CHAPTER 14

Particles in Motion; Kepler's Laws

§14.1. Vector Functions

Vectornotatian is well suitedto the representationof the motion of a particle. Fix a coordnatesystem
with centerO, andlet the positionof the objectat time t, relative to O be represeted by the vecta
function of t:

(1421) X(t) =x() +y(t)J+z(t)K .
Thevelocity of theobjectis thetime rateof changeof position:

dX dx, dy. dz
(142) V_E_EI+EJ+EK’

andtheacceler ation is thetime rateof chang of velocity:

dv.  d’, d?. d’z
=—=—l+-—=J+-—5K.

at a2 Tde”tae
As shawn, the differertiations are definedasthey arefor scalarfuncions, andare compued compe
nentwise. Recallthat we usethe varialde s to represehthe length of the cune, as measurd from a
particula startingpoint. If we think of (14.1) asdescriling the curve paranetrically, we find arclength
by integrating

ds dx\? /dy\? [dz\?
(144 o \/ (&) (&) (&)
with respectot. Thetime rateof changeof distancealongthe curwe is the speed of the particle. From

(14 4) we seethatthe speedof the particleis the magnitude of thevelocity vecta:

ds
(145) T =V

(143)

Example 14.1 A particleis rotatingabou the circle of radiusR at constahangularvelocity w. To find
the equationsof motion we startthe clock with the particleon the positive x-axis; thatis X(0) = RI. At
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timet the particlehasmoved throudh theangleawt, sois at

(146) X(t) = Rcoswtl + RsinwtJ .

Differertiating, we find the velocity andacceleration

(147) V(t) = —Rwsinwt! + Rwcoswt) , A(t) = —Rw?coswtl — Rw?sinwtJ .

NoticethatV (t) = wX(t)*, soV(t) is tanget to thecircle at X (t) andhasmagritude w|X (t)| = Rw, so
the speedof the particleis Rw. Also A(t) = —w?X(t), sotheacceleratia is directedtowardthe center
of thecircle andhasmagnitude Rw?.

Example 14.2 A missileis fired on the surfaceof the earthat anangleof elevation o andinitial speed
Sft/sec.Findthe equatios of motion.

Figurel4.1

>

Themotion is showvn in figure 14.1. We take the origin of coordnatesto bethe initial poirt of the
trajectoryof the missile. We know thatthe accelertion is thatdueto gravity, pointing downward and
of magritude 32 ft/sec?. ThusA(t) = —32J. Integrating (commnentwise)we have V(t) = —32tJ+ C
whereC is the constah (vector) of integration. Evaluatingatt = 0, we have C = V(0), which has
magritude Sanddirection o abore thehorizortal. Thus

(148) V(t) = =323+ S(cosal + sinaJ) = Scosal + (Ssina — 32t)J .
Integratingagain
(149) X(t) = (Scosa)tl + ((Ssina)t — 16t2)J

sinceX(0) = 0. Fromthis we candeternine whenthe missilehits the ground again andhow farit has
travelled. For X(t) is horizatal whenits J commnentis zero;thatis whent = Ssina /16. Thedistance
travelledis thel commnentof X(t) for thist, sois

Ssina _ $sin2a
16 32

To chosethe anglesothatthe horizantal distancehasa maximum, we choosex sothatthis expression
is largest. Themaximun is S?/32whena = 45°.

(1410) d = (Scosa)

Example 14.3 Let X(t) = costl + sintJ +tK. This particleis spiralling up the horizontal cylinder of
radiusl (seefigure 14.2 atconstantnguar velocity. We have

(1411) V(t) = —sintl +costJ+ K, A(t) =—cogl —sintJ.
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Thespeedf this particleis |V| = /2, andits accelertion is of magnitue 1 andalwayspointedtoward
the z-axis. This is the sameas circular motion in the xy-plane,exceptthatthe initial velocity hasan
elevationof 45° off thexy-plane.

Figurel4.2

v

In order to proceedve needto make someobsevationsabou thedifferentiationof vectorfunctions.

Proposition 14.1 SupposethatV(t), W(t) are differentiabe vectorvalued functionsof the variablet.
Then

a) %(V+W) = Z—\t/+c1j—\/tv

If w=w(t) is a differentiabe scalarvaluedfunctim,
b) %(WV) = %—\;VV+WZ—\:

0 Svwy= W iy W

d) %(VXW): Z—\t/xW-l-ded—vtV

e) If U(t) is avectorof lengthonefor all t, thenU anddU/dt are orthogonal.

