
CHAPTER 13

Vector Algebra

x13.1. Basic Concepts

A vector V in the plane or in space is an arrow: it is determined by its length, denotedjVj and its
direction. Two arrows represent the same vector if they have the same length and are parallel (see figure
13.1). We use vectors to represent entities which are described by magnitude and direction. For example,
a force applied at a point is a vector: it is completely determined by the magnitude of the force and the
direction in which it is applied. An object moving in space has, at any given time, a direction of motion,
and a speed. This is represented by the velocity vector of the motion. More precisely, the velocity vector
at a point is an arrow of length the speed (ds=dt), which lies on the tangent line to the trajectory. The
success and importance of vector algebra derives from the interplay between geometric interpretation
and algebraic calculation. In these notes, we will define the relevant concepts geometrically, and let this
lead us to the algebraic formulation.
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Newton did not write in terms of vectors, but through his diagrams we see that he clearly thought of
forces in these terms. For example, he postulated that two forces acting simultaneously can be treated
as acting sequentially. So suppose two forces, represented by vectorsV andW, act on an object at a
particular point. What the object feels is theresultantof these two forces, which can be calculated by
placing the vectors end to end (as in figure 13.2). Then the resultant is the vector from the initial point
of the first vector to the end point of the second. Clearly, this is the same if we reverse the order of the
vectors. We call this thesum of the two vectors, denotedV+W. For example, if an object is moving
in a fluid in space with a velocityV, while the fluid is moving with velocityW, then the object moves
(relative to a fixed point) with velocityV+W.

186
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Definition 13.1
a) A vector represents the length and direction of a line segment. Thelength is denotedjVj. A unit
vector U is a vector of length 1. Thedirection of a vctorV is the unit vectorU parallel toV: U=V=jVj.
b) Given two points P; Q, the vector from P to Q is denoted~PQ.
c) Addition. Thesum, or resultant, V+W of two vectorsV andW is the diagonal of the parallelogram
with sidesV,W.
d) Scalar Multiplication. To distinguish them from vectors, real numbers are calledscalars. If c is a
positve real number, cV is the vector with the same direction asV and of length cjVj. If c negative, it is
the same, but directed in the opposite direction.

We note that the vectorsV, cV are parallel, and conversely, if two vectors are parallel (that is, they
have the same direction), then one is a scalar multiple of the other.

Example 13.1 Let P; ;Q; R be three points in the plane not lying on a line. Then

(13.1) ~PQ+ ~QR+ ~RP= 0 :
From figure 13.3, we see that the vector~RP is the same line segment as~PQ+ ~QR, but points in the

opposite direction. Thus~RP=�( ~PQ+ ~QR).
Figure 13.3
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Example 13.2 Using vectors, show that if two triangles have corresponding sides parallel, that the
lengths of corresponding sides are proportional.

Represent the sides of the two triangles byU; V; W andU 0; V0; W0 respectively. The hypothesis is
that there are scalarsa; b; c such thatU0 = aU; V 0 = bU; W 0 = cW. The conclusion is thata= b= c.
To show this, we start with the result of example 1; since these are the sides of a triangle, we have

(13.2) U+V+W = 0 ; U0+V0+W0 = 0 ; or; what is the same; aU+bV+cW = 0

The first equation gives usU =�V�W, which, when substituted in the last equation gives

(13.3) (b�a)V+(c�a)W = 0

Now, if b 6= a, this tells us thatV andW are parallel, and so the triangle lies on a line: that is, there is no
triangle. Thus we must haveb= a, and by the same reasoning,c= a also.
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The advantage gained in using vectors is that they are moveable, and not tied to any particular coordinate
system. As we have seen in the examples of the previous section, geometric facts can be easily derived
using vectors while working in coordinates may be cumbersome. However, it is often the case, that in
working with vectors we must do calculations in a particular coordinate system. It is important to realize
that it is the worker who gets to choose the coordinates; it is not necessarily inherent in the problem.

We now explain how to move back and forth between vectors and coordinates. Suppose, then, that a
coordinate system has been chosen: a pointO, the origin, and two perpendicular lines through the origin,
thex- andy-axes. A vectorV is determined by its length,jVj and its direction, which we can describe by
the angleθ thatV makes with the horizontal (see figure 13.4). In this figure, we have realizedV as the
vector ~OP from the origin toP. Let (a;b) be the cartesian coordinates ofP. Note thatV can be realized
as the sum of a vector of lengtha along thex-axis, and a vector of lengthb along they-axis. We express
this as follows.

