable aX ), and its differential there is(X— X5,y — ;) = a(X—X,) + b(y —y,).
First we see what happens to equation (16.86) along they/ling,. ThenX — X, = (Xx—X,)I, and we

get

(16.87) XETO‘ f(X.¥p) — f (X ¥o) — a(X—Xp) = f(X,Yg) — f(Xo=yo) _al=o0,

X=X X=X
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or

(16.88) of _ i fx¥) = (%, %o)
OX  x—>X X=X

=a.

In the same way, we see that df /dy.
Now we turn to an argument for the chain rule in two dimensions

The Chain Rule. Letw = f(x,y) be a differentiable function defined in a regiBn Suppose thay is
a differentiable curve irR given parametrically byX = X(t), with t = 0 corresponding tX,. Then,
consideringv = f(X(t)) as a function of alongy, we have

dw dX
(16.89) 5 = O 5

evaluated aK,. We start with the definition of differentiability. Let

(16.90) ) = fFX() — F(Xg) — L (X(t) — X,) -

where we have writteh for the gradient ofv evaluated aX,. By (16.86),

; In(®)|
(16.91) lim — 2 =0.
X(t)—=Xg [X(t) — X
Now, by continuityX(t) — X, ast — 0, and thus
X(t)—-X
(16.92) i 1O = g MWLy XO X
t—0' t X(t)—=Xq [X(t) = Xg| t=0 It]

by (16.91), and the assumption of differentiabilityXaft ), which assure that the second limit on the right
exists. Now, by the definition af:

(16.93) f(X(1) = F(Xg) =L - (X(t) = Xg) +n(t) .
Divide byt, and take the limit as— O:

f(X(t)) — f(X X(t) - X
(16.94) d_WzlimM:IimL- (®) O-Himn(t):L-d—X.
dt t—o0 t t—0 t t—=0 t dt

§16.4. Optimization

Now we turn to the technique for finding maxima and minima afirackionz = f(x,y) of two variables.

Definition 16.8 If f(x,,Y,) > f(X,y) is at least as large as its value at all nearby points, we say th
has alocal maximum at (x,Y,). More precisely, if, for some & 0 we have

(16.95) f(%0:Y0) > f(X.Y)
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for all (x,y) within a distance a ofx,,Y,), then(x,,Y,) is a local maximum point for f. Similarly, if
instead we have

(16.96) f(%0,Yo) < f(xY)

for all (x,y) sufficiently close t¢x,,Y,), then(x,,y,) is alocal minimum point for f.

The first derivative test for functions of one variable giusghe following criterion:
Proposition 16.7 Suppose thaX, is a local maximum (or minimum) for f. Thérf = 0.

To see this, pick a vecta and consider the line given by the equatift) = X, +tV. Thenf (X(t))
has a maximum dt= 0, so
d

(16.97) 0f -V = 2 F(X()]g=0.

This can only be true for a¥ if Of = 0.
Definition 16.9 If Of(x,,y,) = 0 we say thatx,,Y,) is acritical point .

Thus, to find the local maxima or minima of a function in a givegion, one must look among the
critical points.

Example 16.26 Find the critical points of the functiofi(x,y) = x3 + xy+y? — x.
We calculate the components of the gradient:

of 5 of
(16.98) &73x +y—-1, 0—yfx+2y.
Now, we set these equal to zero and solve. The second equatEsx = —2y; substituting that in the
first gives 18?4+ y— 1= 0, which has the roots

y— —1i\/1+487 or y 17 1 .

24 4 3
Thus, the critical points are-1/2,1/4), (2/3,—1/3). But now, how can we tell whether or not we have
a local maximum or a local minimum at either of these points?att, we may have neither; there is
a third possibility: that along certain lines through thiical point, the value is a local maximum, and
along other lines, the value is a local minimum. Such a pasiasiaddle point

(16.99)

Example 16.27 Letz= x?> —y?. Then the origin is a critical point far Sincez = x? along the line
y =0, zhas a minimum at the origin on this line, but on the line: 0, we havez= —y? which has a
maximum at the origin along this line.

We distinguish among these points by using the second digevizst in one variable. In order to
make clear what the criterion is, we first consider the casemqfadratic function.

Example 16.28 Letzbe a quadratic function of the variablesv: z= aw? + 2buv+ c\2. The origin is
a critical point. By completing the square we can discoveawind of critical point it is:

b
-V
a

2 2 W2
(16.100) Z=a(u2+22uv+%v2)+(cf%)VZZa(qu Pyt
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Thus if both terms have positive coefficients, the origin im@mimum; if both terms have negative
coefficients, the origin is a maximum, and if the signs djftee origin is a saddle point. We call the
expressioD = ac— b? thediscriminant of the quadratic function definirg Notice that ifD > 0, that
the coefficients of (16.102) have the same sign, and if alsd), we have a minimum. and &< 0, a
maximum. IfD < 0, the coefficients have different signs and we have a sadii. p

This example leads us directly to the general criterion kpghydpg the second derivative test along
each line through the critical point. For the functibe: f(x,y), let fyx, fxy, fyy represent the second
partial derivatives of .

