
CHAPTER 16

Differentiable Functions of Several Variables

x16.1. The Differential and Partial Derivatives

Let w = f (x;y;z) be a function of the three variablesx;y;z. In this chapter we shall explore how to
evaluate the change inw near a point(x0;y0;z0), and make use of that evaluation. For functions of one
variable, this led to the derivative:dw=dx is the rate of change ofw with respect tox. But in more than
one variable, the lack of a unique independent variable makes this more complicated. In particular, the
rates of change may differ, depending upon the direction in which we move. We start by using the one
variable theory to define change inw with respect to one variable at a time.

Definition 16.1 Suppose we are given a function w= f (x;y;z). Thepartial derivative of f with respect
to x is defined by differentiating f with respect to x, considering y and z as being held constant. That is,
at a point(x0;y0;z0), the value of the partial derivative with respect to x is

(16.1)
∂ f
∂x

(x0;y0;z0) = d
dx

f (x;y0;z0) = lim
h!0

f (x0+h;y0;z0)� f (x0;y0;z0)
h

:
Similarly, if we keepx andzconstant, we define thepartial derivative of f with respect toy by

(16.2)
∂ f
∂y

= d
dy

f (x0;y;z0) ;
and by keepingx andy constant, we define thepartial derivative of f with respect tozby

(16.3)
∂ f
∂z

= d
dz

f (x0;y0;z) :
Example 16.1 Find the partial derivatives off (x;y) = x(1+xy)2.

Thinking ofy as a constant, we have

(16.4)
∂ f
∂x

= (1+xy)2+x(2(1+xy)y) = (1+xy)(1+3xy) :
235
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Now, we think ofx as constant and differentiate with respect toy:

(16.5)
∂ f
∂y

= x(2(1+xy)x) = 2x2(1+xy) :
Example 16.2 The partial derivatives off (x;y;z) = xyzare

(16.6)
∂ f
∂x

= yz; ∂ f
∂y

= xz; ∂ f
∂z

= zy :
Of course, the partial derivatives are themselves functions, and when it is possible to differentiate the

partial derivatives, we do so, obtaining higher order derivatives. More precisely, the partial derivatives are
found by differentiating the formula forf with respect to the relevant variable, treating the other variable
as a constant. Apply this procedure to the functions so obtained to get thesecond partial derivatives:

(16.7)
∂ 2 f
∂x2 = ∂

∂x
(∂ f

∂x
) ; ∂ 2 f

∂y∂x
= ∂

∂y
(∂ f

∂x
); ∂ 2 f

∂x∂y
= ∂

∂x
(∂ f

∂y
) ; ∂ 2 f

∂y2 = ∂
∂y

(∂ f
∂y

)
Example 16.3 Calculate the second partial derivatives of the function inexample 1.

We havef (x;y) = x(1+xy)2, and have found

(16.8)
∂ f
∂x

= (1+xy)(1+3xy) ; ∂ f
∂y

= 2x2(1+xy) :
Differentiating these expressions, we obtain

(16.9)
∂ 2 f
∂x2 = (1+xy)(3y)+y(1+3xy)= 4y+6xy2

(16.10)
∂ 2 f

∂y∂x
= (1+xy)(3x)+x(1+3xy)= 4x+6x2y

(16.11)
∂ 2 f

∂x∂y
= 4x(1+xy)+2x2y= 4x+6x2y

(16.12)
∂ 2 f
∂y2 = 2x2(x) = 2x3 :

Notice that the second and third lines are equal. This is a general fact: the mixed partials (the middle
terms above) are equal when the second partials are continuous:

(16.13)
∂ 2 f

∂y∂x
= ∂ 2 f

∂x∂y
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This is not easily proven, but is easily verified by many examples. Thus∂ 2 f=∂x∂y can be calculated in
whatever is the most convenient order. Finally, we note an alternative notation for partial derivatives;

(16.14) fx = ∂ f
∂x

; fy = ∂ f
∂y

; fxx = ∂ 2 f
∂x2 ; fxy = ∂ 2 f

∂x∂y
fyy = ∂ 2 f

∂y2 ; etc:
Example 16.4 Let f (x;y) = ytanx+xsecy. Show thatfxy= fyx.

We calculate the first partial derivatives and then the mixedpartials in both orders:

(16.15) fx = ysec2x+secy ; fy = tanx+xsecytany

(16.16) fyx= sec2 x+secytany fxy = sec2x+secytany :
The partial derivatives of a functionw= f (x;y;z) tell us the rates of change ofw in the coordinate

directions. But there are many directions at a point on the plane or in space: how do we find these
rates in other directions? More generally, if two or three variables are changing, how do we explore the
corresponding change inw? The answer to these questions starts with the generalization of the idea of the
differential as linear approximation. For a function of onevariable, a functionw= f (x) is differentiable

if it is can be locally approximated by a linear function

(16.17) w= w0+m(x�x0)
or, what is the same, the graph ofw= f (x) at a point(x0;y0) is more and more like a straight line, the
closer we look. The line is determined by its slopem= f 0(x0). For functions of more than one variable,
the idea is the same, but takes a little more explanation and notation.

Definition 16.2 Let w= f (x;y;z) be a function defined near the point(x0;y0;z0). We say that f is
differentiable if it can be well- approximated near(x0;y0;z0) by a linear function

(16.18) w�w0 = a(x�x0)+b(y�y0)+c(z�z0) :
In this case, we call the linear function thedifferential of f at (x0;y0;z0), denoted d f((x0;y0;z0). It
is important to keep in mind that the differential is a function of a vector at the point; that is, of the
increments(x�x0;y�y0;z�z0).