Definition 13.2 We letI represent the vector from the origin to the point (1,0), andJ the vector from
the origin to the point (0,1). These are thebasicunit vectors (a unit vector is a vector of length 1). The
unit vector in the directionθ is cosθ I +sinθJ.

If V is a vector of lengthr and angleθ , thenV = r(cosθ I +cosθJ). If V is the vector from the origin
to the point(a;b); r is the length ofV, and cosθ I + cosθJ is its direction. IfP(a;b) is the endpoint of
V, thenV = ~OP= aI +bJ. a andb are called thecomponentsof V.

Figure 13.4
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Of course,r andθ are the usual polar coordinates, and we have these relations:

(13.4) jVj=pa2+b2 ; θ = arctan
b
a

; a= jVjcosθ ; b= jVjsinθ :
We add vectors by adding their components, and multiply a vector by a scalar by multiplying the com-
ponents by the scalar.

Proposition 13.2 If V = aI +bJ andW = cI +dJ, thenV+W = (a+c)I +(b+d)J.

This is verified in figure 13.5.
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Figure 13.5
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Example 13.3 A boy can paddle a canoe at 5 mph. Suppose he wants to cross a river whose current
moving at 2 mph. At what angle to the perpendicular from one bank to the other should he direct his
canoe?

Draw a diagram so that the river is moving horizontally from left to right, and the direct crossing
is vertical (see figure 13.6). Place the origin on the lower bank of the river, and choose thex-axis in
the direction of flow, and they-axis perpendicularly across the river. TIn these coordinates, the velocity
vector of the current is 2I . Let V be the velocity vector of the canoe. We are given thatjVj= 5 and we
want the resultant of the two velocities to be vertical. Ifα is the desired angle, we see from the diagram
that sinα = 2=5, soα = 23:5Æ.
Example 13.4 An object on the plane is subject to the three forcesF= 2I +J; G=�8J; H. Assuming
the object doesn’t move, findH. At what angle to the horizontal isH directed?

By Newton’s law, the sum of the forces must be zero. Thus

(13.5) H =�F�G=�2I �J+8J ==�2I +7J :
If α is the angle from the positivex-axis toH, tanα = �7=2, soα = 105:95Æ, sinceH points upward
and to the left.

Since vectors represent magnitude and length, we need a computationally straightforward way of
determining lengths and angles, given the components of a vector.

Definition 13.3 Thedot product of two vectorsV1 andV2 is defined by the equation

(13.6) V1 �V2 = jV1jjV2jcosβ ;
whereβ is the angle between the two vectors.

Note that since the cosine is an even function, it does not matter if we takeβ from V 1 to V2, or in the
opposite sense. In particular, we see thatV 1 �V2 = V2 �V1. Now, we see how to write the dot product in
terms of the components of the two vectors.

Proposition 13.3 LetV1 = a1I +b1J andV2 = a2I +b2J. Then

(13.7) V1 �V2 = a1a2+b1b2
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with equality holding only when the vectors are parallel.

To see this, we use the polar representation of the vectors:

(13.8) V1 = r1(cosθ1I +sinθ1J) ; V2 = r2(cosθ2I +sinθ2J) :
Then

(13.9) V1 �V2 = r1r2cos(θ1�θ2) = r1r2cosθ1cosθ2+ r1r2 sinθ1sinθ2

by the addition formula for the cosine. This is the same as

(13.10) V1 �V2 = (r1cosθ1)(r2cosθ2)+(r1sinθ1)(r2 sinθ2)
which is equation (13.7) in Cartesian coordinates. As for the last statement, we have strict inequality
unless cosβ = 1, that isβ = 0 orπ , in which case the vectors are parallel.

Proposition 13.4
a) Two vectorsV andW are orthogonal if and only ifV �W = 0.
b) If L andM are two unit vectors withL �M = 0, then for any vectorV, we can write

(13.11) V = aL +bM ; with a= V �L ; b= V �M ; andjVj=pa2+b2 :
We shall say that a pair of unit vectorsL ; M with L �M = 0 form abasefor the plane. This statement
just reiterates that we can put cartesian coordinates on the plane with any point as origin and coordinate
axes two orthogonal lines through the origin; that is the lines in the directions ofL andM . To show part
b) we start with figure 13.7.