Thefirst four identitiesareall verifiedby writing all vectasin compmentform, andusingtheusual
productrulefor differentiationof scalarfunctions.e) follows from c) thisway: sinceU-U = 1, we have

du du
(1412) G UtV g =0

sothat(dU/dt)-U=0.

Example 144 LetL =L(t) beaunitvectorvaluel function; thatis |L| = 1 always. Let 8(t) bethe
anglebetweerl (t) andthehorizantal. Then

d. _de, |
(1413) Toal

whereL * is theunit vecta orthagond andto theleft of L.
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Writing L in compaentswe have

(1414) L(t) = cosB(t)l +sinB(t)J, L*L(t) =—sinB(t)l + cosB(t)J .
Then

dc . .db de . de |
(1415) o = —Sindg ! +cosf- =Lt

Example 14.5 Let X(t) bea vectorvaluedfunction whosevaluesalwayslie in the xy-plane.Let A(t)
bethearea‘sweptout” by X fromt, tot; thatis, the areaof the domain bourdedby the vectos X(t),
X(t) andthetrajectoy of thevecta (seefigure14.3) Shaw that

dA 1]|dX
(1416) w2 EXX‘.
Figurel4.3
dXx

dA
X

deg

0

If we argue by differentials, this is easy In the diagram dA is half the areaof the parallelgram
spannedy X anddX, sodA = (1/2)|dX x X|.

We canalsoargue usingthe polarrepresetation of vectors.Let r bethelengthof X andL theunit
vectorin thediredion of X, sothatX =rL. We know (thepolarform for area):

dA 1 ,d6

(1417) i
Now, usingexamge 4,

X d dr dL  dr de. |
(1418) T a™m T w T w w
sothat

dXx | (ar de | _ ,d6
(1419) HXX‘_‘(dtLHdtL)er =r’ g

sinceX andL arecolinearandL andL + areorthagonalunit vectas.
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§14.2. Planar Particle Motion

As theabore exanplesdemastrate agoodunderstandingf themotionis achieved whenit is describe
in termsof the positionof the particle,ratherthanrelative to a fixed origin. For this reasonwe wantto
represetthevelocityandaccelerationn termswhichrelatedirectly to the particlemotion. We startwith
motionin theplanewith X(t) = x(t)l + y(t)J representingthe positionof the particlerelative to a given
coordnatesystem.As above, we have thevelocity andaccelertion of the particlegivenby

_dv d*  d?

J, A=—=—214+-27.

_dX dx, ~dy
v & Todt  dt2 ' dt2

Todt  dt dt
The speed of themaoving pointis

2 2
(1421) ‘;—tsz V| = \/(3—1‘) + (‘;—ty) .

Theunitvecta in the directionof motion, calledthetangent, is denotedrl'. Thus

ds
1422 V=—T.
(1422) gt
Now theacceleratiorvectorrepresets two aspect®f the motion,describingooththeway the directian
of motionis turning, andtheway the speeds charging. Differentiating(14.22),we have

(1420)

— d_V — d_ZST + d_Sd_T
S dt dt2 dtdt’
The first term gives the chang of speed,andthe second the charge in direction. By exanple 14.4

the secondtermis orthagonalto the first. We saythatit is normal to the curve of motion (calledthe
trajectory). Now, by exampe 14.4

(1423)

dT dbé__,
ds~ds'
where8 is the anglebetweenT andthe horizontal. Sinceboth T andarc length are indepenlent of

time, this equationhasto do only with the trajectoy. We definethe curvature, k, of the curve asthe
magtitudeof dT /ds, andtheunit normal, N, to thecurve asthedirectionof dT /ds. Thus

(1424)

dT
(1425) 45 =N,
sothatk = |dT/ds| andN = £T+, andequationl4.23 becomes
dv _ d?s_  [ds\?
(1426) A= =gz’ t (&) KN ,

sincedl = 9L %, py thechainrule. The compner of A in thedirection of T is calledthe tangential

acceleration anddenoteda;, andthe compner in the nomal directionis the normal acceleration
dendeday. Thus(14.%) canberewritten asthe setof equations

d?s ds

F7 aN:'A\N:K(_)2

(1427) A=a;T+aN, where a;=A-T= =
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Example 14.6 In examge 1 we corsidereda particlemoving arownd a circle of radius R at constant
anguar velocity w andfound 2

