
CHAPTER 14

Particles in Motion; Kepler’s Laws

�
14.1. Vector Functions

Vectornotation is well suitedto therepresentationof themotion of a particle. Fix a coordinatesystem
with centerO, and let the positionof the objectat time t, relative to O be represented by the vector
function of t:

(14.1) X � t ��� x � t � I � y � t � J � z� t � K �
Thevelocity of theobjectis thetimerateof changeof position:

(14.2) V � dX
dt

� dx
dt

I � dy
dt

J � dz
dt

K �
andtheacceleration is thetimerateof change of velocity:

(14.3) A � dV
dt

� d2x
dt2 I � d2y

dt2 J � d2z
dt2 K �

As shown, the differentiationsaredefinedasthey arefor scalarfunctions, andarecomputed compo-
nentwise. Recall that we usethe variable s to represent the lengthof the curve, asmeasured from a
particular startingpoint. If we think of (14.1) asdescribing thecurve parametrically, we find arclength
by integrating

(14.4)
ds
dt
� � 	

dx
dt 
 2 � 	

dy
dt 
 2 � 	

dz
dt 
 2

with respectto t. Thetime rateof changeof distancealongthecurve is thespeed of theparticle.From
(14.4) we seethatthespeedof theparticleis themagnitudeof thevelocity vector:

(14.5)
ds
dt
���V ��

Example 14.1 A particleis rotatingabout thecircleof radiusR at constant angularvelocityω . To find
theequationsof motion, we starttheclockwith theparticleon thepositivex-axis;thatis X � 0��� RI. At
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time t theparticlehasmoved through theangleωt, sois at

(14.6) X � t ��� RcosωtI � RsinωtJ �
Differentiating,wefind thevelocity andacceleration:

(14.7) V � t ����� Rω sinωtI � Rω cosωtJ � A � t ����� Rω 2cosωtI � Rω2sinωtJ �
NoticethatV � t ��� ωX � t ��� , soV � t � is tangent to thecircleatX � t � andhasmagnitudeω �X � t ����� Rω , so
thespeedof theparticleis Rω . Also A � t ����� ω 2X � t � , sotheacceleration is directedtowardthecenter
of thecircleandhasmagnitudeRω 2.

Example 14.2 A missileis fired on thesurfaceof theearthat anangleof elevation α andinitial speed
S ft/sec.Find theequations of motion.

Figure14.1
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Themotion is shown in figure14.1. We take theorigin of coordinatesto bethe initial point of the
trajectoryof themissile. We know that the acceleration is thatdueto gravity, pointing downwardand
of magnitude32 ft/sec2. ThusA � t ����� 32J. Integrating(componentwise), we haveV � t ����� 32tJ � C
whereC is the constant (vector) of integration. Evaluatingat t � 0, we have C � V � 0� , which has
magnitudeSanddirection α above thehorizontal. Thus

(14.8) V � t ����� 32tJ � S� cosαI � sinαJ ��� ScosαI ��� Ssinα � 32t � J �
Integratingagain

(14.9) X � t ����� Scosα � tI ����� Ssinα � t � 16t2 � J �
sinceX � 0��� 0. Fromthis we candetermine whenthemissilehits theground again, andhow far it has
travelled.For X � t � is horizontal whenits J componentis zero;thatis whent � Ssinα � 16. Thedistance
travelledis theI componentof X � t � for this t, sois

(14.10) d ��� Scosα � Ssinα
16

� S2sin2α
32

�
To choosetheanglesothatthehorizontal distancehasa maximum,we chooseα sothatthis expression
is largest.Themaximum is S2 � 32whenα � 45� .
Example 14.3 Let X � t ��� costI � sintJ � tK. This particleis spirallingup thehorizontalcylinder of
radius1 (seefigure14.2) at constantangular velocity. We have

(14.11) V � t ����� sintI � costJ � K � A � t ����� costI � sintJ �
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Thespeedof this particleis �V ����� 2, andits acceleration is of magnitude1 andalwayspointedtoward
the z-axis. This is the sameascircular motion in the xy-plane,except that the initial velocity hasan
elevationof 45� off thexy-plane.

