CHAPTER 13

Vector Algebra

§13.1. Basic Concepts

A vectorV in the plane or in space is an arrow: it is determined by its length, derdiednd its
direction. Two arrows represent the same vector if they have the same length and are parallel (see figure
13.1). We use vectors to represent entities which are described by magnitude and direction. For example,
a force applied at a point is a vector: it is completely determined by the magnitude of the force and the
direction in which it is applied. An object moving in space has, at any given time, a direction of motion,
and a speed. This is represented by the velocity vector of the motion. More precisely, the velocity vector
at a point is an arrow of length the speei$/dt), which lies on the tangent line to the trajectory. The
success and importance of vector algebra derives from the interplay between geometric interpretation
and algebraic calculation. In these notes, we will define the relevant concepts geometrically, and let this
lead us to the algebraic formulation.

Figure 13.1 Figure 13.2
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Newton did not write in terms of vectors, but through his diagrams we see that he clearly thought of
forces in these terms. For example, he postulated that two forces acting simultaneously can be treated
as acting sequentially. So suppose two forces, represented by Wctmd\W, act on an object at a
particular point. What the object feels is thesultantof these two forces, which can be calculated by
placing the vectors end to end (as in figure 13.2). Then the resultant is the vector from the initial point
of the first vector to the end point of the second. Clearly, this is the same if we reverse the order of the
vectors. We call this theum of the two vectors, denoteéd + W. For example, if an object is moving
in a fluid in space with a velocity, while the fluid is moving with velocityV, then the object moves
(relative to a fixed point) with velocity + W.

186



§13.1 Basic Concepts 187

Definition 13.1

a) A vector represents the length and direction of a line segment. [&hgth is denotedV|. A unit
vector U is a vector of length 1. Theirection of a vctorV is the unit vectot parallel toV: U =V/|V]|.
b) Given two points PQ, the vector from P to Q is denot&.

¢) Addition. Thesum, or resultant, V + W of two vectors/ andW is the diagonal of the parallelogram
with sidesV,W.

d) Scalar Multiplication. To distinguish them from vectors, real numbers are cabiathrs If c is a
positve real number)\¢ is the vector with the same direction ¥sand of length {V|. If ¢ negative, it is
the same, but directed in the opposite direction.

We note that the vectods, cV are parallel, and conversely, if two vectors are parallel (that is, they
have the same direction), then one is a scalar multiple of the other.

Example 13.1 LetP, ,Q, Rbe three points in the plane not lying on a line. Then

(13.1) PQ+QR+RP=0.

From figure 13.3, we see tha} the yectii?is the same line segment B+ QR but points in the
opposite direction. ThuRP= —(PQ+ QR).

Figure 13.3
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Example 13.2 Using vectors, show that if two triangles have corresponding sides parallel, that the
lengths of corresponding sides are proportional.

Represent the sides of the two trianglesthyvV, W andU’, V', W’ respectively. The hypothesis is
that there are scalass b, ¢ such that)’ = aU, V' = bU, W' = cW. The conclusion is tha=b=rc.
To show this, we start with the result of example 1; since these are the sides of a triangle, we have

(13.2) U+V+W=0, U +V'+W =0, or whatisthesame aU+bV+cW =0
The first equation gives us = —V — W, which, when substituted in the last equation gives
(13.3) (b—a)V+(c—aW=0

Now, if b # a, this tells us thaV andW are parallel, and so the triangle lies on a line: that is, there is no
triangle. Thus we must hale= a, and by the same reasoning;- a also.
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§13.2. Vectors in the Plane

The advantage gained in using vectors is that they are moveable, and not tied to any particular coordinate
system. As we have seen in the examples of the previous section, geometric facts can be easily derived
using vectors while working in coordinates may be cumbersome. However, it is often the case, that in
working with vectors we must do calculations in a particular coordinate system. It is important to realize
that it is the worker who gets to choose the coordinates; it is not necessarily inherent in the problem.