Figure 13.7
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From that figure, we see that we can write any vector as a sumV = aL+bM with (by the Pythagorean
theorem)jVj=p

a2+b2. We now show thata; b are as described;

(13.12) V �L = (aL +bM) �L = aL �L +bM �L = a :
Similarly V �M = b.

Example 13.5 Find the angleβ between the vectorsV = 2I �3J andW = I +2J.
We havejVj=p

22+32 =p
13 ; jWj=p

12+22 =p
5 andV �W = 2(1)+(�3)(2) =�4. Thus

(13.13) cosβ = V �WjVjjWj = �4p
65

=�:496
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soβ =�119:7Æ.
Example 13.6 Suppose we have put cartesian coordinates on the plane, withI ; J the standard base. Let

(13.14) L = I +Jp
2

; M = �I +Jp
2

be a new base. Given the pointP(5;2), write ~OP in terms ofL andM .
By the preceding proposition,

(13.15) ~OP�L = (5I +2J) � � I +Jp
2

�= 7p
2

; ~OP�M = (5I +2J) � ��I +Jp
2

�=� 3p
2

;
so ~OP= (7L �3M)=p2.

Example 13.7 Show, using vectors, that the interior angles of an isosceles triangle are equal.

Figure 13.8
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In figure 13.8 we have labelled the sides of equal length asV andW. Thus, the base of the triangle is
V+W. First of all, sincejVj= jWj, we have(V+W) �V =V �V+W �V =W �W+V �W =(V+W) �W.
Thus, by (2),

(13.16) cosβ = (V+W) �VjV+WjjVj = (V+W) �WjV+WjjWj = cosβ 0 :
Since both angles are acute,β = β 0.
Example 13.8 Find a vector orthogonal toV = 3I +4J and of the same length.

The vectorsV = aI + bJ; W = cI + dJ; are orthogonal precisely whenac+bd= 0. Thus, if we
are givena;b, we takec = �b; d = a to get an orthogonal vector. So for this example, we can take
W =�4I +3J. Clearly, since the coefficients are the same but for sign,jWj= jVj. We could also take
the vector in the opposite direction:�W = 4I �3J

In general, ifV = cI +dJ then both�dI +cJ anddI �cJ are orthogonal toV and of the same length.
The first is counterclockwise toV, and the second, clockwise.

Definition 13.4 Given the vectorV, we shall denote byV? that vector which is orthogonal to, of the
same length as, and counterclockwise toV. In components, we have:

(13.17) If V = aI +bJ ; then V? =�bI +aJ
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See figure 13.8 to see thatV? is counterclockwise toV (at least in the case where botha andb are
positive).

Figure 13.9
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Definition 13.5 Given two vectorsV and W, we define thedeterminant det(V;W) of the two vec-
tors as the signed area of the parallelogram spanned by the two vectors. The sign is positive ifW is
counterclockwise fromV; otherwise negative.

In figure 13.10,α is the angle fromV to W. Thus

(13.18) det(V;W) = jVjjWjsinα :
Figure 13.10
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Now, let β be the angle fromW to V? so that (in figure 13.10),α +β = π=2, and we have sinα =
cosβ . SincejVj= jV?j, we can rewrite (13.18) as

(13.19) det(V;W) = jV?jjWjcosβ = V? �W
This gives us the following.

Proposition 13.5 The determinant of the two vectorsV = aI +bJ andW = cI +dJ is the determinant
of the matrix whose rows are the vectorsV andW:

(13.20) det(V;W) = ad�bc

For, V? =�bI +aJ, and from (13.19),det(V;W) = V �W? =�bc+ad= ad�bc.
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The vectorsV andWare parallel (or collinear) if and only if det(V;W) = 0, for in this case there is
no parallelogram. We also have the inequality

(13.21) jdet(V;W)j � jVjjWj ;
with equality holding if and only ifV andW are orthogonal.

Definition 13.6 Given two vectorsV andW, theprojection of V in the direction ofW is that vectorV 0
parallel to W such thatV�V 0 is orthogonal to V0 (see figure 13.11).