(1428) V(t) = —Rwsinwt!l + Rwcoswt = Rw(— sinwtl 4 coswtJ) ,
(1429) A(t) = —Rw? coswt] — Rw?sinwtd = Rw?(— coswt! — sinwtJ) .
Thus
ds \Y . n .
(1430) i V|=Rw, T= M = — sinwtl +coswtd, N=T— = —coswtl —sinwtJ ,

sothatA = Rw?N and,by (14.65):

s 2
(1431) a =3 o, aN:<d_S> LR, k-

Example 14.7 In exampe 14.2 we consideed thetrajectoryof a missilefired at aninitial speedof S
ft/sec,andatananglea to thehorizantal. We found

(1432) V(t) = Scosal + (Ssina — 32)J, A =-32].
Thus
(1433) ds_ V/(Scosa)? + (Ssina — 32)2 = Sy/cof a + (sina — 32/9)?,

i

cosal + (sina —32/9)J

(1434) T= : : .
y/coga + (sina — 32t/S(sina — 32 /S)2

Now, sincetheacceleratioris clockwiseto T, sois N, thus

(sina —32t/S)l — cosaJ

(1435) N=-Tt= , , )
v/coga + (sina — 32t/S(sina — 32/9)2
Finally,
(1436) 4 —A.T— —32(sina — 32t/9)
T V/coga + (sina — 32 /(sina — 32t/9)2’
(1437) ay=A-N= _ 32cosa ,
v/coga + (sina — 32/(sina — 32t/S)?
andthecunatureis
(1438) K= N _ 32cosa

(ds/dt)2  (cofa + (sina — 32 /S(sina — 32t/9)2)3/2
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An effective procedureto follow to make thesecalculationss this:
1. GiventheformulaX(t) of motion first differentiatet twice to obtainV andA.
2. Themagritudeof V is thespeedits direction vecta is T. Calculatea; =A-T.
3. Thenormalis £T+. CalculateA - T+; if it is positive it is ay, andN = T+; otherwisechang the
signs.
4. Finally, the cunvatureis k = ay/(ds/dt)?.

Example 14.8 A particlemovesin theplaneaccoding to theequation
(1439) R(t) =t~ +IntJ

Find thetangentiabndnormal acceleratioaandthe curvature of thetrajectoryatthetimet = 1.
Firstwe calculatethe velocity andacceleratia:
-1 1 2 1

1+23, A==1-2J

1440 V=—
( ) t2 t 3 2

Evaluging att = 1,wehaveV = —-14+J,A =2 —J. Then

ds 14+

1441 —=|V|=v2 d T=———.
( ) T V|=+v2, an 7
SinceA is clockwiseto T, we musttake

I +J
1442 N=—,
( : V2
andfinally

-3 1 ay 1

1443 ar=A-T=—, =A-N=—"—, k= — .
(449 ' vz N V2 (22~ 22

§14.3. Particle Motion in Space

For motion in spacetheideasarepreciselythe same;however, alittle morework is neededo find the
normal direction. Againwe startwith the motion describedy a vectorfundion X(t) = x(t)I +y(t)J +
Z(t)K in agiven coadinatesystem.Thespeed of themaving pointis

d dx\?2 /dy\? [dz\?
SRIONOECE

Theunit vecta in thedirectionof motion(calledthetangent) is dended T. Thus

ds
(1445) V=T
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SinceT is aunit vector its derivative is orthogoral to it. We definethenormal, N asthe unit vectorin
the directionof the derivative of T. The planedeternined by the tangen andnormal vectos is called
the tangent plane of the motion We introduce the curvature of the trajectoy of the motion asthe
magritude of the deriviative of T with respecto arclength thus

ar

(1446) T =KN.

Notethat, by thechainrule,thederivative of T with respecto timeis

dT _dTds_ ds
dt = dsdt = dt

Now theacceleratiorvectorliesin theplaneof T, N, which we seeby differentiating(14.456):

(1447)

dv _d%_ dsdT d’_ [ds\?
(1448) “d e Tt ae +(a> KN

using (14.21). The compamentof A in the directionof T is called the tangential acceleration and
dended a;, andthe compaentin the normaldirectian is the normal acceleration denoteda,. Thus
(14 48) canberewritten asthe setof equatios

2
(1449) A=a,T+aN where aTzA-ngTf, aN:A-N:K(g—tS)Z.
Notice that, sincethe normalaccelerations alwayspositive, N lies onthe samesideof T asthe accel-
erationA. In orderto find the compaentsof theaccelerationn ary particdar examge, it is bestto use

thegeomety asaguide,ratherthanto do the calculatios by directapplications of theseformuae. The
procealureto follow to make thesecalculatiors is this:

1. GiventheformulaX(t) of motion first differentiatet twice to obtainV andA.

2. Themagrtudeof V is thespeedits directin vecta is T.

3. Calculatea; =A-T.

4. From(14.49)we have

(1450) aWN=A—(A-T)T

socalculatethevecta ontheright. Its magritudeis a,, andits directionvecta is N.
5. Finally, thecurvatureiis k = ay/(ds/dt)2. Formulasfor thenorma acceleratio andcurvatue which
aresometimesisefulare

[V x Al [V xA|
(1451) ay = , K= "—F—=.
NV VI3

To seethis, startwith (14.49): A = a; T 4+ ayN, andtake thevectorprodwt with V. SinceV x T =0,
(1452) VxA=ayVxN

Now, take lengths:|V x A| = ay|V|, sinceV is orthogoral to N, andN haslengthone Onefinal remak:
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if the prablemis to find the compamentsof the acceleratiorat a particularvalueof t, then,immedidely
afterdifferentiating,evaluateatt. Thentherestof theprodemis justvecta algebawith specificvectas.

Example14.9 In exampe 14.3we consideedaparticlemoving courterclockwseupaspiralatconstant
speed.There wefound

. . d
(1453) V =cogtl —sntJ+K, A=—sintl —cost], d—tS:|V|:ﬁ.

NotethatA - T = 0,|A| = 1. Thus,sinceA is aunit vectororthogond to T onthesamesideof T asA, it
is thenormad vector: A = N. Finally,

_ _ .
(1454) a,=0, ay=1, K= /" 3

Example 14.10 A particlemovesin spaceaccordiry to theformula
2 1
(1455) R(t) =t +Intd+ fK .

FindV,A,T,N,a;,ay,k atthepointt = 1.
Firstwe differentiateto find the velocity andacceleratia.

1 2

1, 1
(1456) V=2l+33- 5K, A=2-53+5K.

Att=1,V=1+J—K, A=2l—J+2K, andds/dt = |V| = v/6. Thus

21 +3-K
1457 T=21 1
(1457) NG

1
1458 ar=A-T=—.
( ) T V6

For thenormal accelerationwe calculateayN in termsof whatwe alreadyknow:

1 /2+J-K 10 - 73 +1XK
14 N=A-aT=21-J+2K-— = .
(1459) ay, ar J+ 76 ( NG ) 6
ay is themagnitue of this vector andN its direction so
V31l 10 =73 +13K 1
(1460) ay= Y318 1O PHIN Ay VI8
6 V318 (2 6
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§14.4. Derivation of Kepler's Laws of Planetary Motion from Newton’s Laws

§14.4.1 Historical Background

Newton’s Principia Mathemgica, publishedin 1684, is the fundamentaltext for ratioral mechaics,
especiallythedynamicsof bodesin motion. It forms abridge betweernatemedieval ratioral philosogy
andmoden physics;written asit is in the styleof its day, but in concgption andexecutionasmodernas
ary presentlaytext onthe subject.

In Book | of the Principia Newton develops the fundamentalsof the theoly of motionbasedon his
method of the Calculusandthreelaws of motion:

Law 1. Every body cortinuesin its stateof rest,or of uniform motionin aright line, unlessit is
compelledto chang thatstateby forcesimpressedipm it.

Law 2. The chang of motion is proportioral to the motive force impressed;andis madein the
directionof theright line in whichthatforceis impressed.

Law 3. To every actionthereis alwaysoppsedan equalreaction or, the mutual actionsof two
bodies upan eachotherarealwaysequal,anddirectedto contary parts.