We now explain how to move back and forth between vectors and coordinates. Suppose, then, that a
coordinate system has been chosen: a @ijtite origin, and two perpendicular lines through the origin,
thex- andy-axes. A vectol is determined by its lengthy| and its direction, which we can describe by
the angled thatV makes with the horizontal (see figure 13.4). In this figure, we have realizzithe
vectorOP from the origin toP. Let (a, b) be the cartesian coordinatesffNote thatv can be realized
as the sum of a vector of leng#talong thex-axis, and a vector of lengthalong they-axis. We express
this as follows.

Definition 13.2 We letl represent the vector from the origin to the point (1,0), drithe vector from
the origin to the point (0,1). These are thasicunit vectors (a unit vector is a vector of length 1). The
unit vector in the directior® is cosfI + sin6J.

If V is a vector of length and angleéd, thenV =r(cos6l + cosBJ). If V is the vector from the origin

to the point(a, b); r is the length oV, and col + cosBJ is its direction. IfP(a, b) is the endpoint of
V, thenV = OP = al +bJ. aandb are called theomponentsof V.

Figure 13.4

Of coursey and@ are the usual polar coordinates, and we have these relations:
b i
(13.4) VI=+va?+b?, 6= arctang1 : a=|V|cosB, b=|V|sinb.

We add vectors by adding their components, and multiply a vector by a scalar by multiplying the com-
ponents by the scalar.

Proposition 13.2 If V = al +bJ andW =cl +dJ, thenV +W = (a+c)l + (b+d)J.

This is verified in figure 13.5.
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Example 13.3 A boy can paddle a canoe at 5 mph. Suppose he wants to cross a river whose current
moving at 2 mph. At what angle to the perpendicular from one bank to the other should he direct his
canoe?

Draw a diagram so that the river is moving horizontally from left to right, and the direct crossing
is vertical (see figure 13.6). Place the origin on the lower bank of the river, and choosaxtiwin
the direction of flow, and thg-axis perpendicularly across the river. TIn these coordinates, the velocity
vector of the current isl2 LetV be the velocity vector of the canoe. We are given tWat=5 and we
want the resultant of the two velocities to be verticalx Ifs the desired angle, we see from the diagram
that sin0 = 2/5, soa = 23.5°.

Example 13.4 An object on the plane is subject to the three fofees2l +J, G = —8J, H. Assuming
the object doesn’t move, find. At what angle to the horizontal 14 directed?
By Newton’s law, the sum of the forces must be zero. Thus

(13.5) H=-F-G=-21-J+81==-21+7J.
If a is the angle from the positive-axis toH, tana = —7/2, soa = 10595°, sinceH points upward
and to the left.

Since vectors represent magnitude and length, we need a computationally straightforward way of
determining lengths and angles, given the components of a vector.

Definition 13.3 Thedot product of two vectors/ ; andV, is defined by the equation
(13.6) V-V, =|V,||V,|cosB,

wheref3 is the angle between the two vectors.

Note that since the cosine is an even function, it does not matter if wgtaken vV ; to'V,, or in the
opposite sense. In particular, we see MatV, =V, -V,;. Now, we see how to write the dot product in
terms of the components of the two vectors.

Proposition 13.3 LetV, = a,| +b;J andV, = a,| +b,J. Then

(13.7) V,-V,=a,a,+bb,
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with equality holding only when the vectors are parallel.
To see this, we use the polar representation of the vectors:

(13.8) V, =ry(cosf;l +sin6,J) , V,=r,(cosb,l +sin6,J) .
Then
(13.9) V,-V,=rr,c086, — 6,) =r;r,cosb; cosd, +r,r,sing, sinb,

by the addition formula for the cosine. This is the same as
(13.10) V-V, = (r,cosf,)(r,cosb,) + (r,sinb,)(r,sind,)

which is equation (13.7) in Cartesian coordinates. As for the last statement, we have strict inequality
unless cog = 1, that isf3 = 0 or 1, in which case the vectors are parallel.

Proposition 13.4
a) Two vectord/ andW are orthogonal if and only it/ - W = 0.
b) If L andM are two unit vectors with - M = 0, then for any vecto¥, we can write

(13.11) V=aL+bM, with a=V-L,b=V-M,and|V|=vaZ+b?2.