Figure 13.11
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Proposition 13.6 The projectionV 0 of V in the direction ofW is given by the formula

(13.22) V 0 = prW(V) = V �W
W �W W :

If U is a unit vector in the direction ofW, then

(13.23) V 0 = (V �U)U ; and V = (V �U)U+(V �U?)U? :
To show this we start with the equation(V�V 0) �V0 = 0. SinceV 0 = aW for somea, this gives us

(13.24) (V�aW) �aW = 0 ; or a2W �W = aV �W
If a= 0, thenV 0 = 0 andV andW are orthogonal. Otherwise

(13.25) a= V �W
W �W ;

giving us (13.22). The rest of the proposition follows by replacingW by the unit vectorU, and should
be viewed as a restatement of Proposition 13.6.

Example 13.9 Find the area of the parallelogram whose vertices are atO(0;0);P(4;�2), Q(5;8);R(9;6).
This is the parallelogram determined by the vectors from the originO to the pointsP andQ: ~OP=

4I �2J; ~OQ= 5I �8J, so has signed area 4(�8)� (�2)(5) =�22. We verify these are the vertices of
a parallelogram by calculating~OP+ ~OQ= 9I +6J = ~OR.

In order to discuss geometric objects in the coordinate plane, it is useful to represent a pointX(x;y)
by the vectorX = ~OX= xI +yJ from the origin toX. ForY another point, the vector fromX toY is thus
represented byY�X (see figure 13.12).
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Figure 13.12
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A line L is determined by its direction and a point on the line. letX 0 be a point onL, andL a vector

parallel to the lineL. Then, for any pointX, it is on the line if and only ifX�X 0 is parallel toL , or,
what is the same, orthogonal toL ?. This leads to these two equations, called the equation of the line:

(13.26) (X�X0) �L? = 0 or det(X�X0;L ) = 0 :
Also, sinceX�X0 is parallel toL if and only if X�X0 is a scalar multiple ofL , we have theparametric
form of the equation of the line:

(13.27) L : X = X0+ tL :
A line is also determined by two pointsX0; X1 on the line. Given that information, we find the equations
of the line by takingL = X1�X0.

Now, supposeL is a line andX is a point not on the line. We seek a formula for the distance from
the pointX to the line. We see from figure 13.13 that this is the length of the projection in the direction
perpendicular toL of a vector fromX to any pointX 0 on L. This leads to the formula for the distance
from X to L

(13.28) d(X;L) = jpr
L?(X�X0)j

Example 13.10 Let L be the line given by the equation 3x�y= 7. Find the distance from (2,4) toL.
By comparison with equation (13.26) we see thatL ? = 3I �J. To use (13.28) we need a point on the

line; any solution of the equation 3x�y= 7 will do. (3,2) is a solution, so we takeX 0 = 3I +2J. Thus,
for our point,X = 2I +4J, the distance is

(13.29) jpr
L?(X�X0)j= j(X�X0) �L?jjL?j = j(�I +2J) � (3I �J)jj3I �Jj = 5p

10

Example 13.11 Find the distance fromX(3,1) to the line throughX0(2,-3) and parallel toV =�I +4J.
The vectorL? =�4I �J is orthogonal to the line. Thus the distance is

(13.30) jpr
L?(X�X0)j= j(I +4J) � (�4I �J)jj�4I �Jj = 8p

17

Example 13.12 Find the point on the lineL : 2x�3y= 17 which is closest to the origin.
Let X be the vector from the origin to the desired point. ThenX is orthogonal to the line, so is parallel

to the vectorL?=2I�3J. Writing X = t(2I�3J), sinceX ends on the line we have 2(2t)�3(�3t)=17,
sot = 17=13, andX = (34=13)I � (51=13)J .
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In a Cartesian coordinate system for space, the vectorsI , J, K are the vectors from the origin to the
points(1;0;0); (0;1;0); (0;0;1) respectively. These are unit vectors, mutually orthogonal, and form the
standard basefor space. We always take a coordinatization so thatfI ; J; Kg is a right-handed system.
More precisely, if we situateI andJ on the horizontal plane, thenI is a unit vector,J is a unit vector
perpendicular toI and counterclockwise fromI , andK is a unit vector orthogonal to the horizontal plane,
pointing upwards (see figure 13.14).