If f (x;y) is a function of two variables, we can consider thegraph of the function as the set of
points(x;y;z) such thatz= f (x;y). To say thatf is differentiable is to say that this graph is more and
more like a plane, the closer we look. This plane, called thetangent planeto the graph, is the graph of
the approximating linear function, the differential. For aprecise definition of what we mean by “well”
approximated, see the discussion in section 16.3. The following example illustrates this meaning.

Example 16.5 Let f (x;y) = x2+y. Find the differential off at the point (1,3). Find the equation of the
tangent plane to the graph ofz= f (x) at the point.

We have(x0;y0) = (1;3), andz0 = f (x0;y0) = 4. Expressz�4 in terms ofx�1 andy�3:

(16.19) z�4= x2+y�4= (1+(x�1))2+(3+(y�3))�4
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(16.20) = 1+2(x�1)+(x�1)2+3+(y�3) ; simplifing to

(16.21) z�4= 2(x�1)+y�3+(x�1)2 :
Comparing with (16.18), the first two terms give the differential. (x�1)2 is the error in the approxima-
tion. The equation of the tangent plane is

(16.22) z�4= 2(x�1)+y�3 or z= 2x+y�1 :
If we just follow the function along the line wherey= y0; z= z0, then (16.18) becomes justw�w0 =

a(x�x0); comparing this with definition 16.1, we see thata is the derivative ofw in thex-direction, that
is a= ∂w=∂x. Similarly b= ∂w=∂y andc= ∂w=∂z. Finally, since the variablesx; y; z are themselves
linear, we have thatdx is x�x0,and so forth. This leads to the following restatement of thedefinition of
differentiability:

Proposition 16.1 Suppose that w= f (x;y;z) is differentiable at(x0;y0;z0). Then

(16.23) dw= ∂ f
∂x

dx+ ∂ f
∂y

dy+ ∂ f
∂z

dz:
There are a variety of ways to use formula (16.23), which we now illustrate.

Example 16.6 Let

(16.24) z= f (x;y) = x2�xy+y3 :
Find the equation of the tangent plane to the graph at the point (2,-1).

At (x0;y0) = (2;�1), we havez0 = f (x0;y0) = 6. We calculate

(16.25)
∂ f
∂x

= 2x�y ; ∂ f
∂y

=�x+3y2 ;
so, at (2,-1),∂ f=∂x= 5; ∂ f=∂y= 1. Substituting these values in (16.18) we obtain

(16.26) z�6= 5(x�2)+(y+1) or z= 5x+y�3 :
An alternative approach is to differentiate equation (16.24) implicitly:

(16.27) dz= 2xdx�xdy�ydx+3y2dy :
Evaluating at (2,-1), we havez0 = 6, anddz= 4dx�2dy+dx+3dy. This is the equation of the tangent
plane, with the differentialsdx;dy;dzreplaced by the incrementsx�2;y+1;z�5:

(16.28) z�6= 4(x�2)�2(y+1)+(x�2)+3(y+1) ;
which is the same as (16.26).

Example 16.7 Find the equation of the tangent plane to the graph of the function z= x2+ xy� y at
(2,-1, 1).
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First, we calculate the differential

(16.29) dz= 2xdx+xdy+ydx�dy

and then evaluate it at the point:

(16.30) dz= 4dx+2dy�dx�dy= 3dx+dy :
We now get the equation of the tangent plane by replacing the differentials by the increments:

(16.31) z�1= 3(x�2)+(y+1) or z= 3x+y�4 :
Example 16.8 Find the points at which the graph ofz= f (x;y) = x2�2xy+y has a horizontal tangent
plane.

The horizontal plane through the point(x0;y0;z0) has the equationz� z0 = 0. Thus our points are
those whered f = 0; i.e., solutions of the pair of equations

(16.32)
∂ f
∂x

= 0
∂ f
∂y

= 0 :
Calculating, we get 2x�2y= 0; �2x+1= 0, sox= 1=2; y= 1=2 and our point is(1=2;1=2).
Example 16.9 Given the functionz= x2�xy+y3, in what direction, at the point (1,1,1) is the rate of
change ofzequal to zero?

The differential ofz is dz= (2x�y)dx+(�x+3y2)dy, so at (1,1,1), we havedz= dx+2dy. This is
zero for the direction in whichdx=�2dy; that is along the line of slope -1/2. Thus the answer is given
by a vector in that direction, for example:�2I +J.

Example 16.10 Suppose that we have designed a cylindrical silo of base radius 6 meters and height 10
meters, and we are asked to increase the radius by .25 m and theheight by .2 m. By (approximately) how
much do we increase the volume?

The volume of a cylinder of radiusr and heighth is V = πr2h. To answer this question, we consider
the linear approximation of volume, so we take the differential of V:

(16.33) dV = 2πrhdr+πr2dh :
Now, in our caser = 5; h= 10; dr = :25; dh= :2, so we calculate

(16.34) dV = 2π(5)(10)(:25)+π(5)2(:2) = π(25+5) = 30π cubic meters:
By looking at figure 1, we can identify the two terms in the increment of volume: the first is the volume
of the shell of widthdr around the cylinder, and the second is the volume of the cap ofheightdh. The
negligible part is the volume 2πdrdhof the washer at the top of widthdr and heightdh.
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Figure 16.1

dh

h

r dr

Proposition 16.2 (The Chain Rule). Let w= f (x;y;z) be a function defined in a region R in space. Sup-
pose thatγ is a curve in R given parametrically by x= x(t); y= y(t): z= z(t), with t= 0 corresponding
to (x0;y0;z0). Then, considering w= f (x(t);y(t);z(t)) as a function of t alongγ, we have

(16.35)
dw
dt

= ∂w
∂x

dx
dt

+ ∂w
∂y

dy
dt

+ ∂w
∂z

dz
dt

:
That is, the rate of change ofw with respect tot along γ is given by (16.35). We shall give an

explanation of this formula in section 3.

