
CHAPTER 15

Change of Coordinates in Two Dimensions

Suppose thatE is an ellipse centered at the origin. If the major and minor axes are horizontal and vertical,
as in figure 15.1, then the equation of the ellipse is

(15.1)
x2

a2 + y2

b2 = 1 ;
wherea andb are the lengths of the major and minor radii.
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However, if the axes ofE are neither horizontal nor vertical, as in figure 15.2, then we do not have this
simple form of the equation. What we do know, since the curves in figures 15.1 and 15.2 are the same
but for a rotation, is this: foru andv as shown in figure 15.2,

(15.2)
u2

a2 + v2

b2 = 1 :
Now, the point here is thatu andv can be expressed in terms of the cartesian coordinates, and in turn,x
andy can be determined fromu andv. This replacement of one pair of variables which determine a point
by another is called achange of coordinates. We now show how to do this in the context of the ellipse
of figure 2. First, recall Proposition 13.3, and in particular example 13.6. Introduce a unit vectorL in
the positive direction of the major axis, so thatL ? is in the direction of the minor axis. Now, any point
X can be represented by the vectorX = uL + vL ? (see figure 15.3). The following proposition tells us
how to findu andv.

219
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Proposition 15.1 LetL be a unit vector in the plane. Then any vectorX can be written as

(15.3) X = uL +vL? where u= X �L ; v= X �L? :
To see this, we calculate the dot products;

(15.4) X �L = (uL +vL?) �L = uL �L +vL? �L = u ;
(15.5) X �L? = (uL +vL?) �L? = uL �L?+vL? �L? = v ;
sinceL �L = 1; L? �L? = 1; L �L? = 0. In this way, if we are given a geometric description of the
ellipse, we can find its equation in the cartesian coordinatesx; y.

Example 15.1 Let E be the ellipse centered at the origin, with major radius of length 5, major axis the
line 3x�4y= 0, and minor radius of length 2. Find the equation of the ellipse.

The point (4,3) is on the given line, so 4I +3J lies in the direction of the major axis. The length of
this vector is 5, so we can take the unit vector in the direction of the major axis to beL = (4I +3J)=5.
Thus, in the context of the above discussion,

(15.6) L = 4
5

I + 3
5

J ; L? =�3
5

I + 4
5

J ;
and a pointX = xI +yJ is on the ellipse if and only if

(15.7)
u2

52 + v2

22 = 1 where u= X �L ; v= X �L? :
Now, X �L = (4=5)x+(3=5)y; X �L? =�(3=5)x+(4=5)y, so the equation of the ellipse is

(15.8)
[(4=5)x+(3=5)y]2

25
+ [�(3=5)x+(4=5)y]2

4
= 1 :
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This simplifies to:1156x2� :2016xy+ :1744y2 = 1, or 289x2�504xy+436y2 = 2500.

In general, it happens that, in solving a particular problem, the situation can be easily realized in
variables adapted to the problem, but the solution requires presentation in terms of an initial cartesian
coordinate system. For example, the above ellipse is easily described in terms of the variablesu andv
adapted to its axes, but to realize the ellipse by an equation, we had to representu andv in terms ofx and
y. We now state the proposition which gives the procedure used in example 15.1.

Proposition 15.2 Given a unit vectorL = cosθ I + sinθJ we can write any vectorX = xI + yJ as
X = uL +vL?, where u= X �L and v= X �L?; that is

(15.9) u= xcosθ +ysinθ ; v=�xsinθ +ycosθ :
We refer to equations (15.9) as achange of coordinateby rotation through the angleθ . We can also

reverse the roles of these variables and return tox; y from u; v just by rotating back through an angle�θ . This gives us the equations

(15.10) x= ucosθ �vsinθ ; y= usinθ +vcosθ :
Of course, this is just what we get by solving equations (15.9) forx andy in terms ofu andv.

Example 15.2 The curvexy= 1 is symmetric about the axesx = y; x = �y. Write the curve in
coordinatesu; v relative to these axes, as in figure 15.4.

Since the linex= y makes an angle of 45Æ with the horizontal, the change of coordinates is accom-
plished by a rotation through 45Æ. Since cos(45Æ) = sin(45Æ) = 1=p2, we have the relations

(15.11) u= x+yp
2

; v= �x+yp
2

; x= u�vp
2

; y= u+vp
2

:
Substituting forx andy in terms ofu andv in xy= 1, we get

(15.12) xy= �u�vp
2

��
u+vp

2

�= 1 leading to u2�v2 = 2 ;
the equation of a hyperbola in theu; v coordinates.