Figure14.2
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In order to proceedweneedto makesomeobservationsabout thedifferentiationof vectorfunctions.

Proposition 14.1 Supposethat V � t ��� W � t � are differentiable vector-valuedfunctionsof thevariablet.
Then

a)
d
dt
� V � W ��� dV

dt
� dW

dt

If w � w � t � is a differentiable scalar-valuedfunction,

b)
d
dt
� wV ��� dw

dt
V � w

dV
dt

c)
d
dt
� V � W ��� dV

dt
� W � V � dW

dt

d)
d
dt
� V  W ��� dV

dt
 W � V  dW

dt

e) If U � t � is a vectorof lengthonefor all t, thenU anddU � dt are orthogonal.

Thefirst four identitiesareall verifiedby writing all vectors in componentform, andusingtheusual
product rule for differentiationof scalarfunctions.e) follows from c) this way: sinceU � U � 1, wehave

(14.12)
dU
dt
� U � U � dU

dt
� 0

sothat � dU � dt �!� U � 0.

Example 14.4 Let L � L � t � bea unit-vectorvalued function; that is �L �"� 1 always. Let θ � t � be the
anglebetweenL � t � andthehorizontal. Then

(14.13)
dL
dt

� dθ
dt

L � �
whereL � is theunit vector orthogonal andto theleft of L.
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Writing L in components,wehave

(14.14) L � t ��� cosθ � t � I � sinθ � t � J � L � � t ����� sinθ � t � I � cosθ � t � J �
Then

(14.15)
dL
dt

��� sinθ
dθ
dt

I � cosθ
dθ
dt

J � dθ
dt

L � �
Example 14.5 Let X � t � bea vector-valuedfunction whosevaluesalwayslie in thexy-plane.Let A � t �
bethearea“sweptout” by X from t0 to t; that is, theareaof thedomain boundedby thevectors X � t 0 � ,
X � t � andthetrajectory of thevector (seefigure14.3). Show that

(14.16)
dA
dt

� 1
2 ####

dX
dt

 X #### �Figure14.3

PSfragreplacements
dA

X
dθ

θ

dX

If we argue by differentials,this is easy. In the diagram, dA is half the areaof the parallelogram
spannedby X anddX, sodA ��� 1� 2�$� dX  X � .

We canalsoargueusingthepolarrepresentationof vectors.Let r bethelengthof X andL theunit
vectorin thedirection of X, sothatX � rL. We know (thepolarform for area):

(14.17)
dA
dt

� 1
2

r2 dθ
dt

�
Now, usingexample 4,

(14.18)
dX
dt

� d
dt
� rL ��� dr

dt
L � r

dL
dt

� dr
dt

L � r
dθ
dt

L � �
sothat

(14.19) ####
dX
dt

 X #### � ####
	

dr
dt

L � r
dθ
dt

L � 
  rL #### � r2 dθ
dt

�
sinceX andL arecolinear, andL andL � areorthogonalunit vectors.
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�
14.2. Planar Particle Motion

As theaboveexamplesdemonstrate,agoodunderstandingof themotionis achieved whenit is described
in termsof thepositionof theparticle,ratherthanrelative to a fixedorigin. For this reasonwe want to
represent thevelocityandaccelerationin termswhichrelatedirectlyto theparticlemotion. Westartwith
motionin theplane,with X � t ��� x � t � I � y � t � J representingthepositionof theparticlerelative to agiven
coordinatesystem.As above,wehave thevelocityandacceleration of theparticlegivenby

(14.20) V � dX
dt

� dx
dt

I � dy
dt

J � A � dV
dt

� d2x
dt2 I � d2y

dt2 J �
Thespeed of themoving point is

(14.21)
ds
dt
���V �%� � 	

dx
dt 
 2 � 	

dy
dt 
 2 �

Theunit vector in thedirectionof motion, calledthetangent, is denotedT. Thus

(14.22) V � ds
dt

T �
Now theaccelerationvectorrepresents two aspectsof themotion,describingboththeway thedirection
of motionis turning, andtheway thespeedis changing. Differentiating(14.22),we have