We shall say that a pair of unit vectdrs M with L -M = 0 form abasefor the plane. This statement

just reiterates that we can put cartesian coordinates on the plane with any point as origin and coordinate
axes two orthogonal lines through the origin; that is the lines in the directidnsotiM . To show part

b) we start with figure 13.7.

Figure 13.7

From that figure, we see that we can write any vector as assamal + bM with (by the Pythagorean
theorem)V| = Va2 + b%. We now show thaa, b are as described;

(13.12) V-L=(aL+bM)-L=aL-L+bM-L =a.
SimilarlyV-M = b.

Example 13.5 Find the anglg3 between the vectold = 2| —3J andW =1 + 2J.
We haveV| = 22+ 32 = /13,|W| = V12+ 22 = /5 andV -W = 2(1) 4+ (—3)(2) = —4. Thus
V-W 4
(13.13) CoP=——>=—=.496
IVIIW[ /65
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sofB = —1197°.

Example 13.6 Suppose we have put cartesian coordinates on the pland, withe standard base. Let

1+ —1+J
13.14 L=—>, M=——"
( ) V2o V2

be a new base. Given the poR(5, 2), write OPin terms ofL andM.
By the preceding proposition,
- | 7 -
(13.15) OPL=l+20)- () =L Spm =512

1+,
V2! V2’

V2

sl

soOP = (7L —3M)/V/2.

Example 13.7 Show, using vectors, that the interior angles of an isosceles triangle are equal.

Figure 13.8

In figure 13.8 we have labelled the sides of equal lengtif andW. Thus, the base of the triangle is
V+W. Firstofall, sincéV| = |W/|, we havgV+W)-V=V-V4+W-V=W-W+V-W=(V+W)-W.
Thus, by (2),

V+W)-V  (V+W) W

13.16 coP = = =cosB’.
( ) # V+W]|V]| |V +WI|W]| B

Since both angles are acufe= 3'.

Example 13.8 Find a vector orthogonal té = 3| + 4J and of the same length.

The vectorsV = al +bJ, W =cl +dJ, are orthogonal precisely whext+ bd = 0. Thus, if we
are givena,b, we takec = —b, d = a to get an orthogonal vector. So for this example, we can take
W = —4I + 3J. Clearly, since the coefficients are the same but for ¢y = |V|. We could also take
the vector in the opposite directiorW = 41 — 3]

In general, itV = cl +dJ then both—dl + cJ anddl — cJ are orthogonal t& and of the same length.
The first is counterclockwise %@, and the second, clockwise.

Definition 13.4 Given the vectoV, we shall denote by * that vector which is orthogonal to, of the
same length as, and counterclockwis&/tdn components, we have:

(13.17) If V=al+bl, then V1= bl+al
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See figure 13.8 to see thdt- is counterclockwise t¥ (at least in the case where baifandb are
positive).

Figure 13.9

VL

Definition 13.5 Given two vectors/ and W, we define the@eterminant detV,W) of the two vec-
tors as the signed area of the parallelogram spanned by the two vectors. The sign is poSitive if
counterclockwise frow'; otherwise negative.

In figure 13.104 is the angle fronV to W. Thus

(13.18) detV, W) = |V||W/sina .

Figure 13.10

Now, let 8 be the angle fromW to V! so that (in figure 13.10)y + 3 = 11/2, and we have sim =
cosB. Since|V| = |[V1|, we can rewrite (13.18) as

(13.19) detV,W) = |[V*||W|cosB =V -W

This gives us the following.

Proposition 13.5 The determinant of the two vectdvs= al + bJ andW = cl + dJ is the determinant
of the matrix whose rows are the vectdandW:

(13.20) detV,W) = ad— bc

For, V+ = —bl 4 aJ, and from (13.19)detV,W) =V -W+ = —bc+ad = ad - bc.
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The vectors/ andWare parallel (or collinear) if and only if dgf, W) = 0, for in this case there is
no parallelogram. We also have the inequality

(13.21) detv, W)] < V|,

with equality holding if and only iV andW are orthogonal.

Definition 13.6 Given two vectory andW, theprojection of V in the direction ol is that vectoV’
parallel toW such thaty — V' is orthogonal to V (see figure 13.11).