Figure 13.14
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Any vectorV can be written uniquely as

(13.31) V = aI +bJ+cK ;
wherea; b; c are called thecomponentsof V. To add two vectors, add the components; to multiply a
vector by a scalar, multiply the components by the scalar. IfV is given as in (13.31), itslength is

(13.32) jVj=pa2+b2+c2:
Thedirection of V is determined by the cosines of the angles betweenV and the coordinate axes. Thus,
for any vectorV we can write

(13.33) V = jVj(cosα I +cosβJ+cosγK)
whereα ; β ; γ are those angles. The components of the unit vector in (13.33) are called thedirection
cosinesof the vectorV. Note that cos2 α +cos2 β +cos2 γ = 1.

Definition 13.7 Thedot product of two vectorsV; W is defined as

(13.34) V �W = jVjjWjcosθ ;
whereθ is the angle betweenV andW.

As for plane vectors, this has an easy formulation in terms of the components of the vectors.

Proposition 13.7 Let

(13.35) V = a1I +b1J+c1K ; W = a2I +b2J+c2K
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in components. Then

(13.36) V �W = a1a2+b1b2+c1c2

To see this, we start with the Law of Cosines for the triangle whose sides are the vectorsV; W; W�V
(see figure 13.15):

Figure 13.15
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βjW�Vj2 = jVj2+ jWj2�2jVjjWjcosβ

(13.37) jW�Vj2 = jWj2+ jVj2�2jVjjWjcosβ = jWj2+ jVj2�2(W �V) ;
so that

(13.38) W �V = 1
2
(jWj2+ jVj2�jW�Vj2) :

Now, writing the right hand side in terms of components, using (13.31) and (13.32), we get (13.36),
after some cancellation. In particular, just as in two dimensions, two vectorsV; W areorthogonal if

V �W = 0.

Example 13.13 Find the angle between the vectorsV = 2I �3J+K ; W = 6I +J�2K .
We haveV �W = 12�3�2= 7 andjVj=p

22+32+12 = 3:74; jWj=p
62+12+22 = 6:40. Thus

(13.39) cosα = 7(3:74)(6:40) = :2923

soα = 73Æ.
Example 13.14 Find a vector orthogonal to both the vectorsV andW of example 13.13.

Let X = xI +yJ+zK be the desired vector. We have the conditions

(13.40) X �V = 2x�3y+z= 0 ; X �W = 6x+y�2z= 0 :
We can solve these equations by replacingz by any nonzero value, sayz= 1, and solving the resulting
equations forx andy:

(13.41) 2x�3y+1= 0 ; 6x+y�2= 0 :
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These have the solutionx= 1=4; y= 1=2. Thus we can take

(13.42) X0 = 1
4

I + 1
2

J+K

as our answer. Of course there is a line of such vectors, corresponding to all possible values forz. Thus
the set of all vectors orthogonal toV andW is the setftX 0g.

Given vectorsV andW, theprojection of V (denotedprW(V)) in the direction ofW is the vectorV 0
parallel toW such thatV andV�V 0 are orthogonal. Ifβ is the angle betweenV andW, this projection
is the vector of lengthjVjcosβ in the direction ofW. The formula for the projection is (as in the plane):

(13.43) prW(V) = ( V �W
W �W )W :

Again, just as in the plane, ifU is the unit vector in the direction ofW, thenpr W(V) = (V �U)U. We
note that for two vectorsV1; V2,

(13.44) prW(V1+V2) = prW(V1)+ prW(V2) :
Definition 13.8 Thecross productof two vectorsV; W, denotedV�W, is that vector
a) of length the area of the parallelogram spanned byV; W,
b) perpendicular to the plane ofV; W so that the systemfV; W; V�Wg is right-handed.

Now, since the area of the parallelogram spanned by the vectorsV; W is jVjjWjsinβ , whereβ is the
angle between the two vectors, we have

(13.45) jV�Wj2 = jVj2jWj2� (V �W)2
since

(13.46) jV�Wj2 = jVj2jWj2sin2 β = jVj2jWj2(1�cos2 β ) = jVj2jWj2� (jV1jjV2jcosβ )2
which is the right side of (13.45), from (13.34). Note that interchangingV andW changes the sign of the

cross product, for if the systemfV; W; Lg is right-handed, then the systemfW; V; Lg is left-handed,
and thusfW; V; �Lg is right handed. This gives us the first of the following identities:

(13.47) V�W =�W�V

(13.48) V�V = 0;
(13.49) (aV)�W) = a(V�W);
We now determine a formula for the cross product in components. It is useful to start with the determinant
of three vectors in space, sometimes called thetriple scalar product.