As we have seen in the above examples, a hyperbola or ellipse leads to a quadratic equation, which
will have a nonzeroxy term if the axes are not horizontal and vertical. This is always true; as well as the
reverse: any quadratic equation is the equation of a conic curve. We now see how to find the standard
description of the conic from the equation (first with an example).

Example 15.3 LetC be the curve given by the equation

(15.13) x2�xy= 12 :
Find coordinates which put this in standard form.

We want to make a substitution of the form (15.10) so that the coefficient of theuv term is 0. Making
the substitution gives us

(15.14) (ucosθ �vsinθ )2� (ucosθ �vsinθ )(usinθ +vcosθ ) = 12 :
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The coefficient ofuv is

(15.15) �2cosθ sinθ �cos2 θ +2sin2 θ or �sin(2θ )�cos(2θ ) :
This is zero when tan(2θ ) =�1, orθ =�π=8. For this value ofθ we now compute the coefficientsA
andB of u2 andv2:

(15.16) A= cos2 θ �cosθ sinθ = 1
2
(1+cos(2θ )�sin(2θ )) = 1+p

2
2

;
(15.17) B= sin2 θ +cosθ sinθ = 1

2
(1�cos(2θ )+sin(2θ )) = 1�p

2
2

;
so that the equation for the curve in theu; v coordinates is

(15.18) (p2+1)u2� (p2�1)v2 = 24 ;
the equation of a hyperbola.

Following this example, given any quadratic equation inx andy:

(15.19) Ax2+Bxy+Cy2+Dx+Ey+F = 0

we can find a rotation which eliminates the cross term. The resulting equation in the new variables
u; v is that of a conic section. Of course, there will be exceptional cases; for example the equation
x2+ y2+1= 0 has no solutions, and the equationx2� y2 = 0 is a pair of straight lines. But, if (15.19)
defines a curve, it must be an ellipse, hyperbola or parabola. If we introduce the new variablesu andv
by a rotation through an angleθ , the equation in the new coordinates is still quadratic inu andv; that is,
the equation is of the form

(15.20) A0u2+B0uv+C0v2+D0u+E0v+F 0 = 0

where the new coefficients are expressed in terms ofθ and the old ones. By settingB 0 = 0, we see how
to chooseθ . So, let’s make the substitution (15.10) in the equation (15.20). The part which is purely
quadratic is

(15.21) A(ucosθ �vsinθ )2+B(ucosθ �vsinθ )(usinθ +vcosθ )+C(usinθ +vcosθ )2 :
The coefficient ofuv in this expression is

(15.22) B0 =�2Acosθ sinθ +B(cos2 θ �sin2 θ )+2Ccosθ sinθ :
Set this to zero and solve forθ . Using double angle formulas, the equation is

(15.23) (�A+C)sin(2θ )+Bcos(2θ ) = 0 ; or tan(2θ ) = B
A�C

:
If A= C, the denominator is zero, so we take 2θ = π=2, or θ = π=4. Now, the equation (15.20) (with
B0 = 0) is of the form considered in chapter 11, and can be put in standard form with center at some other
point.
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Example 15.4 LetC be the curve given by the equation

(15.24) x2�2
p

3xy�3y2+6
p

3x+6y= 16 :
Find coordinates which putC in standard form.

First, we use (15.23) to find the angle of rotation:

(15.25) tan(2θ ) = �2
p

3
1�3

=p
3 ; so 2θ = π

3
; θ = π

6
;

and (sinθ = 1=2; cosθ =p
3=2), the substitution (15.10) is

(15.26) x= p
3u�v

2
; y= u+p

3
2

:
We do this in two steps. First, the quadratic terms of (15.24) are, in the coordinatesu; v:

(15.27)
1
4
[(3u2�2

p
3uv+v2)�2

p
3(p3u2+2uv+p

3v2)+3(u2+2
p

3uv+3v2]
which reduces tov2. Now incorporate the linear terms of (15.24) in terms ofu; v:

(15.28) v2+ 1
2

h
6
p

3(p3u�v)+6(u+p
3v)i= 16 ;

which can be put in the standard form

(15.29) v2 =�15
2

�
u� 32

15

� :
Thus the curve is a parabola, with axis at an angle ofπ=3 with thex-axis, which opens downward.