Figure 13.11

Proposition 13.6 The projectiorV’ of V in the direction o€ is given by the formula

V-W
/_ —
(13.22) V' =pry (V) = WW -WW .
If U is a unit vector in the direction diV, then
(13.23) V'=(V-U)U, and V:(V-U)U+(V-UL)UL.

To show this we start with the equati¢ — V') -V’ = 0. SinceV’ = aW for somea, this gives us
(13.24) (V—aw)-aw =0, or a’W-W=aV-W
If a=0, thenV’ = 0andV andW are orthogonal. Otherwise

V-W

giving us (13.22). The rest of the proposition follows by repladividpy the unit vectotJ, and should
be viewed as a restatement of Proposition 13.6.

Example 13.9 Find the area of the parallelogram whose vertices aB¢@t0), P(4, —2), Q(5,8),R(9,6).
This is the parallelogram determined by the vectors from the ofigia the points® andQ: OP =

41 — 23, OQ= 5l — 8J, so has signed ared-48) — (—2)(5) = —22. We verify these are the vertices of

a parallelogram by calculatingP+ OQ= 9l + 6J = OR

In order to disguss geometric objects in the coordinate plane, it is useful to representé(goint
by the vectoX = OX = xlI + yJ from the origin toX. ForY another point, the vector frox toY is thus
represented by — X (see figure 13.12).
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Figure 13.12 Figure 13.13
X

Aline L is determined by its direction and a point on the line Xgtbe a point orl., andL a vector
parallel to the lineL. Then, for any poink, it is on the line if and only ifX — X, is parallel toL, or,
what is the same, orthogonalltd-. This leads to these two equations, called the equation of the line:

(13.26) (X—Xg):-Lt=0 or  detX—X,L)=0.

Also, sinceX — X, is parallel toL if and only if X — X, is a scalar multiple of , we have theparametric
form of the equation of the line:

(13.27) L:  X=Xg+tL .

Aline is also determined by two poinks,, X, on the line. Given that information, we find the equations
of the line by taking- = X; — X,,.

Now, supposé. is a line andX is a point not on the line. We seek a formula for the distance from
the pointX to the line. We see from figure 13.13 that this is the length of the projection in the direction
perpendicular td of a vector fromX to any pointX , onL. This leads to the formula for the distance
fromX toL

(13.28) d(X,L) = |pr_, (X = Xo)|

Example 13.10 LetL be the line given by the equatior 3 y = 7. Find the distance from (2,4) to

By comparison with equation (13.26) we see that= 3l — J. To use (13.28) we need a point on the
line; any solution of the equatiorx3-y = 7 will do. (3,2) is a solution, so we také, = 3l + 2J. Thus,
for our point,X = 2l 4+ 4J, the distance is

(X=Xg) LY |(-1420)-31 -3 5
e 31 =J| V10

(13.29) Ipr,, (X —Xo)| =

Example 13.11 Find the distance frorX(3,1) to the line througlX ,(2,-3) and parallel t& = —1 +4J.
The vectolL - = —4l —J is orthogonal to the line. Thus the distance is
(1+43)- (-4 -J)] 8

(1330) |pr|_l (X 7X0)| = |—4| —J| - \/1—7

Example 13.12 Find the point on the link : 2x— 3y = 17 which is closest to the origin.

Let X be the vector from the origin to the desired point. Theis orthogonal to the line, so is parallel
to the vectot. * = 21 —3J. Writing X =t (2l —3J), sinceX ends on the line we havg2) —3(—3t) = 17,
sot =17/13, andX = (34/13)l — (51/13)J .
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§13.3. Vectors in Space

In a Cartesian coordinate system for space, the vetfatsK are the vectors from the origin to the
points(1,0,0), (0,1,0), (0,0,1) respectively. These are unit vectors, mutually orthogonal, and form the
standard basefor space. We always take a coordinatization so {hat), K} is a right-handed system.
More precisely, if we situaté andJ on the horizontal plane, thdnis a unit vectorJ is a unit vector
perpendicular té and counterclockwise from andK is a unit vector orthogonal to the horizontal plane,
pointing upwards (see figure 13.14).