Example 16.11 Let w= f (x;y;z) = xy+ y2z. Consider the curve given parametrically byx= t; y=
t2; z= ln t. Finddw=dt at t = 2.

Differentiating,

(16.36)
∂w
∂x

= y ; ∂w
∂y

= x+2yz; ∂w
∂z

= y2 ;
(16.37)

dx
dt

= 1 ; dy
dt

= 2t ; dz
dt

= 1
t
;

so

(16.38)
dw
dt

= y(1)+(x+2yz)(2t)+y2(1
t
) :

At t = 2 we calculatex= 2; y= 4 andz= ln2, giving

(16.39)
dw
dt

= 4+(2+8ln2)(4)+16=2= 20+32ln2:
Example 16.12 Let z= x2+ y2. Find the maximum value ofz on the ellipse given parametrically by
x= cost; y= 2sint.
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We need to find the points at whichdz=dt = 0. Now

(16.40)
∂z
∂x

= 2x ; ∂z
∂y

= 2y ; dx
dt

=�sint ; dy
dt

= 2cost ;
and thus

(16.41)
dz
dt

=�2xsint+4ycost :
Sincex = cost andy= 2sint, this givesdz=dt = �2sint cost +8sint cost : Set this equal to zero to
obtain 6sint cost = 0, or 3sin(2t) = 0, which has the solutionst = 0; �π=2; π , andx= �1; y= 0 or
x= 0; y=�2. The corresponding values ofz are thus 1 and 4, so 1 is the minimum value and 4 is the
maximum value on the ellipse.

We can think of an equation of the formf (x;y;z) = 0 as definingz implicitly as a function ofx andy,
in the sense that we could solve forz, given specific values ofx andy. However, just as in one dimension,
we need not solve forz to find the partial derivatives. If we take the differential of the defining equation
f (x;y;z) = 0 we get

(16.42) fxdx+ fydy+ fzdz= 0 so that dz=� fx
fz

dx� fy
fz

dy :
The coefficient ofdx is thus∂z=∂x, and the coefficient ofdy is ∂z=∂y. Of course if fz= 0, these are not
defined. But iffz 6= 0, then this method works.

Proposition 16.3 Suppose that f is a differentiable function of(x;y;z) near the point(x0;y0;z0), and
that fz((x0;y0;z0) 6= 0. Then the equation f(x;y;z) = 0 defines z implicitly as a function of x;y and

(16.43)
∂z
∂x

=� fx
fz

and
∂z
∂x

=� fy
fz
:

Example 16.13 Given f (x;y;z) = z3+ 3xz2+ y2z, find expressions for∂z=∂x and∂z=∂y wherez is
defined implicitly as a function of(x;y) by the equationf (x;y;z) = 5. Evaluate these at the point (1,1,1).

First we calculate the partial derivatives:

(16.44)
∂ f
∂x

= 3z2 ; ∂ f
∂y

= 2yz; ∂ f
∂z

= 3z2+6zx+y2;
so that

(16.45)
∂z
∂x

=� 3z2

3z2+6zx+y2 ; ∂z
∂y

=� 2yz
3z2+6zx+y2 :

The values at (1,1,1) are∂z=∂x=�3=10; ∂z=∂x=�1=10.
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Let w= f (x;y;z), wheref is a differentiable function. To put the formula for the differential,(16.23), in
vector form, we introduce thegradient of the functionf :

(16.46) ∇ f = ∂ f
∂x

I + ∂ f
∂y

J+ ∂ f
∂z

K ;
and the vector differentialdX = dxI +dyJ+dzK . We interpretdX as a small change in the vectorX.
Then (16.17) can be rewritten as

(16.47) dw= ∂ f
∂x

dx+ ∂ f
∂y

dy+ ∂ f
∂z

dz= (∇ f ) �dX :
This leads to the following vectorial form of the chain rule.

Proposition 16.4 (The Gradient Form of the Chain Rule). Let w= f (x;y;z) be a function defined
in a region R in space. Suppose thatγ is a curve in R given parametrically byX = X(t), with t = 0
corresponding toX0. Then, considering w= f (X(t)) as a function of t alongγ, we have

(16.48)
dw
dt

= (∇ f ) � dX
dt

;
evaluated atX0.

The partial derivatives tell us the rate of change of the function f in the coordinate directions. Using
the gradient, we can calculate the rate of change in any direction.

Definition 16.3 Let w= f (x;y;z) be differentiable in a neighborhood ofX0. For any vectorV, let
X(t) = X0+ tV parametrize the line throughX0 in the directionV. Thederivative of f along V is

(16.49) DV f (X0) = lim
t!0

f (X0+ tV)� f (X0)
t

:
Propostion 16.5. Given the differentiable functionf and a vectorV, we have

(16.50) DV f (X0) = ∇ f �V :
The right hand side of (16.49) is the derivative off along the line in the direction ofV. That line is
parametrized byX(t) = X0+ tV, sodX=dt = V. Now, by the chain rule

(16.51) DV f (X0) = d
dt

f (X(t)) = ∂ f
∂x

dx
dt

+ ∂ f
∂y

dy
dt

+ ∂ f
∂z

dz
dt

= ∇ f � dX
dt

= ∇ f �V :
If we replaceV by a unit vectorU, then the parametert represents distance along the line, sincejX(t)�
X0j = tjUj = t. We say that the line is parametrized by arc length, and referto DU f as thedirectional
derivative of f in the directionU.

