Calculus III Practice Problems 5

1. Let $f(x, y, z) = x \ln z + 2yz$. a) What is ∇f ? b) Show that

$$\frac{\partial^2 f}{\partial z \partial x} = \frac{\partial^2 f}{\partial x \partial z} \,.$$

2. Find the direction **U** of maximal change for the function $w = x^3y^2z + xyz^2$ at the point (2,-1,2). What is $D_{\mathbf{U}}w$ at this point?

3. Suppose that the function w = f(x, y) is differentiable at the point *P* in the plane. Let $\mathbf{V} = \mathbf{I} + 2\mathbf{J}$, $\mathbf{W} = \mathbf{I} - \mathbf{J}$, and that $D_{\mathbf{V}}w = 2$, $D_{\mathbf{W}}w = 3$ at *P*. What is $\nabla w(P)$?

4. Suppose z = f(x, y) is differentiable at (1,1), and suppose that

$$\frac{d}{dt}f(1+t,1+t^2)|_{t=0} = 3, \quad \frac{d}{dt}f(1,1+t)|_{t=0} = 2.$$

What is $\nabla f(1,1)$?

5. A particle moves in space according to the equation

$$\mathbf{X}(t) = t^2 \mathbf{I} + (1 - t^2) \mathbf{J} + (1 - t) \mathbf{K} .$$

For $w = xy + yz^2 + xz^2$, find dw/dt along the trajectory. What is dw/dt when t = 2?

6. Let w = xyz and let γ be the helix given by

$$\mathbf{X}(t) = \cos t \mathbf{I} + \sin t \mathbf{J} + t \mathbf{k} \, .$$

Find dw/dt at $t = 2\pi/3$.

7. Find the equation of the tangent plane to the surface

$$x^{1/2} + y^{1/2} - z^{1/2} = 0$$

at the point (4,9,25).

8. Find the equation of the tangent plane to the surface

 $x\ln z + 2yz = 0$

at the point $(-e^2, 1, e^2)$.