We summarize this discussion as follows.

Proposition 15.3 A curve given by the equation

(15.30) Ax2+Bxy+Cy2+Dx+Ey+F = 0

is a conic section. Rotate coordinates by the angleθ given by

(15.31) tan(2θ ) = B
A�C

;

that is, make the substitution in (15.38):

(15.32) x= ucosθ �vsinθ ; y= usinθ +vcosθ :
There is no uv term, so after completing the squares, the equation is in standard form. In particular, the
axes of the conic are at an angleθ with the coordinate axes.

Proposition 15.4 For a curve given by equation (15.38),
If B2�4AC< 0, the curve is an ellipse.
If B2�4AC> 0, the curve is a hyperbola.
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If B2�4AC= 0, the curve is a parabola.

To indicate why this is true, let us consider just the quadratic terms and start with an equation of the form

(15.33) Ax2+Bxy+Cy2 = 1 :
SupposingA> 0, we complete the square for the first two terms, rewriting (15.49) as

(15.34) A

 
x2+2

By
2A

x+]�By
2A

�2
!� B2

2A
y2+Cy2 = 1 ;

or

(15.35) A

�
x+ By

2A
y

�2+ 4AC�B2

4A
y2 = 1 :

If the coefficients of the squared terms are both positive, then there are no solutions for largex andy, so
the curve is an ellipse. On the other hand, if the signs of the coefficients are different, there are always
solutions for largex andy, so the curve must be a hyperbola. Thus the shape is determined by the sign
of 4AC�B2, and if we carefully follow through the argument, we arrive at proposition 15.4.

Example 15.5 Describe the curvex2+xy+y2 = 1.
SinceB2�4AC=�1< 0, this is an ellipse. SinceA=C, we need to rotate coordinates byπ=4. We

make the subsititution

(15.36) x= u�vp
2

; y= u+vp
2

getting

(15.37)
u2�2uv+v2

2
+ u2�v2

2
+ u2+2uv+v2

2
= 1 ;

which reduces to 3u2+2v2 = 2.x15.1. Special Coordinate Systems

Often a problem can be seen as that of understanding the motion of a particle relative to a fixed point or
a fixed axis. In these cases it is useful to express everything in coordinates which emphasize positions
relative to the fixed point or axis.x15.1.1 Polar coordinates

First, we recall, from Chapter 11, polar coordinates in the plane. We consider the fixed point as the
origin of these coordinates, and take the positivex-axis as the “zero” direction. Then any other direction
is described by the angle between it and the positivex axis, which we denote asθ . The distance of a
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point on this line from the origin is denotedr. These equations relate the cartesian coordinates(x;y) with
the polar coordinatesr;θ :

(15.38) x= r cosθ ; y= r sinθ ; r =px2+y2 ; θ = arctan
y
x

Polar coordinates have some ambiguities. Every value of(r;θ ) determines a point in the plane.
However, if r = 0, the point is the origin, andθ doesn’t make sense. Secondly, the values(r;θ ) and(r;θ +2π), and in fact,(r;θ +2nπ) for anyn give the same point. The curveθ = a is the ray of anglea
emanating from the origin, and the curver = a is the circle of radiusa centered at the origin (see figure
15.5).

In three dimensions, we introduce two new coordinate systems, the first oriented toward a fixed axis,
thez-axis, and the second oriented toward the origin.

x15.1.2 Cylindrical coordinates

Here a point is described by itsz-coordinate and its polar coordinates in the plane (see figure 15.6).

Figure 15.5
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The formulas for the change from cartesian coordinates are

(15.39) x= r cosθ ; y= r sinθ ; z= z ; r =px2+y2 ; θ = arctan
y
x

The equationr = at is a circular cylinder of radiusa centered alongz= 0; θ = a describes the half plane
with its edge alongz= 0 making an anglea with thexz-plane, andz= a is a horizontal plane .
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Figure 15.7
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x15.1.3 Spherical coordinates

These coordinates are oriented toward the origin, so that a point is described by its distanceρ from the
origin and the ray from the origin on which it lies. We describe the ray by the angleφ it makes with the
z-axis and the angleθ it makes with thexz-plane (see figure 15.9).

Figure 15.9
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We can read off from figure 15.9 the equations relating spherical coordinates with polar coordinates;

(15.40) x= ρ sinφ cosθ ; y= ρ sinφ sinθ ; z= ρ cosφ :
Note that, althoughθ ranges through a whole circle,φ ranges from 0 toπ . The curveρ = a is the

sphere of radiusa centered at the origin,θ = a a half-plane, andφ = a the half-cone with axis thez-axis,
making the anglea with its axis (see figures 15.10-15.12).

Example 15.6 Describe the curvesC1 : φ = φ0; ρ = 1, C2 : θ = θ0; ρ = R. Give their equations in
cylindrical and cartesian coordinates.

The curveC1 is the intersection of the coneφ = φ0 with the sphere of radiusR. If we think of this
sphere as the globe,C1 is a circle of latitude. The radius of this circle isRsinφ0, and its center is on
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thez-axis, at a distanceRcosφ0 from the origin. In cylindrical coordinates, this curve lies on the plane
z= Rcosφ0, and the cylinderr = Rsinφ0; these are then the equations ofC1 in cylindrical coordinates.
In rectangular coordinates the equations arex2+y2 = (Rsinφ0)2; z= Rcosφ0.

The curveC2 is the intersection of the planeθ = θ0 with the sphere of radiusR. If we think of this
sphere as the globe,C2 is a circle of longitude. Its center is the origin and its radius isR. In cylindrical
coordinates,C2 is given by the equationsr 2+ z2 = R2; θ = θ0. In cartesian coordinates, the equations
arex2+y2+z2 = R2;y= xtanθ0. (Whenθ0 = π=2 the second equation isx= 0.)

Figure 15.10
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x15.2. Surfaces; Graphs and Level curves

A relation among the variablesx; y; z defines asurface in three dimensions: the set of allx;y;z which
satisfy the equation. For example, we have seen that a linear relationax+by+cz+d = 0 is the equation
of a plane; that is, the set of all points(x;y;z) which satisfy that relation is a plane. Similarly, the sphere
of radiusR has the equationx2+y2+z2 = R2. As we have observed already, it is sometimes difficult to
visualize a surface given by an equation in three variables. In this section we shall discuss various ways
of visualizing surfaces.

In the case that the relation can be solved forz in terms ofx andy, then the surface is thegraph of
the functionz= f (x;y). In this case it is a good idea to try to sweep out the surfaces by the curves of
intersection of the curve with the planesz= const. These are thelevel curvesof the surface. Then we
can imagine the surface as a stack of these level sets. In order to understand how the level sets stack, we
may want to look at representativeprofiles: these are the curves of intersection of the surface with planes
perpendicular to thexy-plane.

Example 15.7 Draw the level curves of the surfacez= 4�x2�y2, and sketch the surface.
We see first of all, sincex2+y2 is never negative, thatz� 4. The level surfacez= 4 is just the origin(0;0), but aszdecreases from 4 we get a family of circles centered at the origin of ever increasing radius

(the radius is
p

4�z). Our surface then is a stack of circles. To see the shape of the stack, we look at a
representative profile: the intersection of the surface with a plane through thez-axis. For example, for
y= 0 we get the parabolaz= 4�x2, and now can safely sketch the graph.
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Figure 15.13

Example 15.8 Do the same for the surfacez= y�x2.
Settingz equal to the constantz0, we get the parabolax2 = y�z0, so the level curves are the family

of parabolas with axis they-axis, opening upward, with vertex at(0;z0). We have shown typical level
curves in figure 15.14. Thus the surface is is a stack of parallel parabolas with vertex moving linearly
up they-axis; that is, the vertices lie on the liney= z; x = 0. To get a further idea of the shape of the
surface we look at a profiley= constant , sayy= 0. There the surface is given by the parabolaz=�x 2,
a parabola opening downward. Putting this information together we get figure 15.15.

Figure 15.14
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y

Figure 15.15

As is clear from these examples, sketching surfaces is an imprecise science, and the configuration of
level sets gives an idea of the shape, but not very precise. If we draw a large number of level sets on the
xy plane, we can observe that at points where the level sets are close together, the surface is steep, and
where they are far apart, the surface is quite flat. This is illustrated in figures 15.16 and 15.17: figure
15.16 is that of the surface, and figure 15.17 the configuration of its level sets in thexy-plane.
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x15.3. Cylinders and Surfaces of Revolution

Starting with a curveC in a planeΠ, the surface swept out by the translates of this curve in the direction
perpendicular toΠ is thecylinder over the curveC. This is the case when the relation defining the surface
S is independent of one of the variables. For example, the surfaceSgiven by the relationx 2�y2 = 1 is
independent ofz, so if (x; y) is a point satisfying this relation, then all points(x; y; z) are on the surface,
soS is the cylinder over the hyperbolaC : x2�y2 = 1 in thexy-plane.

Example 15.9 Sketch the surfacez= 9�x2.
Since the relation is independent ofxwe just draw the parabola given by this equation on thexz-plane,

and extend it by lines parallel to they-axis.

Figure 15.18
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If a surface has the property that, for a particular lineL, the intersection of the surface with a plane
perpendicular toL is a circle centered onL, then the surface is asurface of revolutionabout theaxis L.
Suppose thatS is a surface of revolution about thez axis. Then the intersection ofSwith the half-plane
y = 0; x > 0 completely determines the surface. LetC be that curve of intersection, and suppose it is
given by the equationz= f (x). If (x0;0;z0) is a point onC, then every point on the planez= z0 whose
distance from thez axis isx0 is onS. That is, if

p
x2+y2 = x0, thenz0 = f (px2+y2), so(x;y;z0) is on

the surfaceS. Thus the equation of a surfaceSof revolution is given by the equationz= f (x) defining its
profile just by replacingx by

p
x2+y2: S is the surfacez= f (px2+y2).

Example 15.10 Sketch the surfacez2 = x2+y2.
This is the surface obtained by revolving the curvez2 = x2 about thez axis. Since that curve consists

of the two linesz=�x, we get the cone in figure 15.24.x15.4. Quadric surfaces

These are the surfaces which are given by a quadratic relation among the variables. By completing the
square, and - if necessary - rotating the axes, we can reduce every quadric surface to one of the surfaces in
this section. It is a good exercise to trace out these surfaces using the technique of level sets and profiles
from the preceding sections. The figures are collected together at the end of the text. It is essential to
become familiar with these surfaces, for they are the fundamental examples for the rest of the course.

Sphere of radiusR x2+y2+z2 = R2 (Figure 15.19)
The sphere is symmetric about all axes and planes through its center. The intersection of the sphere with
any plane is a circle. The intersection of the sphere with a plane through its center is agreat circle.

Ellipsoid
x2

a2 + y2

b2 + z2

c2 = 1 (Figure 15.20)

This equation is just that of the sphere, but with the coordinatesx; y; z replaced byx=a; y=b; z=c. The
effect is that the sphere has been dilated in thex�; y�;z�directions by the factorsa; b; c respectively,
producing the ellipsoid with vertices(�a;0;0); (0;�b;0), (0;0;�c) along the coordinate axes.

Hyperboloid of one sheet
x2

a2 + y2

b2 � z2

c2 = 1 (Figure 15.21)

First, let’s consider the casea= b= c= 1. Then the equation can be written as

(15.41) x2+y2 = 1+z2

so the intersection of this surface with the planez= z0 is a circle centered at the origin of radius
q

1+z2
0.

This is a stack of circles of ever increasing radius as we move away from thexy-plane. If we sety= 0,
we get the profilex2�z2 = 1: a hyperbola, and thus figure 15.21. We could also have come to this figure
by observing that this is the surface of revolution of this hyperbola.

Note that if we setx = 1; y = z in equation (15.41) we get an identity. Thus this line lies on the
surface. More importantly, since this is a surface of revolution, if we revolve this line about thez-axis,
we generate the surface (see figure 15.22). The linex= 1; y=�zalso lies on the surface and generates
it by rotation. Now, for generala;b;c, the level set of the surface atz= z0 is the ellipse
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(15.42)
x2

a2 + y2

b2 = 1+ z2
0

c2

Thus, the surface is a stack of similar ellipses of size increasing as we move away from thexy-plane,
with, again, a hyperbolic profile along each plane through thez-axis. We observe that this surface has
the same shape as that in the casea= b= c= 1, except for dilations along the coordinate axes.