Example 16.14 Let f (x;y) = x3�3x2+xy+7 andU = 0:6I �0:8J. FindDU f (1;�2).
We havefx = 3x2�6x+y; fy = x. Evaluating at (1,-2), we have∇ f (1;�2) =�5I +J. Thus

(16.52) DU f (1;�2) = ∇ f (1;�2) �U=�3�0:8=�3:8 :
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Example 16.15 For f as above, find the directionU at (1,-2) in whichDU f = 0.
Let U = aI +bJ. We must solve

(16.53) ∇ f (1;�2) �U = (�5I +J � (aI +bJ)=�5a+b= 0 :
This givesb= 5a. SinceU is a unit vector, we havea2+b2 = 26a2 = 1, soa= 1=p26; b= 5=p26 will
do Thus

(16.54) U = I +5Jp
26

:
We also have the answer�U. Notice that both these vectors are unit vectors in the direction of ∇ f?.

Example 16.16 Let γ be parametrized byX(t) = t2I + ln tJ+ tK , and letw= f (x;y) = xyz. Finddw=dt
alongγ. What is the rate of change ofw with respect tot at the pointt = 2?

To use (16.48), we calculate

(16.55) ∇ f = yzI +xzJ+xyK ; dX
dt

= 2tI + 1
t
J+K ;

so that

(16.56)
dw
dt

= (∇ f ) � dX
dt

= 2tyz+ xz
t
+xy= 3t2(ln t+1) ;

sincex= t2, y= ln t andz= t. At t = 2, we getdz=dt = 12(ln2+1).
Example 16.17 Let X(t) = costI + sintJ parametrize the unit circle, and letf (x;y) = x2+2xy. Find
the maximum value off on the unit circle.

The functionz= f (X(t)) has a maximum whendz=dt = 0. We calculate:

(16.57) ∇ f = (2x+2y)I +2xJ= 2((cost +sint)I +2costJ ;
(16.58)

dX
dt

=�sintI +costJ ;
so that

(16.59)
dz
dt

= (∇ f ) � dX
dt

= 2((cost+sint)(�sint)+2cos2 t :
To solvedz=dt = 0 we use double angle formulas:

(16.60) 2((cost +sint)(�sint)+2cos2 t =�2cost sint+2(cos2 t�sin2 t) =�sin(2t)+2cos(2t)
which is zero when tan(2t) = 2, ort = 31:7Æ;211:7Æ. The corresponding values ofx= cost; y= sint are
x=�:526; y=�:851. Calculating the values ofzat these points gives the maximum 1.172.

For a functionw = f (x;y;z) of three variables defined near the pointX0 : (x0;y0;z0), let w0 =
f (x0;y0;z0). The equationw=w0 is the level surfaceSof w at (x0;y0;z0). For f differentiable at a point
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X0, the fact thatf can be approximated by a linear function implies that the surfaceS looks more and
more like a plane, the closer we look. This plane, given by theequationd f(X0) = 0, is thetangent plane
to SatX0. We now note that the gradient off is the normal to this surface, and points in the direction of
maximum increase off .

Proposition 16.5 Let f be a function differentiable in a neighborhood of the point X0.
a) ∇ f (X0) points in the direction of maximum increase of the function fat X0.
b) ∇ f (X0) is the normal to the tangent plane of the level set of f throughX0.

To show a), start with a unit vectorU. From (16.50) we have

(16.61) DU(X0) = ∇ f �U = j∇ f jcosβ

whereβ is the angle between∇ f andU (sincejUj = 1). This takes its greatest value when cosβ = 0,
that isU = ∇ f . To show b), letV be a vector on the tangent plane. By definition,d f(X0)(V) = 0, so

(16.62) ∇ f (X0) �V = d f(X0)(V) = 0 :
Thus∇ f (X0) is orthogonal to every vector in the tangent plane, so can be taken to be its normal. Now, a
pointX lies in the tangent plane if and only if the vectorX�X0 lies on the tangent plane, or

(16.63) ∇ f (X0) � (X�X0) = 0 ;
which is thus the equation of the tangent plane.

Example 16.18 Let f (x;y) = x3 + 3x2y2+ 2y. Find the equation of the line tangent to the curve
f (x;y) = 9 at (2,-1).

The above discussion for three dimensions holds just as wellin two dimensions. Thus, by proposition
16.6, the normal to the tangent line to the curve is∇ f .We calculate∇ f = (3x2+6xy2)I +(6x2y+2)J;
which atx= 2; y=�1 is the vector 24I�22J. Now, the equation of the tangent line is given by (16.63),
whereX0 = 2I �J is the vector to the point (2,-1):

(16.64) (24I �22J) � ((x�2)I +(y+1)J)= 0 or 24(x�2)�22(y+1)= 0 ;
which simplifies to 24x�22y= 70.

Example 16.19 Let f (x;y;z) = xyz. Find the gradient off . Find the equation of the tangent plane to
the level surfacef (x;y;z) = 2 at the pointX0 : (1;2;1).

We calculate:

(16.65) ∇ f = ∂ f
∂x

I + ∂ f
∂y

J+ ∂ f
∂z

K = yzI +xzJ+xyK :
At X0, ∇ f = 2I +J+2K , so the equation of the tangent plane is∇ f � (X�X0) = 0:

(16.66) 2(x�1)+(y�2)+2(z�1)= 0 or 2x+y+2z= 5 :
Example 16.20 Let w= x+ xy� yz2. Find the equation of the tangent plane to the surfacew= 2 at

(3,1,2).
We calculate∇w= (1+y)I +(x�z2)J�2zyK . At the given point (3,1,2),∇w= 2I �J�6K . This

is the normal to the tangent plane, atX0 = 3I +J+2K , so the equation of that plane is

(16.67) ∇w � (X�X0) = 2(x�3)� (y�1)�6(z�2)= 0 ;
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or 2x�y�6z+7= 0.