Proposition 16.8 Suppose thaflf (x,,y,) = 0, that is (x,,Y,) is a critical point. Then (evaluating at
(X0:Yo)):

If D = fuxfyy — (fxy)? < Oat a point(xy,Y,), the f has a saddle point there.

If D = fuxfyy — (fxy)? > 0and f > 0, at a point(Xy,Yo), then f has a local minimum there.

If D = fuxfyy — (fxy)? > 0and f < 0, at a point(X,,Yy), then f has a local maximum there.

If D = 0, we can conclude nothing. We note that wher D the second derivative along all lines
has the same sign, so we could check whetfygs Qreater or less than 0 instead, if that were easier.

To see this, choose a vecdr= ul + vJ and consider the functiofy, (t) = f(X,+tV) = f(x, +tu,y,+
tv). Differentiating we find, by the chain rule,

d d? d df
afv =ufx+vfy, @fv = a(ufx“r‘ny) =u=2

We compute the second derivative by applying the chain oulee functionsfy, fy:

df
LY

(16.101) 5 Vg

d2
(16.102) gz v = UUfoct Vi) +v(ufy+ viy) = U fux+ 20V fiy + VP yy

If this is positive, then the functiofi, has a minimum; that is the functidnhas a minimum along the
line in the direction o¥/. If this holds for all direction¥/; that is, for all values ofi, v, thenf has a local
minimum at(X,,Y,). But, referring back to example 16.28, this is tru®it> 0, fxx > 0. Similarly, if

D <0, fxx <0, thenf has a maximum along all lines througky, y,), so f has a local maximum there.
However, ifD and fxx have different signs, theh has a local maximum in some directions, and a local
minimum in others, so we have a saddle point.

Example 16.29 We continue with example 16.26. We found critical poinB@t1/2,1/4),Q(2/3,-1/3).
Differentiating the first partials (see (16.98)), we get

Thus
1 2 2 2
(16.104) atP : D=6(-3)(2)-1°=-7, andatQ: D=6(3)(2-1=7,

soPis a saddle point, and sindgy = 4 > 0, Q is a local minimum.

Example 16.30 Let f(x,y) = x> + 2y* 4+ xy+ 4x+ 2y. Find the local maxima and minima af Doesf
have a global maximum or minimum?
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First we find the critical points:
(16.105) fy=2x+y+4, f,=8/°+x+2.

To find the points where both are zero, we obtain —8y® — 2 from the second equation. Putting this in
the first,we get

(16.106) 2-8°-2)+y+4=0, or —16/°+y=0.

This has the solutiong= 0,+1/4, so the critical points arg(—2,0), Q(—17/8,1/4), R(—15/8,1/4).
We now calculate the second derivatives:

(16.107) fix=2, fy=1, fy=247.

ThenD = 48y° — 1, which is positive at all of these points. Sinfzg is everywhere positive, these are all
local minima. To determine the global minimum, we evaludté®) = —4, f(Q) = —4.0078 f(R) =
—4.0078. Thus the global minimum is -4.0078, attained at lipdndR. Everywhere else the function
has a direction in which it is increasing, so it has no globakimum.

Notice, in these problems we have to solve several equationgdtaneously, and usually they are not
linear. There are no universal algorithms for solving sucdteams of equations, and we have to follow
our intuition. Usually the technique of substitution woifgthough in the above problem, with other
constants the cubic equation in (16.106) would be much miffieudt). So, in general the procedure to
follow is to look at the given equations to see if, in one ofélg@ations one of the variables can be easily
written in terms of the other. If so, substitute that expi@s# the other equation.

§16.4.1 The Method of Lagrange Multipliers

Let C be a curve in the plane, not going through the origin. Let'd fime point orC which is closest to
the origin. This amounts to finding the minimum valuefgk,y) = X2 +y? on the curveC. If C is given

parametrically by the equatioms= x(t), y = y(t), we know what to do: differentiaté(x(t),y(t)) and

set the derivative equal to zero. But, if the curve is givepligitly by an equatiorg(x,y) = ¢, we don’t

want to solve the equation explicitly, and we don’t have tooking at the condition

d dXx
16.1 —f(x(t),y(t) = Of — =
(16.108) g (X, yt) =0 as qr =0
we see that the requirement is that is orthogonal to the tangent to the curve at the minimizinigpo
But g is orthogonal to its level s& everywhere, so at the minimizing point we have thdtandOg
are collinear; that is, they are multiples of each other. sThue can solve the problem by fiinding the
solution of the system

(16.109) Of =A0g, 9(xy)=c.

This gives three scalar equations in three unknowns, wiicprinciple, can be solved. Of course the
value ofA is not of interest, but is useful as an auxiliary to finding th&ues ofx; y.

Example 16.31 Find the point on the linex3— 2y = 1 which is closest to the point (4,7).
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Given the constraing(x,y) = 3x— 2y = 1, we want to minimizef (x,y) = (x—4)2+ (y—7)2. The
gradients are

(16.110) Of =2(x—4)1 +2(y—7)J and Og=3l—-2J.