Definition 13.9 Given three vectors in spaceU; V; W, we define thedeterminant det(U;V;W) as the
signed volume of the parallelepiped spanned by the vectors. This is zero if the vectors all lie in the same
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plane. Otherwise, the sign is positive if the vectorsfU;V;Wg form a right-handed system, and negative
if a left-handed system.

Proposition 13.8 Given two vectorsV; W, then, for any third vectorU,

(13.50) det(U;V;W) = U � (V�W)
For any two vectorsU1; U2

(13.51) det(U1+U2;V;W) = det(U1;V;W)+det(U2;V;W)
We now show (13.50) using a geometric argument similar to that used for proposition 13.4. IfV and

W lie on a line, then all terms are zero, and there is nothing to show. Otherwise,V andW determine
a plane; letL be the unit vector orthogonal to that plane so that the tripleV;W;L is right-handed. For
any vectorU, let U0 be the projection ofU in the direction ofL . Then, we see geometrically that the
volume of the parallelepiped spanned byU;V;W is the product of the area of the parallelogram spanned
by V;W and the length ofU0 (see figure 13.16).

Figure 13.16
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SinceV�W has the same direction asL , this volume is

(13.52) jU0jjV�Wj= jUjjV�Wjcosβ = U � (V�W)
whereβ is the angle betweenU andL . The signs are right in (21), for on both sides they are determined
by whether or not the systemU;V;W is right-handed. 2 now follows directly from (21), since the right
hand side is linear inU:

(13.53) det(U1+U2;V;W) = (U1+U2) � (V�W)
(13.54) = U1 � (V�W)+U2 � (V�W) = det(U1;V;W)+det(U2;V;W)
Now, if we permute the three vectorsU: V; W, we just change the sign of the determinant, since it is
always the parallelepiped spanned by the same vectors:

(13.55) det(U;V;W) =�det(V;U;W) = det(V;W;U) :
So, since, but for sign, we can move any of the vectors in det(U;V;W) to the first position, we conclude
that the determinant is linear in all three variables. In particular, the cross product is linear in its variables.
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This allows us to calculate the determinant and cross product from the components of the given vectors.
We first observe that the calculations for the basis vectors are immediate, since the area of the unit square
is 1:

(13.56) I �J= K ; J�K = I ; K � I = J; I � I = J�J = K �K = 0

Finally, from (21) J� I =�I �J=�K , etc. After a long computation, we find:

Proposition 13.9 If V1 = a1I +b1J+c1K ; V2 = a2I +b2J+c2K , then

(13.57) V1�V2 = (b1c2�c1b2)I +(c1a2�a1c2)J+(a1b2�b1a2)K :
Now we see that the determinant of three vectors, or, what is the same, the triple scalar product:

V1 � (V2�V3) = (V1�V2) �V3 is, in fact, the determinant of the matrix whose rows are the components
of the vectorsV1;V2;V3, just by taking the dot product ofV 3 with the expression (13.57) forV 1�V2:

Proposition 13.10 If, in addition,V 3 = a3I +b3J+c3K , then

(13.58) det(V1;V2;V3) = (V1�V2) �V3 = a3(b1c2�c1b2)+b3(c1a2�a1c2)+c3(a1b2�b1a2) :
This is just the expansion of the determinant by minors of the third row. An easy way to remember the
formula for the cross product is as this determinant:

(13.59) V1�V2 = det

0@ I J K
a1 b1 c1
a2 b2 c2

1A
Example 13.15 FindV1 � (V2�V3) where

(13.60) V1 =�I +2J+K : V2 = 2I �2J+3K ; V3 = I �2K :
By proposition 13.9, this is the determinant

(13.61) V1 � (V2�V3) = det

0@ �1 2 1
2 �2 3
1 0 �2

1A= 1(6+2)+0+(�2)(2�4) = 12

where we calculate by minors of the third row.