Example 16.21 Let Sbe the spherex2+y2+z2 = a2; a> 0. Show that at any pointX on the sphere,
the vectorX is orthogonal to the sphere.
Let w= x2+y2+z2, so thatS is the level setw= a2. Then∇w is normal toSat X = xI +yJ+zK . But

(16.68) ∇w= 2xI +2yJ+2zK = 2X :
Example 16.22 Let S1 be the spherex2+ y2 + z2 = 4 andS2 the cylinderx2 + y2 = 1. Let X =

xI +yJ+zK be a point on the curveγ of intersection of the surfacesS1 andS2. Find a vector tangent to
γ atX.

Let w1 = x2+y2+z2; w2 = x2+y2, so thatγ is the intersection of the level setsw1 = 4 andw2 = 1.
Then∇w1 and∇w2 are both orthogonal to the tangent toγ, so∇w1�∇w2 points in the direction of the
tangent toγ. We calculate:

(16.69) ∇w1�∇w2 = 2(xI +yJ+zK )�2(xI +yJ)= 4(�yzI +zxJ) :
In the above, we have considered a surface as a graph or as a level set of a function. Surfaces

can also be givenparametrically . Let u and v be the variables in a regionR of the plane, and let
X(u;v) = x(u;v)I + y(u;v)J+ z(u;v)K be a vector-valued function onR. Then the set of values of
X(u;v), as(u;v) ranges overR describes a surface in space.

Example 16.23 Consider the functionX(u;v) = (u� v)I +(u+ v)J+uvK defined in(u;v) space. In
coordinates, this is given by the equations

(16.70) x= u�v y= u+v z= uv :
We can solve foru andv in terms ofx andy;

(16.71) u= x+y
2

v= �x+y
2

;

putting these in the formula for z we have

(16.72) z= uv= x+y
2

�x+y
2

= �x2+y2

4
;

so the surface is the hyperbolic paraboloid 4z= y2�x2.

Now, in general it may not be so easy (or simple) to realize a parametric surface as a level set;
however, we can use the parametric equations to , for example, find the tangent plane to the surface at a
point.

Proposition 16.6 Let X(u;v) = x(u;v)I + y(u;v)J+ z(u;v)K be a vector-valued function defined on a
region in R-space. Define

(16.73) Xu = ∂x
∂u

I + ∂y
∂u

J+ ∂z
∂u

K ;
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(16.74) Xv = ∂x
∂v

I + ∂y
∂v

J+ ∂z
∂v

K :
a) The vectorXu�Xv is normal to the surface.
b) If w= f (x;y;z) is a function defined near the surface, we can consider it as a function of u and v by
writing w= f (x(u;v);y(u;v);z(u;v)). Then

(16.75)
∂w
∂u

=∇w �Xu
∂w
∂v

= ∇w �Xv :
To see this, fix a point(u0;v0). If we setv= v0 and letu vary, we get the curveC given parameterically
by

(16.76) X(u) = x(u;v0)I +y(u;v0)J+z(u;v0)K :
The tangent vector to this curve isXu, and since the curve lies in the surface, its tangent vector lies in the
tangent plane. Similarly, considering the curveu= u0, we see that the vectorXv also lies in the tangent
plane. ThusXu�Xv is normal to the tangent plane. Part b) follows directly fromthe chain rule, applied
to the curvesu= u0 andv= v0.

Example 16.24 Find the equation of the tangent plane to the surface of example 23 at the point (-2,4,3).
From (16.71), this point corresponds to the valuesu= 1; v= 3. Now, we differentiate the function

defining the surface, obtaining

(16.77) Xu = I +J+vK ; Xv =�I +J+uK :
The values atu= 1; v= 3 areXu = I +J+3K ; Xv =�I +J+K . Thus, a normal to the tangent plane
is N = Xu�Xv =�2I �4J+2K , and the equation of the tangent plane is

(16.78) �2(x+2)�4(y�4)+2(z�3)= 0 or z= x+2y�3

Example 16.25 Consider the surface given parametrically by

(16.79) X(u;v) = 3cosucosvI +4cosusinvJ+5sinuK :
Find the normal to the tangent plane ant the point corresponding tou= π=3; v= π=6.

Differentiate:

(16.80) Xu =�3sinucosvI �4sinusinvJ+5cosuK ;
(16.81) Xv =�3cosusinvI +4cosucosvJ :
Evaluating at the given point, we have

(16.82) Xu =�3

p
3

2

p
3

2
I �4

p
3

2
1
2

J+5
1
2

K =�9
4

I �p3J+ 5
2

K ;
(16.83) Xv =�3

1
2

1
2

I +4
1
2

p
3

2
J =�3

4
I +p3J :

A normal to the plane isN = Xu�Xv =�(5=2)p3I +(15=8)J+3
p

3K .
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In order to make the intuitive concept of linear approximation, as used above, more precise we start with
the idea of closeness in the space itself. We measure the “nearness” of two points by the length of the
line segment joining the points. Thus, in vectorial terms, the distancebetweenX andX0 is jX�X0j,
that is, the square root of the sum of the squares of the components. We define limits in terms of this
distance.

Definition 16.4 Theball of radius c centered atX0 (denoted B(X0;c)) is the set of all points of distance
less than c fromX0. A neighborhoodof X0 is any set which contains some ball centered atX0.

Definition 16.5 Suppose that f is a function defined in a neighborhood ofX0. We say that

(16.84) lim
X!X0

f (X) = L

if we can insure thatj f (X)�Lj can be made as small as we please by takingX close enough toX0. We
say that f iscontinuousat X0 if

(16.85) lim
X!X0

f (X) = f (X0) :
Just as in one variable, we are assured that all functions which can be expressed by polynomials in the
coordinates are continuous.