Figure 13.14

/ J

Any vectorV can be written uniquely as
(13.31) V =al +bJ+cK,

wherea, b, c are called theomponentsof V. To add two vectors, add the components; to multiply a
vector by a scalar, multiply the components by the scalaf.iff given as in (13.31), itength is

(13.32) V| =va?+b?+c2

Thedirection of V is determined by the cosines of the angles betvkéand the coordinate axes. Thus,
for any vectolV we can write

(13.33) V = |V|(cosal + cosBJ + cosyK)

wherea, 3, y are those angles. The components of the unit vector in (13.33) are calldiebion
cosinesof the vectoV. Note that coda + co$ 8+ cogy = 1.

Definition 13.7 Thedot product of two vectors/, W is defined as
(13.34) V-W = |V||W]|cosb,
where@ is the angle betweevi andW.

As for plane vectors, this has an easy formulation in terms of the components of the vectors.

Proposition 13.7 Let

(13.35) V=al+bJ+cK, W=a,l+bJ+cK
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in components. Then

(13.36) V-W =a,a,+bb,+cc,

To see this, we start with the Law of Cosines for the triangle whose sides are the Ved{éraV — Vv
(see figure 13.15):

Figure 13.15
W -V

W
W = V2= V[>+ |W[? ~ 2]V ||W|cosp

(13.37) W — V|2 = |W|?+ V|2 = 2V||W]|cosB = [W|?+ V]2 —2(W-V) ,
so that

1
(13.38) W-V = é(|W|2+\V|2—\W—V|2).

Now, writing the right hand side in terms of components, using (13.31) and (13.32), we get (13.36),
after some cancellation. In particular, just as in two dimensions, two ve¥toW§¥ areorthogonal if

V-W=0.
Example 13.13 Find the angle between the vectdfs=21 —3J+ K, W =6l +J—2K.
We haveV -W =12—-3-2=7andV| = v22+ 3+ 12=3.74, |W| = V6% + 12 + 22 = 6.40. Thus

7
(13.39) COSl ~ = 640 2923

soqa =73.

Example 13.14 Find a vector orthogonal to both the vectdrandW of example 13.13.
Let X = xl +yJ+ zK be the desired vector. We have the conditions

(13.40) X-V=2x-3y+z=0, X-W=6x+y—2z=0.

We can solve these equations by replacitny any nonzero value, say= 1, and solving the resulting
equations fox andy:

(13.41) X—3y+1=0, 6x+y-2=0.
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These have the solution=1/4, y=1/2. Thus we can take

1 1
(13.42) Xo= 71 +5I+K

as our answer. Of course there is a line of such vectors, corresponding to all possible vatugsfisr
the set of all vectors orthogonal YoandW is the set{tX ,}.

Given vector$/ andW, theprojection of V (denotedpr,, (V)) in the direction oW is the vectoV’
parallel toW such thal andV — V' are orthogonal. I3 is the angle betweewi andW, this projection
is the vector of lengthV | cosB in the direction ofW. The formula for the projection is (as in the plane):

(13.43) pry, (V) = (H)w .

Again, just as in the plane, fl is the unit vector in the direction &, thenpr,, (V) = (V-U)U. We
note that for two vector¥';, V,,

(13.44) pryy(V,+V,) = pry (V) + pryy(Vs,) .

Definition 13.8 Thecross productof two vectors/, W, denotedv x W, is that vector
a) of length the area of the parallelogram spannedhyw,
b) perpendicular to the plane &f, W so that the systeqV, W, V x W1} is right-handed.

Now, since the area of the parallelogram spanned by the vé¢tang is |V||W|sinB, wherep is the
angle between the two vectors, we have

(13.45) IV x W|2=|V]2W|?— (V-W)?

since

(13.46) |V xWZ= [VAW[?sin’ B = [V[Z|W|*(1~ cos’ B) = |V|?|W[* — (|V4]IV,| cosB)?

which is the right side of (13.45), from (13.34). Note that interchanyfirendW changes the sign of the

cross product, for if the systef/, W, L} is right-handed, then the systef/, V, L} is left-handed,
and thus{W, V, — L} is right handed. This gives us the first of the following identities:

(13.47) VxW=-WxV
(13.48) VxV=0,
(13.49) (aV) x W) = a(V x W),

We now determine a formula for the cross productin components. Itis useful to start with the determinant
of three vectors in space, sometimes calledtipée scalar product.