(14.23) A � dV
dt

� d2s
dt2 T � ds

dt
dT
dt

�
The first term gives the change of speed,andthe second, the change in direction. By example 14.4,
the secondterm is orthogonalto the first. We saythat it is normal to the curve of motion (calledthe
trajectory). Now, by example 14.4,

(14.24)
dT
ds

� dθ
ds

T �
whereθ is the anglebetweenT andthe horizontal. Sinceboth T andarc lengthare independentof
time, this equationhasto do only with the trajectory. We definethe curvature, κ , of the curve asthe
magnitudeof dT � ds, andtheunit normal, N, to thecurveasthedirectionof dT � ds. Thus

(14.25)
dT
ds

� κN �
sothatκ ��� dT � ds� andN �'& T � , andequation14.23 becomes

(14.26) A � dV
dt

� d2s
dt2 T � 	

ds
dt 
 2

κN �
since dT

dt � dT
ds

ds
dt , by thechainrule. Thecomponent of A in thedirection of T is calledthe tangential

acceleration anddenotedaT , andthe component in the normal directionis the normal acceleration
denotedaN. Thus(14.26) canberewrittenasthesetof equations

(14.27) A � aTT � aNN � where aT � A � T � d2s
dt2 � aN � A � N � κ � ds

dt
� 2 �
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Example 14.6 In example 1 we considereda particlemoving around a circle of radius R at constant
angular velocity ω andfound 2

(14.28) V � t ���(� Rω sinωtI � Rω cosωtJ � Rω ��� sinωtI � cosωtJ �)�
(14.29) A � t ����� Rω 2cosωtI � Rω2sinωtJ � Rω2 ��� cosωtI � sinωtJ �)�
Thus

(14.30)
ds
dt
���V �%� Rω � T � V�V � ��� sinωtI � cosωtJ � N � T � ��� cosωtI � sinωtJ �

sothatA � Rω2N and,by (14.65):

(14.31) aT � ds

dt2 � 0 � aN � 	
ds
dt 
 2 1

R
� Rω2 � κ � 1

R
�

Example 14.7 In example 14.2, we consideredthetrajectoryof a missilefired at aninitial speedof S
ft/sec,andat anangleα to thehorizontal. We found

(14.32) V � t ��� ScosαI ��� Ssinα � 32t � J � A ��� 32J �
Thus

(14.33)
ds
dt
��* � Scosα � 2 �+� Ssinα � 32t � 2 � S* cos2 α ��� sinα � 32t � S� 2 �

(14.34) T � cosαI ��� sinα � 32t � S� J* cos2 α �+� sinα � 32t � S� sinα � 32t � S� 2 �
Now, sincetheaccelerationis clockwiseto T, sois N, thus

(14.35) N ��� T � � � sinα � 32t � S� I � cosαJ* cos2 α ��� sinα � 32t � S� sinα � 32t � S� 2 �
Finally,

(14.36) aT � A � T � � 32� sinα � 32t � S�* cos2 α �+� sinα � 32t � S� sinα � 32t � S� 2 �
(14.37) aN � A � N � 32cosα* cos2 α �+� sinα � 32t � S� sinα � 32t � S� 2 �
andthecurvatureis

(14.38) κ � aN� ds� dt � 2 � 32cosα� cos2 α �+� sinα � 32t � S� sinα � 32t � S� 2 � 3, 2 �
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An effective procedureto follow to make thesecalculationsis this:
1. GiventheformulaX � t � of motion, first differentiateit twice to obtainV andA.
2. Themagnitudeof V is thespeed,its direction vector is T. CalculateaT � A � T.
3. Thenormal is & T � . CalculateA � T � ; if it is positive it is aN, andN � T � ; otherwisechange the
signs.
4. Finally, thecurvatureis κ � aN �-� ds� dt � 2.