Definition 16.6 A linear function is a function of the form L(X) = C �X, for some vectorC. In
coordinates we have L(x;y;z) = ax+by+cz, where we have writtenC= aI +bJ+cK andX = xI +yJ+
zK . Its level surface throughX0 is the plane a(x�x0)+b(y�y0)+c(z�z0) = 0, or C � (X�X0) = 0.

Now we define differentiability atX0 of a function f : that it can be well- approximated by a linear
function. This is the direct generalization of the definition of the derivative in one dimension.

Definition 16.7 Suppose that f is a function defined in a neighborhood ofX0. We say that f isdiffer-
entiableat X0 if there is a linear function L such that

(16.86) lim
X!X0

j f (X)� f (X0)�L(X�X0)jjX�X0j = 0 :
In this case, we call L thedifferential of f at X0, denoted d f(X0). We can write L� (X�X0) = ∇ f �(X�X0), where∇ f is thegradient of f .

Now, as we have seen, the calculation of differentials amounts to calculating partial derivatives. To
see this in terms of the above definition, let’s look at the situation in two variables, writingX = xI +yJ.
Suppose thatf is differentiable atX0, and its differential there isL(x�x0;y�y0) = a(x�x0)+b(y�y0).
First we see what happens to equation (16.86) along the liney= y0. ThenX�X0 = (x� x0)I , and we

get

(16.87) lim
x!x0

�� f (x;y0)� f (x0;y0)�a(x�x0)
x�x0

��= �� f (x;y0)� f (x0;y0

x�x0
)�a

��= 0 ;
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or

(16.88)
∂ f
∂x

= lim
x!x0

f (x;y0)� f (x0;y0)
x�x0

= a :
In the same way, we see thatb= ∂ f=∂y.

Now we turn to an argument for the chain rule in two dimensions.

The Chain Rule. Let w= f (x;y) be a differentiable function defined in a regionR. Suppose thatγ is
a differentiable curve inR given parametrically byX = X(t), with t = 0 corresponding toX0. Then,
consideringw= f (X(t)) as a function oft alongγ, we have

(16.89)
dw
dt

= (∇ f ) � dX
dt

:
evaluated atX0. We start with the definition of differentiability. Let

(16.90) η(t) = f (X(t))� f (X0)�L � (X(t)�X0) :
where we have writtenL for the gradient ofw evaluated atX0. By (16.86),

(16.91) lim
X(t)!X0

jη(t)jjX(t)�X0j = 0 :
Now, by continuityX(t)! X0 ast ! 0, and thus

(16.92) lim
t!0

��η(t)
t

��= lim
X(t)!X0

jη(t)jjX(t)�X0j lim
t!0

jX(t)�X0jjtj = 0 ;
by (16.91), and the assumption of differentiability ofX(t), which assure that the second limit on the right
exists. Now, by the definition ofη :

(16.93) f (X(t))� f (X0) = L � (X(t)�X0)+η(t) :
Divide by t, and take the limit ast ! 0:

(16.94)
dw
dt

= lim
t!0

f (X(t))� f (X0)
t

= lim
t!0

L � X(t)�X0

t
+ lim

t!0

η(t)
t

= L � dX
dt

:x16.4. Optimization

Now we turn to the technique for finding maxima and minima of a functionz= f (x;y) of two variables.

Definition 16.8 If f (x0;y0) � f (x;y) is at least as large as its value at all nearby points, we say that f
has alocal maximum at (x0;y0). More precisely, if, for some a> 0 we have

(16.95) f (x0;y0)� f (x;y)
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for all (x;y) within a distance a of(x0;y0), then(x0;y0) is a local maximum point for f . Similarly, if
instead we have

(16.96) f (x0;y0)� f (x;y)
for all (x;y) sufficiently close to(x0;y0), then(x0;y0) is a local minimum point for f .

The first derivative test for functions of one variable givesus the following criterion:

Proposition 16.7 Suppose thatX0 is a local maximum (or minimum) for f . Then∇ f = 0.

To see this, pick a vectorV and consider the line given by the equationX(t) =X0+tV. Then f (X(t))
has a maximum att = 0, so

(16.97) ∇ f �V = d
dt

f (X(t))��0 = 0 :
This can only be true for allV if ∇ f = 0.

Definition 16.9 If ∇ f (x0;y0) = 0 we say that(x0;y0) is a critical point .

Thus, to find the local maxima or minima of a function in a givenregion, one must look among the
critical points.

Example 16.26 Find the critical points of the functionf (x;y) = x3+xy+y2�x.
We calculate the components of the gradient:

(16.98)
∂ f
∂x

= 3x2+y�1 ; ∂ f
∂y

= x+2y :
Now, we set these equal to zero and solve. The second equationgivesx= �2y; substituting that in the
first gives 12y2+y�1= 0, which has the roots

(16.99) y= �1�p1+48
24

; or y= 1
4
; � 1

3
:

Thus, the critical points are(�1=2;1=4); (2=3;�1=3). But now, how can we tell whether or not we have
a local maximum or a local minimum at either of these points? In fact, we may have neither; there is
a third possibility: that along certain lines through the critical point, the value is a local maximum, and
along other lines, the value is a local minimum. Such a point is asaddle point.

Example 16.27 Let z= x2� y2. Then the origin is a critical point forz. Sincez= x2 along the line
y= 0, z has a minimum at the origin on this line, but on the linex= 0, we havez= �y2 which has a
maximum at the origin along this line.

We distinguish among these points by using the second derivative test in one variable. In order to
make clear what the criterion is, we first consider the case ofa quadratic function.