These gradients are collinear at the minimizing point, sdaxe to solve the equations
(16.111) Ix—4) =31, 2(y-7)=22 and H—2y=1.

We can eliminaté from the first two equations:

(16.112) 4x—4)=6A =6(y—7) sothat &—6y= —26.

Now we have simultaneous linear equations emdy which we can solve, getting the point (16,47/2).
We note that the Lagrangian equations (16.109) just saythledine from this point to (4,7) has to be
orthogonal to the given line; something we knew from geownetr

Example 16.32 Find the maximum value off(x,y) = xy on the ellipse? + 4y = 1.

Let g(x,y) = X% + 4y?. We calculate the gradient§if =yl +xJ andg = 2xl + 8yJ. At the point
on the ellipse at which we have the maximum, we h@¥eorthogonal to the tangent to the ellipse, so is
collinear with(Og. Thus we have the equatiaff = A g for someA. This gives the scalar equations

(16.113) y=2Ax, x=8Ay xX*+8y°=1.
We can eliminat@ by dividing the first equation by the second:

y_2AX_ X 2 _
(16.114) X" By giving X% = 4y?.

Substituting that in the last equation giveg 4 4y = 1, so thay = +1/(2v/2). Then

4 1
16.115 X2 =4y>=_ sothat x=+—.
(16.115) Y =3 7
The possible values df(x,y) = xy at these points ar¢1/4, so the maximum value dfis 1/4, and its
minimum is—1/4.

The parametek, called theLagrange multiplier, serves the purpose of finding a relation between
x andy which is a consequence of the optimization. The valug ©&f not important, but in some cases it
may make the problem easier to first determine

To summarize: given the problem: minimize (or maximize) achion f (x,y) subject to a constraint
g(x,y) = c. We observe that the chain rule tells us that, at the optimgipoint,[]f is orthogonal to the
tangent to the level set gf But so isg, so we must havélf = A[g for someA. Solve this equation
in conjunction withg(x,y) = c to find the point. This method (of Lagrange multipliers) weik three
dimensions as well.

Proposition 16.9 Suppose that w f(X,y, 2) is a differentiable function, and we wish to find its maxima
and minima subject to a constrainfgy, z) = c. At an optimizing point P there is/a such that

(16.116) Of(P)=A09(P), 9(xVy,2)=c.
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These equations give a system of four equations in four unkeavhich, in typical circumstances,
have only a finite number of solutions. The maximum (minimaidhe function must occur at one of
these points.

To see why this is true, we follow the two dimensional argutnkat Sbe the level surfacg(x,y,z) = c.
Let C be a curve througP lying in the surfaceS. Thenf is optimized alongC, so that the derivative
of f along the curve is zero & But this just says thdflf (P) is orthogonal to the tangent to the curve.
Since every vector in the tangent planestis the tangent vector to such a curizH,(P) is orthogonal to
the tangent plane t8. But so isCIg(P), sof (P) andOg(P) must be colinear.

Example 16.33 Find the point on the planex2- 3y + z= 1 closest to the poirtl, —1,0).

Here the constraint ig(x,y,z) = 2x+ 3y+z = 1 and the function to be minimized &x,y,z) =
(x—1)%+ (y+1)2+ 2. Taking the gradients and introducing the Lagrange meitjpire are led to the
equations

(16.117) Ix—1)=2\, 2y+1)=3),2z=A, 2x+3y+z=1.

We use the first three equations to express the variablesmst@f A, and then use the last to solve for
Al

(16.118) X—Atl, y—Ar=2 A
2 2

so that

(16.119) JRBINECUuLIR Y

This givesA =1/7. Substituting into equations 16.118), we find the desigdtpo be (1/7,-11/14, 1/14).

Example 16.34 Farmer Brown wishes to enclose a rectangular coop of 100&rsdeet. He will build
three sides of brick, costing $25 per linear foot, and thetfoof chain link fence, at $ 15 per linear foot.
What should the dimensions be to minimize the cost?

Let x andy be the dimensions of the coop, whereepresents the sides, both of which are to be of
brick. The constraint ig(x,y) = xy = 1000, and the cost function & = 25(2x+y) + 15y. We have
0C =501 + 40J, andg =yl + xJ. The equations to solve are:

(16.120) 50=Ay, 40=Ax,xy= 1000,
SO
(16.121) 1006= xy = (5)\—0)(‘;—0) :

or A2 = (50)(40)/1000= 2, givingA = v/2. Thenx = 40//2 = 20v/2, y = 50/A = 25/2.

Many problems involve finding the maximum or minimum of a ftiao of many variables subject
to many constraints The technique of Lagrange multipliessk& in this general context, but - of course
- is much more difficult to employ. To give a sense of the gd@cedure, we state the proposition in
the case of a function of three variables with two constgaint
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Proposition 16.10To find the extreme values of a functiofx,fy, z) subject to two constraints (say along
acurve), gx,y,2) = ¢, h(x,y,z) = d, we have to solve the five equations in the five unknowrs X, :

(16.122) Of(P) =A0g(P) + u0h, g(xy,2 =c, h(xy,z=d.