Example 13.16 Find a vectorW of lengthjWj= 5 which is orthogonal to bothV 1 andV2, so that the
systemfV1; V2; Wg is right-handed.
W is a positive multiple ofV1�V2, which is

(13.62) V1�V2 = det

0@ I J K�1 2 1
2 �2 3

1A= 8I +5J�2K :
This vector has length

p
64+25+4=p

93, so

(13.63) W = 5p
93
(8I +5J�2K) :
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A coordinate system in space consists of a choice of a particular pointO as origin, and a right-handed
system of mutually orthogonal unit vectorsI ; J;K . Once a coordinate system is selected, we can rep-
resent a pointP : (x;y;z) by the vector ~OP= xI + yJ+ zK from the origin toP. Given another point
Q= (x0;y0;z0), thevectorfrom P to Q is denoted~PQ= (x0�x)I +(y0�y)J+(z0�z)K . We shall often
write the vector~OP asP for consistency of notation in formaluas. Theline through a given pointP and

in the direction of a given vectorL is the set of all pointsX of the form

(13.64) X = P+ tL

wheret runs over all real numbers. This is called theparametric form of the equation of the line. This
says that the vectorX�P is collinear with the vectorL , and thus the components are proportional. In
coordinates, writingX = xI+yJ+zK , P= x0I+y0J+z0K , andL = aI+bJ+cK , we get thesymmetric
form of the equation of a line:

(13.65)
x�x0

a
= y�y0

b
= z�z0

c
:

Example 13.17 Find the symmetric equations of the line through the pointsP(2,-1,4) andQ(6, 2, -3).
The vector~PQ= 4I +3J�7K is on the line, soX = xI +yJ+zK is on the line precisely whenX�P

is parallel to ~PQ. This gives us the symmetric equations

(13.66)
x�2

4
= y+1

3
= z�4�7

:
Theplane through a pointP, spannedby the vectorsV andW is the set of all pointsX of the form

(13.67) X = P+sV+ tW

wheres; t range over all real numbers. This is theparametric form of a plane. We note that a pointX
is on the plane if and only if the parallelipiped formed fromX�P; V; W has zero volume, that is

(13.68) det(X�P;V;W) = 0 :
This is the equation of the plane. The vectorN = V�W is called thenormal to the plane, since it is
orthogonal to all vectors lying on the plane. In terms of the normal, we have this as the equation of the
plane:

(13.69) (X�P) �N= 0 ;
since det(X�P;V;W) = (X �P) �N. Turning to coordinates, letP be the point(x0;y0;z0), andN =
aI +bJ+cK . Then for(x;y;z) the coordinates for the pointX, (13.69) becomes

(13.70) a(x�x0)+b(y�y0)+c(z�z0) = 0 or ax+by+cz= d :
where

(13.71) d= ax0+by0+cz0 :
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We can summarize this discussion with

Proposition 13.11 a) Given a point P and a vectorN, the plane through P and orthogonal toN is given
by the equation

(13.72) X �N= P �N :
b) The plane through P spanned byV andW has as normalN = V�W.
c) The coefficients of the cartesian equation (13.70) for a plane are the components of the normal vector.

Example 13.18 Find the equation of the plane through the pointP(5,3,-1) perpendicular to the line in
space whose symmetric equations are

(13.73)
x�2

3
= y+1

4
= z�1�2

The vector 3I +4J�2K has the direction of the line, so is normal to the plane, and can be taken to
beN. We know that the equation of the plane has the form(X�P) �N = 0, for P : (5;3;�1) is a point
on the plane. This gives the equation

(13.74) X �N = P �N or 3x+4y�2z= 15+12+2= 29 :
Example 13.19 Find the equation of the plane containing the pointsP(2;5;�1), Q(6;�1;0), R(3;1;4).

The vectors~PQ= 4I �6J+K ; ~PR= I �4J+5K lie on the plane, so the normal is

(13.75) N = ~PQ� ~PR= (�30+4)I +(1�20)J+(�16+6)K =�26I �19J�10K :
The equation of the plane then isX �N= P �N, which comes to 26x+19y+10z= 137.

Example 13.20 Find the equation of the line through the origin and orthogonal to the plane 2x�y+3z=
1.