Example 16.28 Let z be a quadratic function of the variablesu; v: z= au2+2buv+cv2. The origin is
a critical point. By completing the square we can discover what kind of critical point it is:

(16.100) z= a(u2+2
b
a

uv+ b2

a2 v2)+(c� b2

a
)v2 = a(u+ b

a
v)2+ ac�b2

a
v2 :
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Thus if both terms have positive coefficients, the origin is aminimum; if both terms have negative
coefficients, the origin is a maximum, and if the signs differ, the origin is a saddle point. We call the
expressionD = ac�b2 thediscriminant of the quadratic function definingz. Notice that ifD > 0, that
the coefficients of (16.102) have the same sign, and if alsoa> 0, we have a minimum. and ifa< 0, a
maximum. IfD < 0, the coefficients have different signs and we have a saddle point.

This example leads us directly to the general criterion by applying the second derivative test along
each line through the critical point. For the functionz= f (x;y), let fxx; fx;y; fyy represent the second
partial derivatives off .

Proposition 16.8 Suppose that∇ f (x0;y0) = 0, that is (x0;y0) is a critical point. Then (evaluating at(x0;y0)):
If D = fxx fyy� ( fxy)2 < 0 at a point(x0;y0), the f has a saddle point there.
If D = fxx fyy� ( fxy)2 > 0 and fxx > 0, at a point(x0;y0), then f has a local minimum there.
If D = fxx fyy� ( fxy)2 > 0 and fxx < 0, at a point(x0;y0), then f has a local maximum there.
If D = 0, we can conclude nothing. We note that when D> 0 the second derivative along all lines

has the same sign, so we could check whether fyy is greater or less than 0 instead, if that were easier.

To see this, choose a vectorV = uI +vJ and consider the functionfV(t) = f (X0+ tV) = f (x0+ tu;y0+
tv). Differentiating we find, by the chain rule,

(16.101)
d
dt

fV = u fx+v fy ; d2

dt2
fV = d

dt
(u fx+v fy) = u

d fx
dt

+v
d fy
dt

:
We compute the second derivative by applying the chain rule to the functionsfx; fy:

(16.102)
d2

dt2
fV = u(u fxx+v fyx)+v(u fxy+v fyy) = u2 fxx+2uv fxy+v2 fyy :

If this is positive, then the functionfV has a minimum; that is the functionf has a minimum along the
line in the direction ofV. If this holds for all directionsV; that is, for all values ofu; v, then f has a local
minimum at(x0;y0). But, referring back to example 16.28, this is true ifD > 0; fxx > 0. Similarly, if
D < 0; fxx < 0, thenf has a maximum along all lines through(x0;y0), so f has a local maximum there.
However, ifD and fxx have different signs, thenf has a local maximum in some directions, and a local
minimum in others, so we have a saddle point.

Example 16.29 We continue with example 16.26. We found critical points atP(�1=2;1=4), Q(2=3;�1=3).
Differentiating the first partials (see (16.98)), we get

(16.103) fxx = 6x ; fxy = 1 ; fyy= 2 :
Thus

(16.104) atP : D = 6(�1
2
)(2)�12 =�7 ; and at Q : D = 6(2

3
)(2)�12 = 7 ;

soP is a saddle point, and sincefxx = 4> 0, Q is a local minimum.

Example 16.30 Let f (x;y) = x2+2y4+xy+4x+2y. Find the local maxima and minima ofz. Does f
have a global maximum or minimum?
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First we find the critical points:

(16.105) fx = 2x+y+4 ; fy = 8y3+x+2 :
To find the points where both are zero, we obtainx=�8y3�2 from the second equation. Putting this in
the first,we get

(16.106) 2(�8y3�2)+y+4= 0 ; or �16y3+y= 0 :
This has the solutionsy= 0;�1=4, so the critical points areP(�2;0); Q(�17=8;1=4), R(�15=8;1=4).
We now calculate the second derivatives:

(16.107) fxx = 2 ; fxy = 1 ; fyy = 24y2 :
ThenD= 48y2�1, which is positive at all of these points. Sincefxx is everywhere positive, these are all
local minima. To determine the global minimum, we evaluate:f (P) = �4; f (Q) = �4:0078; f (R) =�4:0078. Thus the global minimum is -4.0078, attained at bothQ andR. Everywhere else the function
has a direction in which it is increasing, so it has no global maximum.

Notice, in these problems we have to solve several equationssimultaneously, and usually they are not
linear. There are no universal algorithms for solving such systems of equations, and we have to follow
our intuition. Usually the technique of substitution works(although in the above problem, with other
constants the cubic equation in (16.106) would be much more difficult). So, in general the procedure to
follow is to look at the given equations to see if, in one of theequations one of the variables can be easily
written in terms of the other. If so, substitute that expression in the other equation.x16.4.1 The Method of Lagrange Multipliers

Let C be a curve in the plane, not going through the origin. Let’s find the point onC which is closest to
the origin. This amounts to finding the minimum value off (x;y) = x2+y2 on the curveC. If C is given
parametrically by the equationsx= x(t); y= y(t), we know what to do: differentiatef (x(t);y(t)) and
set the derivative equal to zero. But, if the curve is given implicitly by an equationg(x;y) = c, we don’t
want to solve the equation explicitly, and we don’t have to. Looking at the condition

(16.108)
d
dt

f (x(t);y(t) = 0 as ∇ f � dX
dt

= 0

we see that the requirement is that∇ f is orthogonal to the tangent to the curve at the minimizing point.
But ∇g is orthogonal to its level setC everywhere, so at the minimizing point we have that∇ f and∇g
are collinear; that is, they are multiples of each other. Thus, we can solve the problem by fiinding the
solution of the system

(16.109) ∇ f = λ ∇g ; g(x;y) = c :
This gives three scalar equations in three unknowns, which,in principle, can be solved. Of course the
value ofλ is not of interest, but is useful as an auxiliary to finding thevalues ofx; y.