Example 14.8 A particlemoves in theplaneaccording to theequation

(14.39) R � t ��� t . 1I � lntJ

Find thetangentialandnormal accelerations andthecurvatureof thetrajectoryat thetime t � 1.
First wecalculatethevelocityandacceleration:

(14.40) V � � 1
t2 I � 1

t
J � A � 2

t3 I � 1
t2 J

Evaluating at t � 1, we haveV ��� I � J, A � 2I � J. Then

(14.41)
ds
dt
���V ��� � 2 � and T � � I � J� 2

�
SinceA is clockwiseto T, we musttake

(14.42) N � I � J� 2
�

andfinally

(14.43) aT � A � T � � 3� 2
� aN � A � N � 1� 2

� κ � aN� ds
dt � 2 � 1

2� 2
�

�
14.3. Particle Motion in Space

For motion in space,the ideasarepreciselythesame;however, a little morework is neededto find the
normal direction. Again we startwith themotion describedby a vectorfunction X � t ��� x � t � I � y � t � J �
z� t � K in a given coordinatesystem.Thespeed of themoving point is

(14.44)
ds
dt
���V �%� � 	

dx
dt 
 2 � 	

dy
dt 
 2 � 	

dz
dt 
 2 �

Theunit vector in thedirectionof motion(calledthetangent) is denotedT. Thus

(14.45) V � ds
dt

T �
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SinceT is a unit vector, its derivative is orthogonal to it. We definethenormal, N astheunit vectorin
thedirectionof the derivative of T. Theplanedeterminedby the tangent andnormal vectors is called
the tangent plane of the motion. We introduce the curvature of the trajectory of the motion as the
magnitudeof thederiviative of T with respectto arclength; thus

(14.46)
dT
ds

� κN �
Notethat,by thechainrule,thederivativeof T with respectto time is

(14.47)
dT
dt

� dT
ds

ds
dt
� κ

ds
dt

N �
Now theaccelerationvectorlies in theplaneof T � N, whichweseeby differentiating(14.45):

(14.48) A � dV
dt

� d2s
dt2 T � ds

dt
dT
dt

� d2s
dt2 T � 	

ds
dt 
 2

κN �
using (14.21). The component of A in the directionof T is called the tangential acceleration and
denoted aT , andthecomponentin thenormaldirection is the normal acceleration denoteda N. Thus
(14.48)canberewrittenasthesetof equations

(14.49) A � aTT � aNN where aT � A � T � d2s
dt2 � aN � A � N � κ � ds

dt
� 2 �

Noticethat,sincethenormalaccelerationis alwayspositive, N lies on thesamesideof T astheaccel-
erationA. In orderto find thecomponentsof theaccelerationin any particular example, it is bestto use

thegeometry asa guide,ratherthanto do thecalculationsby directapplicationsof theseformulae. The
procedureto follow to make thesecalculations is this:
1. GiventheformulaX � t � of motion, first differentiateit twice to obtainV andA.
2. Themagnitudeof V is thespeed,its direction vector is T.
3. CalculateaT � A � T.
4. From(14.49)wehave

(14.50) aNN � A �/� A � T � T
socalculatethevector ontheright. Its magnitudeis aN andits directionvector is N.
5. Finally, thecurvature is κ � aN �-� ds� dt � 2. Formulasfor thenormal acceleration andcurvature which

aresometimesusefulare

(14.51) aN � �V  A ��V � � κ � �V  A ��V � 3 �
To seethis,startwith (14.49): A � aTT � aNN, andtake thevectorproduct with V. SinceV  T � 0,

(14.52) V  A � aNV  N

Now, takelengths: �V  A �0� aN �V � , sinceV is orthogonal to N, andN haslengthone. Onefinal remark:
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if theproblemis to find thecomponentsof theaccelerationat a particularvalueof t, then,immediately
afterdifferentiating,evaluateatt. Thentherestof theproblemis justvector algebrawith specificvectors.

