Calculus III Practice Problems 7

- 1. What is the volume of the region under the surface $z = \ln x + y$ and over the rectangle in the xy-plane with vertices (1,0), (3,0), (3,0), (3,5)?
- 2. What is the volume of the solid bounded by the surfaces $z = x^3$ and $z = x^2 + 2y^2$ lying directly over the rectangle $0 \le x \le 1$, $0 \le y \le 3$?
- 3. What is the volume of the solid bounded above by the surface $z = y^2 x^2$ lying directly over the triangle $T: 0 \le y \le 2, -y \le x \le y$?
- 4. What is the volume of the region under the curve $z = e^{x+y}$ and over the triangle in the *xy*-plane with vertices (0,0), (1,0), (0,2).
- 5. Let *R* be the region in the plane bounded by the curves $x = y^2$, $x = 3 2y^2$. Calculate

$$I = \int \int_{R} (y^2 - x) dx dy.$$

- 6. What is the mass of the lamina bounded by the curves y = 1 + x and $y = 1 x^3$ and the x-axis, where the density function is $\delta(x, y) = x^2$?
- 7. A lamina filled with a homogeneous material (the density is identically equal to 1) is in the shape of the region R bounded by the curves y = 1 and $y = x^2$. What is its center of mass?
- 8. Find the mass of the solid bounded by the surface $z = \sqrt{x^2 + y}$, the coordinate planes and the planes x = 1, y = 2, where the density is $\delta(x, y, z) = x$.