Calculuslll
Practice Problems9: Answers
1. Find the surface area of the part of the hyperbolic paraboloid z= xy that lies inside the cylinder x2+y? < 4.

Answer. Let R be the disk x? +y? < 4. We want the surface area of the part of the surface z= xy lying over
R Now z =Y, 7, = X, so that

Sur face Area://dSZ//,/l+ 2 + 72dxd z//\/l+ 2+ x2dA .
R R Z + Z,axay R y

It is convenient to switch to polar coordinates. We get
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2. Find the surface area of the part of the hyperbolic paraboloid z = y% — x? that lies between the cylinders
X +y?=1land x2+y? =4

Answer. The surface lies over the region R= {1 < x?+y? < 4}. Since zx = —2X, 7, = 2y, dS= /1 + 4x2 + 4y2dA.
Now, switching to polar coordinates, the surface area is
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3. Find the surface area of the part of the surface z= (2/3)(x*/? 4 y*/?) that lies above the triangle in the first
quadrant bounded by the line x+y=1.

Answer. We use the formula dS= /1 + z + Zdxdy:
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50 dS= /1 + x+ ydxdy. The region is the type 1 domain given by the inequalities0 <x <1, 0 <y<1—x,
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4. Find the mass and the x-coordinate of the center of mass of the solid bounded by the planes x =0, y =
0, z=0, x+y+ z= 1 with the density function p(x,y,2) =Y.

Answer. The solid can be represented by the inequalities, 0 <x<1,0<y<1—x,0<z<1-—x-y. Thus
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The innermost integral is y(1 —x—y) = y(1 —x) —y2. Then
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and the mass is
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Now 1 pl-x pl-x-y
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The innermost integral is xy(1 — x —y) = x[y(1 — X) — y?], and
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Finally,
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using the substitution u=1—x. Thus x= (1/120)/(1/24) =1/5.

5. Find the center of mass of the piece of the solid parabolic shell z< 16 — (x*+ y?) lying above the xy-plane.

Answer. Since this is a solid of revolution about the z-axis, the center of mass lies on the z axis, so is of the
form (0,0,2). To find zwe must calculate the volume and Mom,_, for the region. For these calculations we
switch to cylindrical coordinates.
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We conclude the computation with the change of variable u = 16 — r2, du = —2rdr:
16 2127-[
Mom,_, = n/ u’du = =
0

Thus 1
1221 32
2= "= 5333,
‘T2 6

6. Find the average value of f(x,y,2z) = x+ y+ zover the region R in the first octant (the region where all the
coordinates are positive) under the plane x+y+z=1.

Answer. Rcan be described as the set of (x,y,2) satisfying0 <x<1,0<y<1-—x 0<z<1—x-y. This
description tells us how to calculate by iterated integrals:
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and the average is Total /Volume. The computations are tedious and involve only integrations of polynomials.
The final integrations (with respect to x) are
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Thus the average is (1/8)/(1/6) = 3/4.

7. The curve z= (x—1)%,0 < z< 1 is rotated about the z-axis, enclosing, together with the xy-plane, a
3-dimensional region R. Riis filled with a substance whose density is inversely proportional to the distance
from the z-axis. Find the total mass of this object.

Answer. The region is that under the curve (using polar coordinates) z = (r — 1) above the disc R= {0 <
r < 1} on the xy-plane. The density is & = k/r. Thus, the mass is
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8. Evaluate

///R(xz-l-yz-{-zz)dxdydz

Answer. Switch to spherical coordinates. Ris given by p < 2, and the integral is
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where Ris the ball x* +y> +2° < 4.

9. Find the centroid of the region R described in example 24, Chapter 17.
Answer. There we found Volume = 60. We used the change of variables
U=x+y+z, v=y+z, w=z

X=U—V, y=V-W, Z=W

to do the computation. We had the Jacobian equal to 1, so it is easy to do the computation in the u,v,w

variables:
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The inner integral is
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Finally
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Thus the centroid is at (1,-1/2,2). For completeness, here is Example 24. Find the volume of the region R



given by the inequalities
0<z<4, 0<y+z<3, 0<x+y+z<5.

This region is a parallelipiped, so by the appropriate change of coordinates, can be made to correspond to a
rectangular parallelipiped. That is, we make the change of variables

U=X+y+z, v=y+z, w=z

so that R corresponds to the region Sgiven by the inequalities 0 < u<5,0<v<3, 0<w<4, Thus

_ _ a(x,y,2)
Volume_///Rdxdydz_///S|m|dudvdw.

Now, to calculate the Jacobian, we solve for x,y,z in terms of u,v,w:

X=U—V, Yy=V-W, Z=Ww,

so that
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Thus
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