Definition 13.9 Given three vectors in spaté V, W, we define theeterminant detU,V,W) as the
signed volume of the parallelepiped spanned by the vectors. This is zero if the vectors all lie in the same
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plane. Otherwise, the sign is positive if the vectfs V, W} form a right-handed system, and negative
if a left-handed system.

Proposition 13.8 Given two vector¥, W, then, for any third vectou,
(13.50) detU,V,W) =U-(V x W)

For any two vectord),, U,

(13.51) detU, +U,,V,W) = detU,,V,W) +detU,,V,W)

We now show (13.50) using a geometric argument similar to that used for proposition 13.dndf
W lie on a line, then all terms are zero, and there is nothing to show. OtheMiardW determine
a plane; letlL be the unit vector orthogonal to that plane so that the tNpMY, L is right-handed. For
any vectorU, let U’ be the projection o) in the direction ofL. Then, we see geometrically that the
volume of the parallelepiped spannedWyV, W is the product of the area of the parallelogram spanned
by V,W and the length o)’ (see figure 13.16).

Figure 13.16

'
U-—‘— ———#————————7 //

SinceV x W has the same direction &s this volume is
(13.52) [U'[[V x W| = |U||V xW|cosB =U-(V xW)

wheref3 is the angle betweed andL. The signs are right in (21), for on both sides they are determined
by whether or not the systebh V, W is right-handed. 2 now follows directly from (21), since the right
hand side is linear itJ:

(13.53) detU, + Uy, V,W) = (U, +U,) - (V x W)

(13.54) =U,- (VXW)+U,-(V x W) =defU,,V,W) +detU,,V,W)

Now, if we permute the three vectos V, W, we just change the sign of the determinant, since it is
always the parallelepiped spanned by the same vectors:

(13.55) detU,V,W) = —det(V,U,W) = detV,W,U) .

So, since, but for sign, we can move any of the vectors ifi.H&t, W) to the first position, we conclude
that the determinant is linear in all three variables. In particular, the cross product is linear in its variables.
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This allows us to calculate the determinant and cross product from the components of the given vectors.
We first observe that the calculations for the basis vectors are immediate, since the area of the unit square
is 1:

(13.56) IxJ=K,IxK=1KxI=J,IxI=JxJ=KxK=0

Finally, from (21) J x | = —1 x J= —K, etc. After a long computation, we find:

Proposition 13.91f V, = a,1 +b,J+¢,K, V, = a,l +b,J+¢,K, then

(13.57) V, xV, = (b,c; —cby)l + (ca, — a,¢,)d + (b, — bya, K.

Now we see that the determinant of three vectors, or, what is the same, the triple scalar product:
V,-(V,xV3) = (V; xV,)-Vsis, in fact, the determinant of the matrix whose rows are the components
of the vectors/,,V,,V, just by taking the dot product &f ; with the expression (13.57) f&f; x V.

Proposition 13.10 If, in addition,V 5 = a;l + byJ + c;K, then
(13.58) detV,,V,,V3) = (V; xV,) V5 =a5(b,c, —¢;b,) 4+ bs(cia, — a,C,) + c3(ayb, —bya,) -

This is just the expansion of the determinant by minors of the third row. An easy way to remember the
formula for the cross product is as this determinant:

I J K
(13.59) V,xV,=det| a, b, ¢
a b, ¢

Example 13.15 FindV, - (V, x V;) where
(13.60) V,=—1+2J4+K. V,=21-21+3K, V;=1-2K.
By proposition 13.9, this is the determinant

-1 2 1
(13.61) Vl-(V2><V3):det< 2 -2 3) =1(6+2)+0+(-2)(2—4) =12
1 0 -2

where we calculate by minors of the third row.

Example 13.16 Find a vectoW of length|W/| = 5 which is orthogonal to botk ; andV,, so that the
system{V,, V,, W} is right-handed.
W is a positive multiple o¥/; x V,, which is

| J K
(13.62) V,xV,=det| -1 2 1 |=8+51-2K.
2 -2 3
This vector has length/64+25+ 4 = 1/93, so
(13.63) W= > (81 +5]—2K) .

V93
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§13.4. Lines and Planes in Space

A coordinate system in space consists of a choice of a particular @Paastorigin, and a right-handed
system of mutually orthogonal unit vectdrsJ,K. Once a coordinate system is selected, we can rep-
resent a poinP : (x,y,2) by the vectorOP = xI + yJ + zK from the origin toP. Given another point
Q= (X,y,Z), thevectorfrom P to Q is denotedPQ = (X — )| + (Y —y)J + (Z — 2)K. We shall often
write the vectoitOP asP for consistency of notation in formaluas. Thee through a given poinP and

in the direction of a given vectdr is the set of all pointX of the form
(13.64) X =P+tL

wheret runs over all real numbers. This is called fierametric form of the equation of the line. This
says that the vectof — P is collinear with the vectok, and thus the components are proportional. In
coordinates, writingk = xl +yJ+zK, P =Xl +y,J+ 7K, andL = al +bJ +cK, we get thesymmetric
form of the equation of a line:

X=% Y Y% _27%
(13.65) oY h_ZTh

Example 13.17 Find the symmetric equations of the line through the pdatgs-1,4) andQ(6, 2, -3).
The vectolPQ=4l +3J - 7K is on the line, s&X = xl + yJ+ZK is on the line precisely whex — P
is parallel toPQ. This gives us the symmetric equations

X—2 y+1 z-4

(13.66) " 3 —

Theplanethrough a poinP, spannedby the vectord/ andW is the set of all pointX of the form
(13.67) X =P4+sV+tW

wheres, t range over all real numbers. This is therametric form of a plane. We note that a poiKt
is on the plane if and only if the parallelipiped formed fré- P, V, W has zero volume, that is

(13.68) detX — P,V,W) =0.

This is the equation of the plane. The vedibe= V x W is called thenormal to the plane, since it is
orthogonal to all vectors lying on the plane. In terms of the normal, we have this as the equation of the
plane:

(13.69) (X-P)-N=0,

since detX —P,V,W) = (X —P) -N. Turning to coordinates, l&® be the point(x,,Y,,Z,), andN =
al + bJ+ cK. Then for(x,y,z) the coordinates for the poidt, (13.69) becomes

(13.70) a(Xx—Xy) +b(y—yy) +¢(z—2z) =0 or ax+by+cz=d.
where

(13.71) d=ax,+by,+cz .
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We can summarize this discussion with

Proposition 13.11 a) Given a point P and a vectdt, the plane through P and orthogonal kbis given
by the equation

(13.72) X-N=P-N.

b) The plane through P spanned YyandW has as normaN =V x W.
¢) The coefficients of the cartesian equation (13.70) for a plane are the components of the normal vector.

Example 13.18 Find the equation of the plane through the péi(6,3,-1) perpendicular to the line in
space whose symmetric equations are
Xx-2 y+1 z-1

3 4 =2

(13.73)

The vector 3+ 4J — 2K has the direction of the line, so is normal to the plane, and can be taken to
beN. We know that the equation of the plane has the fom- P) -N =0, forP: (5,3,—1) is a point
on the plane. This gives the equation

(13.74) X-N=P-N or 3+4y—2z=15+12+2=29.

Example 13.19 Find the equation of the plane containing the pol(t8,5, —1), Q(6,—1,0), R(3,1,4).
The vectorPQ =4l —6J+K, PR=1-4J+5K lie on the plane, so the normal is

(13.75) N = PQx PR= (—30+4)l 4+ (1—20)J+ (~16+6)K = —26/ —19] — 10K .
The equation of the plane thenXs N = P- N, which comes to 26+ 19+ 10z = 137.

Example 13.20 Find the equation of the line through the origin and orthogonal to the plang 2 3z=
1.

The vector 2—J+ 3K is normal to the plane, so lies in the direction of the line.Thus the symmetric
equations of the line are

(13.76)

Now, given two planes with equatioXs N, = d;, X-N, = d,, the vectoN, x N,, has the direction of
the line of intersection of the two planes. ThuPR i a point on that line (found by finding a simultaneous
solution of the equations of the planes), the equation of the line is

(13.77) X =P+t(N;xN,) .

