CHAPTER 15

Change of Coordinates in Two Dimensions

Suppose thdt is an ellipse centered at the origin. If the major and minor axes are horizontal and vertical,

as in figure 15.1, then the equation of the ellipse is
N

(15.1) 272" 1,

wherea andb are the lengths of the major and minor radii.

Figure 15.1 Figure 15.2
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However, if the axes df are neither horizontal nor vertical, as in figure 15.2, then we do not have this
simple form of the equation. What we do know, since the curves in figures 15.1 and 15.2 are the same
but for a rotation, is this: fou andv as shown in figure 15.2,

w Vv

2tp=1

(15.2)

Now, the point here is thatandv can be expressed in terms of the cartesian coordinates, and ix turn,
andy can be determined fromnandv. This replacement of one pair of variables which determine a point
by another is called ehange of coordinates We now show how to do this in the context of the ellipse
of figure 2. First, recall Proposition 13.3, and in particular example 13.6. Introduce a unit keictor
the positive direction of the major axis, so that is in the direction of the minor axis. Now, any point
X can be represented by the vector= uL + vL * (see figure 15.3). The following proposition tells us
how to findu andv.

219
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Figure 15.3 Figure 15.4
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Proposition 15.1 LetL be a unit vector in the plane. Then any vecfocan be written as

(15.3) X=uL+w'! where u=X-L, v=X-Lt.

To see this, we calculate the dot products;

(15.4) X-L=(uL+ww)-L=uL-L4+vL!-L=u,

(15.5) X-Lt=@uL+wh) L =uL-L+wvt Lt =v,

sinceL-L =1, L*-L+ =1, L-L* = 0. In this way, if we are given a geometric description of the
ellipse, we can find its equation in the cartesian coordinatgs

Example 15.1 LetE be the ellipse centered at the origin, with major radius of length 5, major axis the
line 3x— 4y = 0, and minor radius of length 2. Find the equation of the ellipse.

The point (4,3) is on the given line, s 4 3J lies in the direction of the major axis. The length of
this vector is 5, so we can take the unit vector in the direction of the major axislto=h&dl + 33)/5.
Thus, in the context of the above discussion,

4 3 3 4
15.6 L==1+=2J, Lt=-Z14+2J
(15.6) 5 "5 5 "5

and a poiniX = xI +yJ is on the ellipse if and only if

2 2

u V

(15.7) §+§:1 where u=X-L, v=X-Lt.

Now, X -L = (4/5)x+ (3/5)y, X-L+ = —(3/5)x+ (4/5)y, so the equation of the ellipse is

[(4/5)x+ (3/5)y)* L 2G5+ (4/9y* _
25 4

(15.8) 1.
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This simplifies to. 1156 — .2016xy+ .1744/% = 1, or 28%? — 504xy+ 4362 = 2500.

In general, it happens that, in solving a particular problem, the situation can be easily realized in
variables adapted to the problem, but the solution requires presentation in terms of an initial cartesian
coordinate system. For example, the above ellipse is easily described in terms of the varaides
adapted to its axes, but to realize the ellipse by an equation, we had to reprasdstin terms ofx and
y. We now state the proposition which gives the procedure used in example 15.1.

Proposition 15.2 Given a unit vectolL = cosfl + sin6J we can write any vectoK = xl +yJ as
X =uL+VvL', where u= X-L andv=X-L*; thatis

(15.9) u=xcosf +ysinf, v=-—xsinf-+ycoso .

We refer to equations (15.9) aslange of coordinateby rotation through the anglé. We can also
reverse the roles of these variables and retum tpfrom u, v just by rotating back through an angle
— 0. This gives us the equations

(15.10) X=ucosO —vsin@ ., y=usinB+vcoso .

Of course, this is just what we get by solving equations (15.9% fordy in terms ofu andv.

Example 15.2 The curvexy = 1 is symmetric about the axes=y, x = —y. Write the curve in
coordinates, v relative to these axes, as in figure 15.4.

Since the linex = y makes an angle of 45with the horizontal, the change of coordinates is accom-
plished by a rotation through 45Since cog45°) = sin(45°) = 1/+/2, we have the relations

X4y o =X+Y U=V UtV

(15.11) u= 75 V= 7 X_W, y_ﬁ.

Substituting forx andy in terms ofu andv in xy = 1, we get

(15.12) Xy = {“V [M

V2 vz

the equation of a hyperbola in thie v coordinates.

} =1 leadingto u>—v?=2,

As we have seen in the above examples, a hyperbola or ellipse leads to a quadratic equation, which
will have a nonzeray term if the axes are not horizontal and vertical. This is always true; as well as the
reverse: any quadratic equation is the equation of a conic curve. We now see how to find the standard
description of the conic from the equation (first with an example).

Example 15.3 LetC be the curve given by the equation
(15.13) X2 —xy=12.

Find coordinates which put this in standard form.
We want to make a substitution of the form (15.10) so that the coefficient ofttezm is 0. Making
the substitution gives us

(15.14) (ucosd —vsinB)?2 — (ucosB — vsin@)(usind +vcosh) = 12.
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The coefficient ofuvis
(15.15) —2c0s9sinf —cos 0 +2sif6 or —sin(26) —cog26) .

This is zero when taj26) = —1, or 8 = —11/8. For this value oB we now compute the coefficients
andB of u? andv?:

(15.16) A= cos 6 — cosfsing = %(1+cos(29) —sin(26)) = 1+2\/§ ,
(15.17) B = sin?0 + cosfsind = %(1— cog20) +sin(20)) = 172\/2 ,

so that the equation for the curve in thev coordinates is
(15.18) (V2+ 1)U — (V2 - 1)V = 24,

the equation of a hyperbola.

Following this example, given any quadratic equatiow andy:
(15.19) AX? 4+ Bxy+Cy* + Dx+Ey+F =0

we can find a rotation which eliminates the cross term. The resulting equation in the new variables
u, v is that of a conic section. Of course, there will be exceptional cases; for example the equation
x? 4+y? 4+ 1= 0 has no solutions, and the equatioh- y?> = 0 is a pair of straight lines. But, if (15.19)
defines a curve, it must be an ellipse, hyperbola or parabola. If we introduce the new variabtbs

by a rotation through an angt the equation in the new coordinates is still quadratic &mdyv; that is,

the equation is of the form

(15.20) AW+ Buv+CV2+D'u+EV+F =0

where the new coefficients are expressed in tern& arfid the old ones. By settirigf = 0, we see how
to choosef. So, let's make the substitution (15.10) in the equation (15.20). The part which is purely
guadratic is

(15.21) A(ucos — vsinB)?2 + B(ucosd — vsinB) (usin@ + vcosh) + C(usind + vcosh)? .
The coefficient oivin this expression is
(15.22) B’ = —2Acos8sin6 + B(cos’ 6 — sir? 0) + 2Ccosf sing .

Set this to zero and solve fé. Using double angle formulas, the equation is

: B
(15.23) (—A+C)sin(26) + Bcog26) =0, or tan260)= A C
If A=C, the denominator is zero, so we tak@ 2 11/2, or 8 = 11/4. Now, the equation (15.20) (with
B’ = 0) is of the form considered in chapter 11, and can be put in standard form with center at some other

point.
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Example 15.4 LetC be the curve given by the equation
(15.24) X2 — 2¢/3xy— 3y? 4+ 6v/3x+ 6y = 16.

Find coordinates which p@ in standard form.
First, we use (15.23) to find the angle of rotation:

_2\/§

(15.25) tai20) = 7= =

m m
V3, so 2975, 676,

and (sind = 1/2, cosf = 1/3/2), the substitution (15.10) is
V3u—v u++/3

2 YT T2
We do this in two steps. First, the quadratic terms of (15.24) are, in the coordinates

(15.26) X =

(15.27) % [(3u? — 2v/3uv+V?) — 2v/3(v/3u? + 2uv+ v/3v?) + 3(U2 + 2v/3uv+ 3v7

which reduces to?. Now incorporate the linear terms of (15.24) in termsiof:

(15.28) v2+% 6v/3(v/3u— V) 4 6(u+ \/§v)} =16,
which can be put in the standard form
15 32
2 [ — [ —
(15.29) Ve = > <u 15> .

Thus the curve is a parabola, with axis at an angle/# with thex-axis, which opens downward.
We summarize this discussion as follows.

Proposition 15.3 A curve given by the equation
(15.30) Ax2 + Bxy+Cy?+ Dx+Ey+F =0

is a conic section. Rotate coordinates by the argytgven by

B
(15.31) tari20) = AC:
that is, make the substitution in (15.38):
(15.32) X=ucosf —vsing, y=usinB+vcoso .

There is no uv term, so after completing the squares, the equation is in standard form. In particular, the
axes of the conic are at an anglewith the coordinate axes.

Proposition 15.4 For a curve given by equation (15.38),
If B2 — 4AC < 0, the curve is an ellipse.
If B2 — 4AC > 0, the curve is a hyperbola.
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If B2 — 4AC = 0, the curve is a parabola.

To indicate why this is true, let us consider just the quadratic terms and start with an equation of the form
(15.33) AX% +Bxy+Cy* = 1.

SupposingA > 0, we complete the square for the first two terms, rewriting (15.49) as

By By\?)| B2
2 —_ _—— =
(15.34) A(x +2 x+]< ) ) YV +Cy¥ =1,
or
(15.35) A X+5/ 2+My2_1

. y A =1.

If the coefficients of the squared terms are both positive, then there are no solutions fardarye so

the curve is an ellipse. On the other hand, if the signs of the coefficients are different, there are always
solutions for largex andy, so the curve must be a hyperbola. Thus the shape is determined by the sign
of 4AC — B?, and if we carefully follow through the argument, we arrive at proposition 15.4.

Example 15.5 Describe the curve? + xy+y? = 1.
SinceB? - 4AC= —1< 0, this is an ellipse. Sinc& = C, we need to rotate coordinates try4. We
make the subsititution

u—v u+v
15.36 X=——, y=—F
( ) 75 YT
getting
2_2uvHV2 | B—V? W24 2uv+ V2
(15.37) u l2.IV+ +u 2v +u + ;v+ _1,

which reduces to@® + 2v2 = 2.

§15.1. Special Coordinate Systems

Often a problem can be seen as that of understanding the motion of a particle relative to a fixed point or
a fixed axis. In these cases it is useful to express everything in coordinates which emphasize positions
relative to the fixed point or axis.

§15.1.1 Polar coordinates

First, we recall, from Chapter 11, polar coordinates in the plane. We consider the fixed point as the
origin of these coordinates, and take the positiaxis as the “zero” direction. Then any other direction
is described by the angle between it and the poskiegis, which we denote a8. The distance of a
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point on this line from the origin is denoted These equations relate the cartesian coordir{atgswith
the polar coordinatess6:

(15.38) X=rcosf, y=rsind, r=vvx+y2, G:arctarzx

Polar coordinates have some ambiguities. Every valu@,®f) determines a point in the plane.
However, ifr = 0, the point is the origin, an@ doesn’'t make sense. Secondly, the val(re8) and
(r,0 +2m), and in fact,(r, 8 + 2nm) for anyn give the same point. The cuné&= a s the ray of angle
emanating from the origin, and the cunve- a is the circle of radius centered at the origin (see figure
15.5).

In three dimensions, we introduce two new coordinate systems, the first oriented toward a fixed axis,
thez-axis, and the second oriented toward the origin.

§15.1.2 Cylindrical coordinates

Here a point is described by itscoordinate and its polar coordinates in the plane (see figure 15.6).

Figure 15.5 Figure 15.6
z

~

S (xY,2)
|
|
|
|
|
|
|
|

X

The formulas for the change from cartesian coordinates are
(15.39) Xx=rcos@, y=rsinf, z=z, r=+/X+y?2, 0= arctanz

The equatiom = at is a circular cylinder of radiua centered along= 0; 8 = a describes the half plane
with its edge along = 0 making an anglea with thexzplane, and = a is a horizontal plane .
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Figure 15.7 Figure 15.8

§15.1.3 Spherical coordinates

These coordinates are oriented toward the origin, so that a point is described by its disfeoroghe
origin and the ray from the origin on which it lies. We describe the ray by the aniglmakes with the
z-axis and the anglé it makes with thexzplane (see figure 15.9).

Figure 15.9

pcosp

We can read off from figure 15.9 the equations relating spherical coordinates with polar coordinates;
(15.40) X=psingcosf, y=psingsinB@, z=pcosy.

Note that, althougt® ranges through a whole circleg, ranges from 0 tat. The curvep = ais the
sphere of radiua centered at the origirf) = a a half-plane, ang = a the half-cone with axis the-axis,
making the angla with its axis (see figures 15.10-15.12).

Example 15.6 Describe the curve§, : ¢ =@, p=1,C,: 6 = 6,, p = R Give their equations in
cylindrical and cartesian coordinates.

The curveC, is the intersection of the cong= ¢, with the sphere of radiuR. If we think of this
sphere as the globg;, is a circle of latitude. The radius of this circle Rsing,, and its center is on
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the z-axis, at a distancRcosg, from the origin. In cylindrical coordinates, this curve lies on the plane
z= Rcosg,, and the cylinder = Rsing,; these are then the equationsdyfin cylindrical coordinates.
In rectangular coordinates the equationsxdre y? = (Rsing,)?, z= Rcosg,.

The curveC, is the intersection of the plaré= 6, with the sphere of radiuR. If we think of this
sphere as the glob€, is a circle of longitude. Its center is the origin and its radiuR.isn cylindrical
coordinatesC, is given by the equations® + 22 = R?, 6 = 6,- In cartesian coordinates, the equations
arex? +y> + 23 =Ry= xtan@,. (When6, = /2 the second equationis= 0.)

Figure 15.10 Figure 15.11 Figure 15.12
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§15.2. Surfaces; Graphs and Level curves

A relation among the variables y, z defines asurfacein three dimensions: the set of ally, zwhich
satisfy the equation. For example, we have seen that a linear redatiohy+ cz+ d = 0 is the equation
of a plane; that is, the set of all points y, z) which satisfy that relation is a plane. Similarly, the sphere
of radiusR has the equatior? + y?> + 72 = R%. As we have observed already, it is sometimes difficult to
visualize a surface given by an equation in three variables. In this section we shall discuss various ways
of visualizing surfaces.

In the case that the relation can be solvedzfor terms ofx andy, then the surface is thgraph of
the functionz= f(x,y). In this case it is a good idea to try to sweep out the surfaces by the curves of
intersection of the curve with the planes- const. These are tHevel curvesof the surface. Then we
can imagine the surface as a stack of these level sets. In order to understand how the level sets stack, we
may want to look at representatipeofiles these are the curves of intersection of the surface with planes
perpendicular to they-plane.

Example 15.7 Draw the level curves of the surfaze= 4 —x2 — y?, and sketch the surface.

We see first of all, since? + y? is never negative, that< 4. The level surface= 4 is just the origin
(0,0), but aszdecreases from 4 we get a family of circles centered at the origin of ever increasing radius
(the radius isy/4 — 2). Our surface then is a stack of circles. To see the shape of the stack, we look at a
representative profile: the intersection of the surface with a plane throughattis. For example, for
y =0 we get the parabola= 4 — x?, and now can safely sketch the graph.
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Figure 15.13

Example 15.8 Do the same for the surfage=y — x2.

Settingz equal to the constamt, we get the parabolg? =y — z,, so the level curves are the family
of parabolas with axis thg-axis, opening upward, with vertex é0,z,). We have shown typical level
curves in figure 15.14. Thus the surface is is a stack of parallel parabolas with vertex moving linearly
up they-axis; that is, the vertices lie on the lige= z, x = 0. To get a further idea of the shape of the
surface we look at a profile= constant , say = 0. There the surface is given by the paralmta—x?,
a parabola opening downward. Putting this information together we get figure 15.15.

Figure 15.14 Figure 15.15

As is clear from these examples, sketching surfaces is an imprecise science, and the configuration of
level sets gives an idea of the shape, but not very precise. If we draw a large number of level sets on the
Xy plane, we can observe that at points where the level sets are close together, the surface is steep, and
where they are far apart, the surface is quite flat. This is illustrated in figures 15.16 and 15.17: figure
15.16 is that of the surface, and figure 15.17 the configuration of its level setsxyfiane.
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Figure 15.16 Figure 15.17

§15.3. Cylinders and Surfaces of Revolution

Starting with a curve€ in a pland, the surface swept out by the translates of this curve in the direction
perpendicular tdl is thecylinder over the curv€. This is the case when the relation defining the surface
Sis independent of one of the variables. For example, the suBaoen by the relatiox? —y? = 1 is
independent of, so if (x, y) is a point satisfying this relation, then all poirfts y, z) are on the surface,
soSis the cylinder over the hyperbofi: x? —y? = 1 in thexy-plane.

Example 15.9 Sketch the surface= 9— x2.
Since the relation is independentoire just draw the parabola given by this equation onxthglane,
and extend it by lines parallel to tlyeaxis.

Figure 15.18
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If a surface has the property that, for a particular linghe intersection of the surface with a plane
perpendicular td is a circle centered ob, then the surface issurface of revolution about theaxis L.
Suppose thabis a surface of revolution about tizeaxis. Then the intersection &with the half-plane
y =0, x> 0 completely determines the surface. Iebe that curve of intersection, and suppose it is
given by the equation = f(x). If (x,,0,7,) is a point onC, then every point on the plarze= z, whose
distance from the axis isx, is onS. That is, if\/x2 +y? = x,, thenz, = (/X% +Y?), s0(X,Y,7,) is on
the surfaceS. Thus the equation of a surfaBef revolution is given by the equatian= f(x) defining its

profile just by replacing by \/x2 +y2: Sis the surfacg = f (/X2 +y?).

Example 15.10 Sketch the surfac# = x2 + y2.
This is the surface obtained by revolving the cuzge= x? about thez axis. Since that curve consists
of the two linesz = +x, we get the cone in figure 15.24.

§15.4. Quadric surfaces

These are the surfaces which are given by a quadratic relation among the variables. By completing the
square, and - if necessary - rotating the axes, we can reduce every quadric surface to one of the surfaces in
this section. It is a good exercise to trace out these surfaces using the technique of level sets and profiles
from the preceding sections. The figures are collected together at the end of the text. It is essential to
become familiar with these surfaces, for they are the fundamental examples for the rest of the course.

Sphere of radiusR ¥ +y?+Z=R?  (Figure 15.19)
The sphere is symmetric about all axes and planes through its center. The intersection of the sphere with
any plane is a circle. The intersection of the sphere with a plane through its centges aircle.

2 2

- zZ .
Ellipsoid -+ % + 2= 1 (Figure 15.20)

This equation is just that of the sphere, but with the coordinatgs z replaced by/a, y/b, z/c. The

effect is that the sphere has been dilated inthe y—,z—directions by the factora, b, c respectively,
producing the ellipsoid with verticgsta, 0,0), (0,+b,0), (0,0,+c) along the coordinate axes.

. XX Yy 7 .
Hyperboloid of one sheet ) + 2@ 1 (Figure 15.21)

First, let’s consider the cage= b = ¢ = 1. Then the equation can be written as
(15.41) Xty =1+7

so the intersection of this surface with the plarez, is a circle centered at the origin of radi\J/érz%.

This is a stack of circles of ever increasing radius as we move away frorygblane. If we sey = 0,
we get the profile — 22 = 1: a hyperbola, and thus figure 15.21. We could also have come to this figure
by observing that this is the surface of revolution of this hyperbola.

Note that if we sek = 1, y = zin equation (15.41) we get an identity. Thus this line lies on the
surface. More importantly, since this is a surface of revolution, if we revolve this line abomttkis,
we generate the surface (see figure 15.22). Thediad, y = —zalso lies on the surface and generates
it by rotation. Now, for generad, b, c, the level set of the surface at= z, is the ellipse
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X2y

2

(15.42) 1+ é
Thus, the surface is a stack of similar ellipses of size increasing as we move away frayplaee,
with, again, a hyperbolic profile along each plane througtethgis. We observe that this surface has
the same shape as that in the caseb = c = 1, except for dilations along the coordinate axes.

Again, this surface is generated by lines as in the first case, for figure 15.22 still describes the surface,
but for a change in scale in the coordinate directions. In particular, the pair of lines lying on the surface

that go through the poirfg, 0,0) are the lines

y z
15.43 —a. Y _4°f

( ) Xx=a b c

. Xy 7 .
Hyperboloid of one sheet 2 2 2° 1 (Figure 15.23)
The level setz = z, of this surface are the hyperbolas
22 2
(15.44) 7 1+ 2

whose vertices lie on theaxis, but move further and further from the originzgsmoves away from the
origin. To get a better view of this surface, we look at the level curves

2 Z2 2
y X0
(15.45) L+s=5-1

There is no curve fofx| < a, and for larger values dk|, we get a family of ever increasing ellipses.
This leads easily to figure 15.18.

- Xy 7 .
Elliptical Cone 2 + 22 0 (Figure 15.24)
Here the level curves are the ever-widening ellipses
XXy 7

and the profile in the plane= 0 is given by

2 P
Y y z

. — T - — :*:— N
(15.47) 22 or b= to
a pair of lines. The profile in the plarye= 0 is the pair of lines

(15.48) X_42
a C

This gives us figure 15.24. #= b, the level sets are circles, and the profiles are the same, for the surface
is the surface of revolution of the curves given by (15.48).

Now, the above list exhausts all possibilities for surfaces given by quadratic equations of the form

(15.49) AX% + By’ +CZ +Dx+Ey+Fz+G=0,
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with none ofA, B, C, equal to zero. Each of the surfaces illustrated in the figures has the origin as
center, and has a particular axis (thexis, except in the case of the hyperboloid of two sheets, in which
case it is thec-axis). For the general equation (15.49), the center might be any point, and the axis could
be one of the other coordinate axes. For, if we complete the square in each of the variables in equation
(15.49) we end up with an equation of the form

(15.50) A(X—%)? +B(y —Yp)* +C(z—7)* = H

If H =0 we have two case#, B, C, all of the same sign, in which case there is no surface. Otherwise
we get a cone. The axis is identified by the coefficient which is of a sign different from the other two.
If H # 0, we can divide byH, leading to one of the previous cases. The number of negative signs
determines the surface; no negatives: ellipsoid; one negative: hyperboloid of one sheet; two negative:
hyperboloid of two sheets.

Finally, there are two more surfaces; corresonding to the cases where one or more of the coefficients

of the quadratic term is zero

2 2

y

Elliptical Paraboloid ) + 0= z (Figure 15.25)

We look at the level curves= z,. If z, < 0 we get no curve. Far, > 0 we get a family of ellipses
of ever increasing size. The profile on the plane 0 is the parabolg? = b?z, and on they = 0 the
parabolax? = @’z This gives us enough information for figure 15.25.

VARV

Hyperbolic Paraboloid 2 02 z (Figure 15.26)
We look at the level curves= z,. We get the hyperbolas

2 2

(15.51) % - é =7
If z, > 0, the axis of the hyperbola is theaxis, but ifz, < 0, the axis is thg-axis. As|z,| increases, the
vertices move away from theaxis. The level curve faz, = 0 consists of the two lines/a= +y/b. To
get a better grip on the surface, we look at its profiles. The profilg fei0 is the parabola = x2/a?,
which has the-axis as axis, and opens upwards. The profilexfer0 is the parabola= —y?/b?, which
opens downward. putting this information together gives us figure 15.25.

We can get a different (and perhaps more readable) view of this surface by interchangiaatlye

coordinates. Figure 15.26 is that of the hyperbolic paraboloid

X2 y2
(15.52) —St =2
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Figure 15.19: Sphere. Figure 15.20: Ellipsoid

z

Figure 15.21: Hyperboloid of one sheet

Figure 15.23: Hyperboloid of two sheets Figure 15.24: Elliptic cone

z z

7
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Figure 15.25: Elliptic paraboloid Figure 15.26: Hyperboloid paraboloid

z z