Again, this surface is generated by lines as in the first case, for figure 15.22 still describes the surface,
but for a change in scale in the coordinate directions. In particular, the pair of lines lying on the surface
that go through the point(a;0;0) are the lines

(15.43) x= a ; y
b
=�z

c

Hyperboloid of one sheet
x2

a2 � y2

b2 � z2

c2 = 1 (Figure 15.23)

The level setsz= z0 of this surface are the hyperbolas

(15.44)
x2

a2 � y2

b2 = 1+ z2
0

c2

whose vertices lie on thex-axis, but move further and further from the origin asz0 moves away from the
origin. To get a better view of this surface, we look at the level curvesx= x0:

(15.45)
y2

b2 + z2

c2 = x2
0

a2 �1

There is no curve forjxj < a , and for larger values ofjxj, we get a family of ever increasing ellipses.
This leads easily to figure 15.18.

Elliptical Cone
x2

a2 + y2

b2 � z2

c2 = 0 (Figure 15.24)

Here the level curves are the ever-widening ellipses

(15.46)
x2

a2 + y2

b2 = z2

c2

and the profile in the planex= 0 is given by

(15.47)
y2

b2 = z2

c2 or
y
b
=�z

c
;

a pair of lines. The profile in the planey= 0 is the pair of lines

(15.48)
x
a
=�z

c
:

This gives us figure 15.24. Ifa= b, the level sets are circles, and the profiles are the same, for the surface
is the surface of revolution of the curves given by (15.48).

Now, the above list exhausts all possibilities for surfaces given by quadratic equations of the form

(15.49) Ax2+By2+Cz2+Dx+Ey+Fz+G= 0 ;
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with none ofA; B; C; equal to zero. Each of the surfaces illustrated in the figures has the origin as
center, and has a particular axis (thez-axis, except in the case of the hyperboloid of two sheets, in which
case it is thex-axis). For the general equation (15.49), the center might be any point, and the axis could
be one of the other coordinate axes. For, if we complete the square in each of the variables in equation
(15.49) we end up with an equation of the form

(15.50) A(x�x0)2+B(y�y0)2+C(z�z0)2 = H

If H = 0 we have two cases:A; B; C; all of the same sign, in which case there is no surface. Otherwise
we get a cone. The axis is identified by the coefficient which is of a sign different from the other two.
If H 6= 0, we can divide byH, leading to one of the previous cases. The number of negative signs
determines the surface; no negatives: ellipsoid; one negative: hyperboloid of one sheet; two negative:
hyperboloid of two sheets.

Finally, there are two more surfaces; corresonding to the cases where one or more of the coefficients
of the quadratic term is zero

Elliptical Paraboloid
x2

a2 + y2

b2 = z (Figure 15.25)

We look at the level curvesz= z0. If z0 < 0 we get no curve. Forz0 > 0 we get a family of ellipses
of ever increasing size. The profile on the planex = 0 is the parabolay2 = b2z, and on they = 0 the
parabolax2 = a2z. This gives us enough information for figure 15.25.

Hyperbolic Paraboloid
x2

a2 � y2

b2 = z (Figure 15.26)

We look at the level curvesz= z0. We get the hyperbolas

(15.51)
x2

a2 � y2

b2 = z0 :
If z0 > 0, the axis of the hyperbola is thex axis, but ifz0 < 0, the axis is they-axis. Asjz0j increases, the
vertices move away from thez-axis. The level curve forz0 = 0 consists of the two linesx=a=�y=b. To
get a better grip on the surface, we look at its profiles. The profile fory= 0 is the parabolaz= x2=a2,
which has thez-axis as axis, and opens upwards. The profile forx= 0 is the parabolaz=�y2=b2, which
opens downward. putting this information together gives us figure 15.25.

We can get a different (and perhaps more readable) view of this surface by interchanging thex andy
coordinates. Figure 15.26 is that of the hyperbolic paraboloid

(15.52) � x2

a2 + y2

b2 = z :
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Figure 15.19: Sphere.
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Figure 15.20: Ellipsoid
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Figure 15.21: Hyperboloid of one sheet
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Figure 15.22: Hyperboloid of one sheet.
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Figure 15.23: Hyperboloid of two sheets
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Figure 15.24: Elliptic cone

x

y

z



Chapter 15 Change of Coordinates in Two Dimensions 234

Figure 15.25: Elliptic paraboloid
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Figure 15.26: Hyperboloid paraboloid
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