Example 13.21 Find the parametric form of the line given by the equatioxns 2+ 3z= 1, x+5y—2z=
0.
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To find a pointP on the line we solve the simultaneous equations, takia@. This gives the equa-
tions forxandy: 2x—y =1, x+5y=0. The solution ix=20/11, y= —4/11. ThusP(20/11,—4/11,0)
is on the line. The cross product of the two normals is

(13.78) (21 =13+ 3K) x (1 +5J— 2K) = —13 + 7J+ 1K

giving the parametric equation of the line

20 4
(13.79) X = <1—1—1a> | + <H+7t>J+1ZK

Now, suppose we are given two lines in parametric form:
(13.80) X=P;+tL;, X=P,+tL,,

and a poin, and are asked to find the equation of the plane thr@ugind parallel to the lines. Then
the normal to this plane is perpendicular to the two lines, so can be takenlLtg ke ,, and then the
equation of the desired plane is

(13.81) (X=Q)-(LyxL,)=0.

Example 13.22 Find the equation of the plane through a (2,0,-1) parallel to the ve¢ter@l —J, W =
6l + K.
V x W is perpendicular to the vectox§ W, so can be taken as the norrhato the plane. We get

(13.82) N=2-J)x (6l +K) =2l xK—-6I x| —-IxK=-2J+6K—1.
TakingX, = 2| —K as a given point on the plane, the equatiorN = X - N is

(13.83) —X—2y+6z=2(~1)+(-1)6=-8

We can summarize this discussion in the form of two assertions.

Proposition 13.12 a) Given a lineX = P+tL, the plane through a given point Q and perpendicular to
the line has the equatiofX — Q) -L = 0.

b) Given the equation of a plané-N = d, a point P. the line through P and perpendicular to the plane
has the equatioiX = P +tN.

Now, suppose we want to find the distance of a pQrb a planel1. We know from elementary
geometry that the this distance is the length of the line segment@aooT1 which is perpendicular to
M. This line segment is thus in the direction of the normdll{aand is seen (see figure 13.16) to be the
projection of any vector fron® to I' in the normal direction. This demonstrates the first part of

Proposition 13.13 a) The distance from a point Q to a plafewith normalN is

(13.84) d(Q,n) = P?\I'|N| ,
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where P is any point on the plane. b) The distance from a point Q to a line L in the diréct®n

—

PQxL]
L

(13.85) d(Q,L) =

where P is any point on the line.
To show b), start with figure 13.17. We have

PQ|IL[sin6  [PQx L]

(13.86) d(Q.L) = PQIsing = —r=— = ==

Figure 13.17 Figure 13.18

Example 13.23 Find the distance of the poi(, 0,4) from the plane whose equationis-y — 2z= 0.
LetQ: (2,0,4). Pick a pointP on the plane, for exampl®= (1,1,1). N=1+J— 2K is normal to
the plane, so the distance is the length of the projection of the vectorHron® in the direction oiN:

(13.87) PQ-N=(1-J+3K)-(I+J-2K)=-6, [N|=v6
so the distance Q- N|/|N| = V6.

Example 13.24 Find the distance of the poif2,0,1) from the line whose symmetric equations are

Xx-2 y+1 z-1
3 4 =2

(13.88)

Let OQ= 2l +K be the vector to the given point, a@P = 2| — J+K the vector to a point on the
line, andL = 3l +4J — 2K, a vector in the direction of the line. The distance is

PQxL| |[-JIx(3+4-2K)  [13

(13.89) L Bl+4a-2k| V29

Example 13.25 Find the distance between the two parallel planes

(13.90) n,: x+2y-52=2, Mn, : x+2y-5=11.
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The distance between the two planes is the length of any line segment perpendicular to both planes. Thus
we need only find the length of the projection IBffP2 on the common normall = | + 2J — 5K, where

P, is a point o1, andP, is a point or1,. SinceP, - N = 2, andP,, - N = 11 for these points we get, for

the distance:

|(P,—P,;)-N| 11-2 9

13.91 - - ,
( ) NJ V1+4+25 /30