In Book Il Newton shaws how thelaws of Kepleron planetay motion andGalileo’s laws of falling
bodies lead,in the context of the above laws, to the con@pt of a universal force of attractionbetween
massve bodes. In particular he shavs thatKeplers laws imply thatthis forceis inversely proportioral
to thesquareof the distancebetweerthebodies.Thisis the hypothesisto which heis headeghis law of
universalgravitation.

§14.4.2 Newton’s Law of Universal Gravitation

Giventwo massve bodies,they exert a force on oneanotter which is proportiond to their massesand
inversely proportiond to the squareof the distancebetweerthem. In thosedaysthis wascalledan“oc-
cult” force: actionat a distance. Descartesphysics,basedon strict ratoralism, deniedthe existence
of mysteriaus, or occut causesandthuswith it, forcesthatactat a distance.This led Descartedo a
descriptim of planetay motionbasecn collisionswithin hypaheticalvortices.In orderfor Newtonto
establishthevalidity of histheow, it wasnecessaryo repudatetheseCartesiarconstriets, shav thatthe
concep of gravitationis forcedby thework of GalileoandKepler andcornversely to deduceheir Laws
from his. Thesetaskshe comgetely accomplishd in BookK|l. It is worth notingthatNewton remaks at
lengththat, althowgh therewasno (conaete) physical evidencefor gravitation, the mathemtcal argu-
mentswereforcing: thepostulateof UniversalGravitationwasforcedby, andin turnpredictedcorrectly,
the accumiated data. Finally in Book Ill Newton shaved how his Laws leadto accuratepredictians
of the motiors of planets,and he gave rational explarationsfor the tides, recessiorand mary other
astronmnical pheromena

§14.4.3 Kepler's Laws

Keplers laws aredescriptie of themotion of plands arourd the Sun.For this discussiorwe shalllocate
the Sunatthepoirt O, andlet X(t) representthe positionof the plané (relative to O) attimet afterthe
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initial obsevation(t = 0).

Kepler I. a) A planetrevolvesarourd the Sunin anelliptical orbit.
b) The Sunis locatedat a focus of theellipse.

Kepler 11. Theline joining the Sunto a planetsweeputequalareasn equaltimes.More expicitly,
let A(t) be the areasweptout by the vecta X(t). Thenfor ary t,s, A(t +s) — A(t) = hs whereh is
constantEquivalently, dA/dt = his constan

Kepler I11. Thesquae of theperiad of revolution of a planetis proportioral to the cubeof thelength
of themajoraxisof its orbit.

Newton's secondaw of motionis
(1461) F=mA

whereF is the force appliedto the object, m is its mass,and A is the acceleratiorof the object. In
particula, for planetay motion, this andNewton’s law of gravitationimply thatthe acceleratia of the
planetis directedtoward the sun; thatis, it is centripetal. Newton's first obsenration is that this is
equialentto Keplers secondaw.

Proposition 14.2 Supposethe only externalforce exertedon an objectis centripetd Thenits motionis
plana andKeplerll holds.

Let X bethepositionvectorto theobject,V its velocity, andA its accelerationSinceA is colinearwith
X, X x A =0. Now

d dXx dv
(1462) E(Xxv)_ExV+an_VxV+XxA_O.

Thus X x Vis aconstahvectorH. If H = 0, thenX andV arecolinear, andthe motionis onaline
directedtoward O. OtherwiseX andV alwayslie onthe planepergendicula to the constantectorH,
sothemotionis planar

Finally, leth=|H|; his constantandwe have

B |, _dx|_ ,de _dA
(1463) h—|XXV|—‘XXH =P =24

(by exanple 14.5, giving us Keplers secondaw. We now shawv thatthe assumptiorof planarmotion

andKeplerssecondaw impliestheforceis centrigetal. Theassumptiothatthemotionis planarimplies
thatX x V hasa fixeddirectioan, andKeplers secondaw implies (seeexamge 14.5 thatthelengthof
thatvectoris constantThus X x V is aconstanwecta. Differertiating, we obtain

(1464) VxV+XxA=0,

soX x A =0, andA andX arecolinear thatis, A is centripetal. As an aside,we obsene that the
factthat X x V is constantcanbe intergretedasthe consevation of anguar momentum. The crux of

Newton’s algumentis thatthefirst KeplerLaw follows from theinverse-squaréaw. We shallgo straight
to this argument, althoudn Newton did take the trouble to alsoshaw that Keplets first law forces the
inverse-squaréaw.
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Proposition 14.3 Supmsethat an objectmovesin a plane subjectto a force directedtoward a fixed
point O of magnituck inverselyproportioral to the squae of the distancefrom O. Thenthe orbit of the
objectis a conicsection.