Example 14.9 In example 14.3weconsideredaparticlemovingcounterclockwiseupaspiralatconstant
speed.There wefound

(14.53) V � costI � sin tJ � K � A ��� sintI � costJ � ds
dt
���V ��� � 2 �

NotethatA � T � 0 �1�A ��� 1. Thus,sinceA is aunit vectororthogonal to T onthesamesideof T asA, it
is thenormal vector:A � N. Finally,

(14.54) aT � 0 � aN � 1 � κ � aN� ds� dt � 2 � 1
2
�

Example 14.10 A particlemovesin spaceaccording to theformula

(14.55) R � t ��� t2I � lntJ � 1
t

K �
FindV � A � T � N � aT � aN � κ at thepoint t � 1.

First wedifferentiateto find thevelocityandacceleration.

(14.56) V � 2tI � 1
t

J � 1
t2 K � A � 2I � 1

t2 J � 2
t3 K �

At t � 1, V � I � J � K � A � 2I � J � 2K, andds� dt ���V �%�2� 6. Thus

(14.57) T � 2I � J � K� 6
�

(14.58) aT � A � T � 1� 6
�

For thenormal acceleration, wecalculateaNN in termsof whatwealreadyknow:

(14.59) aNN � A � aTT � 2I � J � 2K � 1� 6

	
2I � J � K� 6 
 � 10I � 7J � 13K

6
�

aN is themagnitude of thisvector, andN its direction, so

(14.60) aN � � 318
6

� N � 10I � 7J � 13K� 318
� κ � aN� ds

dt � 2 � � 318
6

�
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�
14.4. Derivation of Kepler’s Laws of Planetary Motion from Newton’s Laws

�
14.4.1 Historical Background

Newton’s Principia Mathematica, publishedin 1684, is the fundamentaltext for rational mechanics,
especiallythedynamicsof bodiesin motion.It formsabridgebetweenlatemedieval rational philosophy
andmodern physics;writtenasit is in thestyleof its day, but in conceptionandexecutionasmodernas
any presentdaytext onthesubject.

In Book I of thePrincipia Newton develops thefundamentalsof the theory of motionbasedon his
methods of theCalculusandthreelaws of motion:

Law 1. Every body continuesin its stateof rest,or of uniform motion in a right line, unlessit is
compelledto change thatstateby forcesimpressedupon it.

Law 2. The change of motion is proportional to the motive force impressed;and is madein the
directionof theright line in which thatforceis impressed.

Law 3. To every actionthereis alwaysopposedan equalreaction: or, the mutual actionsof two
bodies upon eachotherarealwaysequal,anddirectedto contraryparts.

In Book II Newton shows how thelaws of Kepleron planetary motion andGalileo’s laws of falling
bodies lead,in thecontext of theabove laws, to theconcept of a universal forceof attractionbetween
massive bodies. In particular, heshows thatKepler’s laws imply thatthis forceis inverselyproportional
to thesquareof thedistancebetweenthebodies.This is thehypothesisto whichheis headed, his law of
universalgravitation.�
14.4.2 Newton’s Law of Universal Gravitation

Giventwo massive bodies,they exert a forceon oneanother which is proportional to their massesand
inverselyproportional to thesquareof thedistancebetweenthem.In thosedaysthis wascalledan“oc-
cult” force: actionat a distance.Descartes’physics,basedon strict ratonalism, deniedthe existence
of mysterious, or occult causes,andthuswith it, forcesthat act at a distance.This led Descartesto a
description of planetary motionbasedoncollisionswithin hypotheticalvortices.In orderfor Newton to
establishthevalidity of his theory, it wasnecessaryto repudiatetheseCartesianconstructs,show thatthe
concept of gravitation is forcedby thework of GalileoandKepler, andconversely, to deducetheirLaws
from his. Thesetaskshecompletelyaccomplished in Book II. It is worthnotingthatNewtonremarks at
lengththat,although therewasno (concrete)physical evidencefor gravitation, themathematical argu-
mentswereforcing: thepostulateof UniversalGravitationwasforcedby, andin turnpredictedcorrectly,
the accumulateddata. Finally in Book III Newton showed how his Laws leadto accuratepredictions
of the motions of planets,andhe gave rationalexplanationsfor the tides, recessionandmany other
astronomical phenomena.