Example 16.31 Find the point on the line 3x�2y= 1 which is closest to the point (4,7).
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Given the constraintg(x;y) = 3x�2y= 1, we want to minimizef (x;y) = (x�4)2+(y�7)2. The
gradients are

(16.110) ∇ f = 2(x�4)I +2(y�7)J and ∇g= 3I �2J :
These gradients are collinear at the minimizing point, so wehave to solve the equations

(16.111) 2(x�4) = 3λ ; 2(y�7) = 2λ and 3x�2y= 1 :
We can eliminateλ from the first two equations:

(16.112) 4(x�4) = 6λ = 6(y�7) so that 4x�6y=�26 :
Now we have simultaneous linear equations inx andy which we can solve, getting the point (16,47/2).
We note that the Lagrangian equations (16.109) just say thatthe line from this point to (4,7) has to be
orthogonal to the given line; something we knew from geometry.

Example 16.32 Find the maximum value off (x;y) = xy on the ellipsex2+4y2 = 1.
Let g(x;y) = x2+4y2. We calculate the gradients:∇ f = yI + xJ and∇g= 2xI +8yJ. At the point

on the ellipse at which we have the maximum, we have∇ f orthogonal to the tangent to the ellipse, so is
collinear with∇g. Thus we have the equation∇ f = λ ∇g for someλ . This gives the scalar equations

(16.113) y= 2λx ; x= 8λy ;x2+8y2 = 1 :
We can eliminateλ by dividing the first equation by the second:

(16.114)
y
x
= 2λx

8λy
= x

4y
giving x2 = 4y2 :

Substituting that in the last equation gives 4y2+4y2 = 1, so thaty=�1=(2p2). Then

(16.115) x2 = 4y2 = 4
8

so that x=� 1p
2
:

The possible values off (x;y) = xy at these points are�1=4, so the maximum value off is 1/4, and its
minimum is�1=4.

The parameterλ , called theLagrange multiplier , serves the purpose of finding a relation between
x andy which is a consequence of the optimization. The value ofλ is not important, but in some cases it
may make the problem easier to first determineλ .

To summarize: given the problem: minimize (or maximize) a function f (x;y) subject to a constraint
g(x;y) = c. We observe that the chain rule tells us that, at the optimizing point,∇ f is orthogonal to the
tangent to the level set ofg. But so is∇g, so we must have∇ f = λ ∇g for someλ . Solve this equation
in conjunction withg(x;y) = c to find the point. This method (of Lagrange multipliers) works in three
dimensions as well.

Proposition 16.9 Suppose that w= f (x;y;z) is a differentiable function, and we wish to find its maxima
and minima subject to a constraint g(x;y;z) = c. At an optimizing point P there is aλ such that

(16.116) ∇ f (P) = λ ∇g(P) ; g(x;y;z) = c :
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These equations give a system of four equations in four unknowns which, in typical circumstances,
have only a finite number of solutions. The maximum (minimum)of the function must occur at one of
these points.
To see why this is true, we follow the two dimensional argument. Let Sbe the level surfaceg(x;y;z) = c.
Let C be a curve throughP lying in the surfaceS. Then f is optimized alongC, so that the derivative
of f along the curve is zero atP. But this just says that∇ f (P) is orthogonal to the tangent to the curve.
Since every vector in the tangent plane toS is the tangent vector to such a curve,∇ f (P) is orthogonal to
the tangent plane toS. But so is∇g(P), so∇ f (P) and∇g(P) must be colinear.

Example 16.33 Find the point on the plane 2x+3y+z= 1 closest to the point(1;�1;0).
Here the constraint isg(x;y;z) = 2x+ 3y+ z= 1 and the function to be minimized isf (x;y;z) =(x�1)2+(y+1)2+z2. Taking the gradients and introducing the Lagrange multipier, we are led to the

equations

(16.117) 2(x�1) = 2λ ; 2(y+1) = 3λ ;2z= λ ; 2x+3y+z= 1 :
We use the first three equations to express the variables in terms ofλ , and then use the last to solve for
λ :

(16.118) x= λ +1 ; y= 3λ �2
2

; z= λ
2
;

so that

(16.119) 2(λ +1)+3
3λ�2

2
+ λ

2
= 1 :

This givesλ = 1=7. Substituting into equations 16.118), we find the desired point to be (1/7, -11/14, 1/14).

Example 16.34 Farmer Brown wishes to enclose a rectangular coop of 1000 square feet. He will build
three sides of brick, costing $25 per linear foot, and the fourth of chain link fence, at $ 15 per linear foot.
What should the dimensions be to minimize the cost?

Let x andy be the dimensions of the coop, wherex represents the sides, both of which are to be of
brick. The constraint isg(x;y) = xy= 1000, and the cost function isC = 25(2x+ y)+ 15y. We have
∇C= 50I +40J, and∇g= yI +xJ. The equations to solve are:

(16.120) 50= λy ; 40= λx ;xy= 1000;
so

(16.121) 1000= xy= (50
λ
)(40

λ
) ;

or λ 2 = (50)(40)=1000= 2, givingλ =p
2. Thenx= 40=p2= 20

p
2; y= 50=λ = 25

p
2.

Many problems involve finding the maximum or minimum of a function of many variables subject
to many constraints The technique of Lagrange multipliers works in this general context, but - of course
- is much more difficult to employ. To give a sense of the general procedure, we state the proposition in
the case of a function of three variables with two constraints.
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Proposition 16.10To find the extreme values of a function f(x;y;z) subject to two constraints (say along
a curve), g(x;y;z) = c; h(x;y;z) = d, we have to solve the five equations in the five unknowns x;y;z;λ ;µ :

(16.122) ∇ f (P) = λ ∇g(P)+µ∇h ; g(x;y;z) = c; h(x;y;z) = d :