We contiruetheargumentof Propositionl4.2 contiruing with thatnotatian. Theaddtional hypoth-
esisis that

dv k
1465 — =
wherek is a positive corstant. Thetrick now is to take the crossproductwith K. Eventhoudh theaction
takesplacecomgetely in the planeperpendicula to K, this allows usto introdwce the areainformation
in vectorialform.

dv k k. |
(1466) EXKZ_r_ZLXKzr_ZL ,
sinceL andK areorthogoral unit vectorsandthe systemL, K, L+ is left-handed. But, aswe saw in
exampe 14.4

d. _do | . _dL de
(1467) E_EL ‘E/E'
By (14.63),r2d6/dt = h, so
dv kdL
(1468) s K= e
Now, integratirg (19), (sinceK, k, h areconstat),
(1469) VxK= I%(L +E),

whereE is aconstantecta in the planeof action. Take the dot productwith X:

(1470) X-VxK=EX-(L+E).
Obsenrethat
(1471) X-VxK=(XxV)-K=hK-K=h,

sinceX x V = hK. Thisgives

2

(1472) X-(L+E)= 1.

Themotion therebre alwayssatisfieshis equation We now show thatit descritesanellipse. We move
to polarcoodinatestakingtheorigin atthe Sun,andtheray 6 = 0 in thedirectian of E.

Figureld.4
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—

NN

E

Wehave: E =el, L =cosOl +sinfJ andX =rL. ThenX-L =r, X-E =rcosf andequation(14.72)
becones

2
(1473) r(1+ecosf) = M
whichis the equationof a conicwith eccenticity e, the x-axisasmajoraxisandafocusat the origin. If
e < lthisis anellipse,if e= 1 a paralola, andif e > 1 a hyperbola. Sincethe planetshave recuring
orbits,theonly possibilityis thatof anellipse,e < 1.

Finally, we canderive Keplers third law asa consegence eitherof his first andsecondaws, or
Newton'’s Law of Gravitational Attraction.

Proposition 14.4 Let T bethelengthof the planetary year a andb the lengthsof the half-mgor and
half-miror axesof the orbit of the planet. Then

(1474) T?2=""_a

Theimporttantthing hereis thatthe equationwhich assertKeplerll,

dA 1
~—_h
dad 27

allows usto relatethe area(mab) of the ellipse with thetime it takesto sweepout onefull orbit, the

planetay yearT. Integratewith respectot over afull cycle

(1475)

(1476) mab = %hT.

Theform of the equatia of the orhit (14.73) allows usto replaceh in this equationby the gravitational
constank relatingtheplanetto thesun.We know thattheorhit crosseshemajoraxisatthe pointsé = 0
and6 = 1, andthe distancebetweerthesetwo pointsis the majoraxis. This distancgthelengthof the
majoraxis)is thesumof thevaluesofr at6 = 0, .

h2 h2

(1477) 2= {ite TKi=e’

soa= h?/k(1— €?). Usingtherelationb? = a?(1 — &), this gives us

b2 h?
(1478) — =
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Combinirg (6.9)and(6.10) givesusthe desiredresult;

27Tab 2 2 a 4”2 3
ho) = (e s = e

Note (in (14.73))thatsinceh/2 is therateof charge of the swept-outarea,ande, the eccentricityof
the ellipse, is relatedto the major andminor axes,thesecanbe computed by terrestrialmeasurerants
for ary planet(andin fact,hadbeenby Keple)). Usinghislaw of universalgravitiation andotherknown
cosmolgical compuations,Newton wasableto estimatethe constank aswell, so hewasableto give
goodestimatedor the actualorhits of the planets.Theseestimatesagreedjuite stronglywith obsena
tions. SinceNewton couldnot exclude the possibility of parabdic or hyperbolicorbits, he hypothesized
thattheseweretheorhits for somecomets.Usingthe obsevationsof thecometof 1681-2, (andKeplers
third law) hediscoveredits orbit to beelliptical andfairly accuately predctedthe dateof its retumn.

(1479) T2=(