�
14.4.3 Kepler’s Laws

Kepler’s lawsaredescriptiveof themotion of planetsaround theSun.For thisdiscussionweshalllocate
theSunat thepoint O, andlet X � t � representthepositionof theplanet (relative to O) at time t afterthe
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initial observation(t � 0).

Kepler I. a) A planetrevolvesaround theSunin anelliptical orbit.
b) TheSunis locatedat a focus of theellipse.

Kepler II. Theline joining theSunto aplanetsweepsoutequalareasin equaltimes.Moreexpicitly,
let A � t � be the areasweptout by the vector X � t � . Thenfor any t � s, A � t � s�3� A � t �4� hs, whereh is
constant.Equivalently, dA� dt � h is constant.

Kepler III. Thesquareof theperiod of revolutionof aplanetis proportional to thecubeof thelength
of themajoraxisof its orbit.

Newton’s secondlaw of motionis

(14.61) F � mA

whereF is the force appliedto the object,m is its mass,andA is the accelerationof the object. In
particular, for planetary motion, this andNewton’s law of gravitation imply that theacceleration of the
planetis directedtoward the sun; that is, it is centripetal. Newton’s first observation is that this is
equivalentto Kepler’s secondlaw.

Proposition 14.2 Supposetheonlyexternalforceexertedonanobjectis centripetal. Thenits motionis
planar andKeplerII holds.

Let X bethepositionvectorto theobject,V its velocity, andA its acceleration. SinceA is colinearwith
X, X  A � 0. Now

(14.62)
d
dt
� X  V ��� dX

dt
 V � X  dV

dt
� V  V � X  A � 0 �

Thus X  Vis a constant vectorH. If H � 0, thenX andV arecolinear, andthemotionis on a line
directedtowardO. OtherwiseX andV alwayslie on theplaneperpendicular to theconstantvectorH,
sothemotionis planar.

Finally, let h ���H � ; h is constant,andwe have

(14.63) h ���X  V ��� ####X  dX
dt #### � r2 dθ

dt
� 2

dA
dt

(by example 14.5), giving usKepler’s secondlaw. We now show that theassumptionof planarmotion

andKepler’ssecondlaw impliestheforceis centripetal.Theassumptionthatthemotionis planarimplies
thatX  V hasa fixeddirection, andKepler’s secondlaw implies(seeexample 14.5) that the lengthof
thatvectoris constant.Thus X  V is aconstantvector. Differentiating,weobtain

(14.64) V  V � X  A � 0 �
so X  A � 0 � andA andX arecolinear, that is, A is centripetal. As an aside,we observe that the
fact that X  V is constantcanbe interpretedasthe conservation of angular momentum. The crux of

Newton’s argumentis thatthefirst KeplerLaw followsfrom theinverse-squarelaw. Weshallgostraight
to this argument,although Newton did take the trouble to alsoshow that Kepler’s first law forces the
inverse-squarelaw.
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Proposition 14.3 Supposethat an objectmovesin a plane subjectto a force directedtoward a fixed
point O of magnitude inverselyproportional to thesquare of thedistancefromO. Thentheorbit of the
objectis a conicsection.

Wecontinuetheargumentof Proposition14.2, continuingwith thatnotation. Theadditional hypoth-
esisis that

(14.65)
dV
dt

��� k
r2 L �

wherek is a positiveconstant.Thetrick now is to take thecrossproductwith K. Eventhough theaction
takesplacecompletely in theplaneperpendicular to K, this allows usto introducetheareainformation
in vectorialform.

(14.66)
dV
dt

 K ��� k
r2 L  K � k

r2 L � �
sinceL andK areorthogonal unit vectorsandthesystemL � K � L � is left-handed.But, aswe saw in
example 14.4,

(14.67)
dL
dt

� dθ
dt

L � or L � � dL
dt 5 dθ

dt
�

By (14.63),r2dθ � dt � h, so

(14.68)
dV
dt

 K � k
h

dL
dt
�

Now, integrating (19), (sinceK � k � h areconstant),

(14.69) V  K � k
h
� L � E �0�

whereE is aconstantvector in theplaneof action.Take thedotproductwith X:

(14.70) X � V  K � k
h

X �0� L � E ���
Observethat

(14.71) X � V  K ��� X  V �6� K � hK � K � h �
sinceX  V � hK. Thisgives

(14.72) X �0� L � E �3� h2

k
�

Themotion thereforealwayssatisfiesthis equation. We now show thatit describesanellipse.We move
to polarcoordinates,takingtheorigin at theSun,andtherayθ � 0 in thedirection of E.

Figure14.4
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PSfragreplacements

θ

R

L
E

We have: E � eI, L � cosθ I � sinθJ andX � rL. ThenX � L � r � X � E � r cosθ andequation(14.72)
becomes

(14.73) r � 1 � ecosθ ��� h2

k

which is theequationof a conicwith eccentricity e, thex-axisasmajoraxisanda focusat theorigin. If
e 7 1 this is anellipse,if e � 1 a parabola, andif e 8 1 a hyperbola. Sincetheplanetshave recurring
orbits,theonly possibilityis thatof anellipse,e 7 1.

Finally, we canderive Kepler’s third law asa consequence,eitherof his first andsecondlaws, or
Newton’s Law of Gravitational Attraction.

Proposition 14.4 Let T bethe lengthof theplanetaryyear, a andb the lengthsof thehalf-major and
half-minor axesof theorbit of theplanet. Then

(14.74) T2 � 4π2

k
a3 �

Theimportantthinghereis thattheequationwhichassertsKeplerII,

(14.75)
dA
dt

� 1
2

h �
allows us to relatethe area(πab) of the ellipsewith the time it takesto sweepout onefull orbit, the
planetary yearT. Integratewith respectto t over a full cycle:

(14.76) πab � 1
2

hT �
Theform of theequation of theorbit (14.73) allows usto replaceh in this equationby thegravitational
constantk relatingtheplanetto thesun.Weknow thattheorbit crossesthemajoraxisat thepointsθ � 0
andθ � π , andthedistancebetweenthesetwo pointsis themajoraxis. This distance(thelengthof the
majoraxis)is thesumof thevaluesof r at θ � 0 � π :

(14.77) 2a � h2

k � 1 � e� � h2

k � 1 � e� �
soa � h2 � k � 1 � e2 � . Usingtherelationb2 � a2 � 1 � e2 � , this gives us

(14.78)
b2

a
� h2

k
�
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Combining (6.9)and(6.10) givesusthedesiredresult:

(14.79) T2 �:9 2πab
h ; 2 ��� 2πab� 2 a

kb2 � 4π2

k
a3 �

Note(in (14.73)) thatsinceh� 2 is therateof changeof theswept-outarea,ande, theeccentricityof
theellipse,is relatedto themajorandminor axes,thesecanbe computedby terrestrialmeasurements
for any planet(andin fact,hadbeenby Kepler). Usinghis law of universalgravitiation andotherknown
cosmological computations,Newton wasableto estimatetheconstantk aswell, sohewasableto give
goodestimatesfor theactualorbits of theplanets.Theseestimatesagreedquitestronglywith observa-
tions.SinceNewtoncouldnot excludethepossibilityof parabolic or hyperbolicorbits,hehypothesized
thattheseweretheorbits for somecomets.Usingtheobservationsof thecometof 1681-2,(andKepler’s
third law) hediscoveredits orbit to beelliptical andfairly accuratelypredictedthedateof its return.