The vector 2I �J+3K is normal to the plane, so lies in the direction of the line.Thus the symmetric
equations of the line are

(13.76)
x
2
= y�1

= z
3

Now, given two planes with equationsX �N1= d1; X �N2= d2, the vectorN1�N2 has the direction of
the line of intersection of the two planes. Thus ifP is a point on that line (found by finding a simultaneous
solution of the equations of the planes), the equation of the line is

(13.77) X = P+ t(N1�N2) :
Example 13.21 Find the parametric form of the line given by the equations 2x�y+3z= 1; x+5y�2z=
0.
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To find a pointP on the line we solve the simultaneous equations, takingz= 0. This gives the equa-
tions forxandy: 2x�y= 1; x+5y=0. The solution isx= 20=11; y=�4=11. ThusP(20=11;�4=11;0)
is on the line. The cross product of the two normals is

(13.78) (2I �1J+3K)� (I +5J�2K) =�13I +7J+12K

giving the parametric equation of the line

(13.79) X = �20
11

�13t

�
I +��4

11
+7t

�
J+12tK

Now, suppose we are given two lines in parametric form:

(13.80) X = P1+ tL1 ; X = P2+ tL2 ;
and a pointQ, and are asked to find the equation of the plane throughQ and parallel to the lines. Then
the normal to this plane is perpendicular to the two lines, so can be taken to beL 1�L2, and then the
equation of the desired plane is

(13.81) (X�Q) � (L 1�L2) = 0 :
Example 13.22 Find the equation of the plane through a (2,0,-1) parallel to the vectorsV = 2I�J; W =
6I +K .

V�W is perpendicular to the vectorsV;W, so can be taken as the normalN to the plane. We get

(13.82) N = (2I �J)� (6I +K) = 2I �K �6J� I �J�K =�2J+6K � I :
TakingX0 = 2I �K as a given point on the plane, the equationX �N = X 0 �N is

(13.83) �x�2y+6z= 2(�1)+(�1)6=�8

We can summarize this discussion in the form of two assertions.

Proposition 13.12 a) Given a lineX = P+ tL , the plane through a given point Q and perpendicular to
the line has the equation(X�Q) �L = 0.
b) Given the equation of a planeX �N= d, a point P. the line through P and perpendicular to the plane
has the equationX = P+ tN.

Now, suppose we want to find the distance of a pointQ to a planeΠ. We know from elementary
geometry that the this distance is the length of the line segment fromQ to Π which is perpendicular to
Π. This line segment is thus in the direction of the normal toΠ, and is seen (see figure 13.16) to be the
projection of any vector fromQ to Π in the normal direction. This demonstrates the first part of

Proposition 13.13 a) The distance from a point Q to a planeΠ with normalN is

(13.84) d(Q;Π) = j ~PQ�NjjNj ;



x13.4 Lines and Planes in Space 203

where P is any point on the plane. b) The distance from a point Q to a line L in the directionL is

(13.85) d(Q;L) = j ~PQ�L jjL j ;
where P is any point on the line.

To show b), start with figure 13.17. We have

(13.86) d(Q;L) = j ~PQjsinθ = j ~PQjjL jsinθjL j = j ~PQ�L jjL j :
Figure 13.17

N

Π

Q

( ; )
Figure 13.18

L

θ

P

Q

d(Q;L)
Example 13.23 Find the distance of the point(2;0;4) from the plane whose equation isx+y�2z= 0.

Let Q : (2;0;4). Pick a pointP on the plane, for example,P= (1;1;1). N = I +J�2K is normal to
the plane, so the distance is the length of the projection of the vector fromP to Q in the direction ofN:

(13.87) ~PQ�N = (I �J+3K) � (I +J�2K) =�6 ; jNj= p
6

so the distance isj ~PQ�Nj=jNj=p
6.

Example 13.24 Find the distance of the point(2;0;1) from the line whose symmetric equations are

(13.88)
x�2

3
= y+1

4
= z�1�2

Let ~OQ= 2I +K be the vector to the given point, and~OP= 2I �J+K the vector to a point on the
line, andL = 3I +4J�2K , a vector in the direction of the line. The distance is

(13.89)
j ~PQ�L jjL j = j�J� (3I +4J�2K)jj3I +4J�2K j =r13

29
:

Example 13.25 Find the distance between the two parallel planes

(13.90) Π1 : x+2y�5z= 2 ; Π2 : x+2y�5z= 11 :
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The distance between the two planes is the length of any line segment perpendicular to both planes. Thus
we need only find the length of the projection of~P1P2 on the common normalN = I +2J�5K , where
P1 is a point onΠ1 andP2 is a point onΠ2. SinceP1 �N= 2, andP2 �N= 11 for these points we get, for
the distance:

(13.91)
j(P2�P1) �NjjNj = 11�2p

1+4+25
= 9p

30
:


