
Mathematics 2210 Calculus III

Practice Final Examination

1. Find the symmetric equations of the line through the point (3,2,1) and perpendicular
to the plane 7x− 3y + z = 14.

Solution. The vector V = 7I − 3J + K is orthogonal to the given plane, so points in
the direction of the line. If we let X0 = 3I + 2J + K, then the condition for X to be the
vector to a point on the line is X − X0 is collinear with V, which gives us the symmetric
equations

x− 3

7
=
y − 2

−3
=
z − 1

1
.

2. Find the equation of the plane through the points (0,-1,1), (1,0,1) and (1,2,2).

Solution. The vectors from the first point (call it X0) to the second and third points are
U = I + J, V = I + 3J + K. Since U,V lie on the plane U × V is normal to the plane.
We calculate N = U× V = I − J + 2K. Thus the equation of the plane is

X · N = X0 · N , or x− y + 2z = 3 .

3. A particle moves through the plane as a function of time: X(t) = t2I + 2t3J. Find
the unit tangent and normal vectors, and the tangential and normal components of the
acceleration.

Solution. V = 2tI + 6t2J, A = 2I + 12tJ. Thus ds/dt = 2t
√

1 + 9t2 and

T =
I + 3tJ√
1 + 9t2

, N =
−3tI + J√

1 + 9t2
.

Then

aT = A · T =
2 + 36t2√

1 + 9t2
, aN = A · N =

6t√
1 + 9t2

.

4. A particle moves through space as a function of time:

X(t) = cos tI + t sin tJ + tK .

For this motion, find T, N, the the tangential and normal components of the acceleration,
and the curvature at time t = 3π/2.

Solution. V = − sin tI+(sin t+ t cos t)J+K , A = − cos tI+(2 cos t− t sin t)J. Evaluate
at t = 3π/2:

V = I − J + K , A =
3π

2
J .
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Then

aT = A · T = A · V

|V| = −π
2

√
3 , aNN = A − aTT =

π

2
(I + 2J + K)

so

aN =
π

2

√
6 , N =

I + 2J + K√
6

.

5. The particle of problem 3 moves in opposition to the force field F(x, y, z) = xI−yJ−K.
How much work is required to move the particle from (1,0,0) to (1, 0, 2π)?

Solution. The curve is parametrized by X(t) = cos tI+ t sin tJ+ tK, 0 ≤ t ≤ 2π, so along
the curve

F = cos tI− t sin tJ −K , dX = (− sin tI + (sin t+ t cos t)J + K)dt .

Thus the work is
∫

C

F · dX =

∫ 2π

0

(− cos t sin t− t sin t(sin t+ t cos t) − 1)dt = −2π .

This calculation can be avoided by noticing that F is a gradient field: F = ∇f , with
f(x, y, z) = (x2 − y2)/2 − z. Thus

∫

C

F · dX = f(1, 0, 2π)− f(1, 0, 0) = −2π .

6. Find the critical points of

f(x, y) = 3xy +
1

x
− ln y

in the first quadrant. Classify as local maximum or minimum or saddle point.

Solution. ∇f = (3y − 1/x2)I + (3x − 1/y)J. We solve ∇f = 0 : 3y = x−2, 3x = y−1

give x2 = x, so x = 0 or x = 1. Since x = 0 is not in the first quadrant, the only critical
point is (1,1/3). At this point fxx = −2x−3 = −2, fyy = y−2 = 9, and fxy = 3. Thus
D = (−2)(9) − 9 = −27, and (1.1/3) is a saddle point.

7. The temperature distribution on the surface x2 + y2 + z2 = 1 is given by T (x, y, z) =
xz + yz. Find the hottest spot.

Solution. In the language of Lagrange multipliers, the objective function is T (x, y, z) =
xz + yz, and the constraint is g(x, y, z) = x2 + y2 + z2 = 1. The gradients are ∇T =
zI + zJ + (x+ y)K, ∇g = 2(xI + yJ + zK). The Lagrange equations are

z = λx , z = λy , x+ y = λz , x2 + y2 + z2 = 1 .
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Now, at z = 0, we have T = 0, so no such point is the hottest spot. The first equations
therefore give us x = y. Replacing y by x we now have

z = λx , 2x = λz , 2x2 + z2 = 1 .

By the first two equations, λ2 = 2, and the last equation then gives us 2x2 + 2x2 = 1, so
x2 = 1/4. These then are the critical points:

x = y = ±1

2
, z = ± 1√

2
.

T takes its maximum at (1/2, 1/2, 1/
√

2), and its negative.

8. What is the equation of the tangent plane to the surface z2 −3x2−5y2 = 1 at the point
(1,1,3)?

Solution. Take the differential of the defining equation of the surface: 2zdz − 6xdx +
10ydy = 0. Substitute the coordinates of the point (1,1,3): 6dz − 6dx+ 10dy = 0. This is
the equation of the tangent plane, with the differentials replaced by the increments:

6(z − 3) − 6(x− 1) + 10(y − 1) , or − 6x+ 10y + 6z = 22 .

9. Consider the surface Σ

f(x, y) =
x2

4
+ y2 +

z2

9
= 1 .

a) At what points on Σ is the tangent plane parallel to the plane 2x+ y − z = 1?

Solution. The normal to the plane is N = 2I + J−K. The surface is given as a level set
of the function f , so its normal is

∇f(x, y) =
x

2
I + 2yJ +

2z

9
K .

The places on Σ where the tangent plane is parallel to the given plane are those values
of (x, y) where ∇f(x, y) is colinear with N. These are the solutions of the system of
equations:

x = 4λ, y =
λ

2
, z = −9λ

2
,

x2

4
+ y2 +

z2

9
= 1 .

Putting the expressions in λ given by the first three equations into the fourth, we can solve
for λ, getting

λ = ± 2√
26

.

Thus there are two solutions to the problem:

(
8√
26
,

1√
26
, z = − 9√

26
) , (− 8√

26
, − 1√

26
, z =

9√
26

) .

3



b) What constrained optimization problem is solved by part a)?

Solution. Find the maximum and minimum of 2x+ y − z on the surface Σ.

10. Find the volume of the tetrahedron in the first octant bounded by the plane

x

5
+
y

3
+
z

2
= 1 .

Solution. Draw the picture to see that we can represent the region by the inequalities

0 ≤ x ≤ 5 , 0 ≤ y ≤ 3(1 − x

5
) , 0 ≤ z ≤ 2(1 − x

5
− y

3
) .

So the volume is given by the iterated integral

∫ 5

0

∫ 3(1−x
5
)

0

∫ 2(1−x
5
− y

3
)

0

dzdydx =
15

2
.

11. a) Find the volume of the solid in the first quadrant which lies over the triangle with
vertices (0,0), (1,0), (1,3) and under the plane z = 2x+ 3y + 1.

Solution. The solid is that under the given plane and lying over the triangle T : 0 ≤ x ≤
1, 0 ≤ y ≤ 3x. Its volume is

V olume =

∫ ∫

T

zdxdy =

∫ 1

0

∫ 3x

0

(2x+ 3y + 1)dydx .

The inner integral is

2xy +
3y

2
+ y
∣

∣

3x

0
=

21

2
x2 + 3x .

Thus

V olume =

∫ 1

0

(
21

2
x2 + 3x)dx =

21

6
+

3

2
= 5 .

b) Find the area of that segment of the plane.

Solution. The element of surface area is dS =
√

1 + z2
x + z2

ydxdy =
√

1 + 22 + 32dxdy =
√

14dxdy. Thus the area of the triangle on the surface is
√

14 times the area of the triangle,
so is 3

√
14/2.

12. Find the area of the region in the first quadrant bounded by the parabolas

y2 − x = 1, y2 − x = 0, y2 + x = 5, y2 + x = 4 .
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Solution. Make the change of variable: u = y2 −x, v = y2 +x. Then in the uv-plane the
region is described by 0 ≤ u ≤ 1, 4 ≤ v ≤ 5. We need to calculate the Jacobian; for that
we solve for x and y in terms of u and v:

x =
v − u

2
y =

(u+ v)1/2

√
2

.

Then
∂(x, y)

∂(u, v)
= det

(

−1
2

1
2

(u+v)−1/2

2
√

2

(u+v)−1/2

2
√

2

)

= −(u+ v)−1/2

2
√

2
.

The area then is the integral

Area =
1

2
√

2

∫ 1

0

∫ 5

4

(u+ v)−1/2dvdu .

The inner integral is 2[(u+ 5)1/2 − (u+ 4)1/2], so

Area =
1√
2

∫ 1

0

[(u+ 5)1/2 − (u+ 4)1/2]du =

√
2

3
(63/2 + 43/2 − 53/2) .

13. Find the mass of a lamina over the domain in the plane D : 0 ≤ y ≤ x(1 − x), if the
density function is δ(x, y) = 1 + x+ y.

Solution.

Mass =

∫ ∫

D

δdA =

∫ 1

0

∫ x(1−x)

0

(1 + x+ y)dydx .

The inner integral is

y + xy +
y2

2

∣

∣

x(∗1−x)

0
=
x4

2
− 2x3 +

x2

2
+ x .

Thus

Mass =
1

10
− 2

4
+

1

6
+

1

2
=

4

15
.

14. Find the center of mass of the piece of the unit sphere in the first octant:

x2 + y2 + z2 ≤ 1 , x ≥ 0, y ≥ 0, z ≥ 0 .

Solution. The volume of the sphere of radius 1 is 4π/3; the piece we’re looking at is
(1/8)thof that so Mass = π/6. Now, using spherical coordinates

Momx=0 =

∫ ∫ ∫

R

xdV =

∫ π/2

0

∫ π/2

0

∫ 1

0

ρ sinφ cos θρ2 sinφdρdθdφ
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=

∫ π/2

0

cos θdθ

∫ π/2

0

sin2 φdφ

∫ 1

0

ρ3dρ =
π

16
.

Thus the x-coordinate of the center of mass is

x̄ =
Momx=0

Mass
=

π
16
π
6

=
3

8
.

15. Let
f(x, y, z) =

x

y
+
y

z
+
z

x
.

Find a) ∇f , b) curl ∇f , c) div ∇f , d) ∇(div ∇f).

Solution.

a) ∇f = (
1

y
− z

x2
)I + (

1

z
− x

y2
)J + (

1

x
− y

z2
)K

b) curl ∇f = 0

c) div ∇f =
2z

x3
+

2x

y3
+

2y

z3

d) ∇(div ∇f) = (
−6z

x4
+

2

y3
)I + (

−6x

y4
+

2

z3
)J + (

−6y

z4
+

2

x3
)K

e) ∇×∇(div∇f) = 0 .

.

16. Let F = (y + 2xz)I + (x + z2 + 1)J + (2yz + x2
K. Find a function f such that

F = ∇f .

Solution. We want to solve the equations

∂f

∂x
= y + 2xz ,

∂f

∂y
= x+ z2 + 1 ,

∂f

∂z
= 2yz + x2 .

The general solution of the first equation is f(x, y, z) = xy+ x2z+φ(y, z). Substitute this
in the second equation to get

∂f

∂y
= x+

∂φ

∂y
= x+ z2 + 1 ,
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leading to the equation for φ:
∂φ

∂y
= z2 + 1 .

This has the solution φ(y, z) = z2y + y + ψ(z). This now gives this form for f :

f(x, y, z) = xy + x2z + z2y + y + ψ(z) .

Substitute that in the last equation to get

∂f

∂z
= x2 + 2zy + ψ′(z) = 2yz + x2 ,

so that we must have ψ′(z) = 0, or ψ(z) = C. Thus the answer is

f(x, y, z) = xy + x2z + z2y + y + C .

17. Let C be the curve in space given parametrically by the equations

x = t2 − 3t+ 5 , y = (t3 − 2)2 , z = t4 + t3 − t2, 0 ≤ t ≤ 1 ,

and F the vector field
F(x, y, z) = xI + zJ + yK .

What is
∫

C
F · dX?

Solution. Before doing the hair-raising direct calculation, note that F = ∇(x2+y2+z2)/2.
Thus we need only evaluate this function at the endpoints, which are (5,4,0) (for t = 0)
and (3,1,1) (for t = 1). Thus

∫

C

F · dX =
x2 + y2 + z2

2

∣

∣

(3,1,1)

(5,4,0)
= 15 .

18. Let C be the curve given in polar coordinates by r = 1 + cos θ, 0 ≤ θ ≤ 2π. Calculate
∫

C
xdy.

Solution. Parametrize the curve by x = (1+cos θ) cos θ, y = (1+cos θ) sin θ, 0 ≤ θ ≤ 2π,
so that

∫

C

xdy =

∫ 2π

0

(1 + cos θ) cos θd((1 + cos θ) sin θ)

=

∫ 2π

0

(1 + cos θ) cos θ(− sin2 θ + (1 + cos θ) cos θ)dθ =
3

2
π .

Instead of computing that awful integral, we could note that, by Green’s theorem, the
desired integral is the area of the cardiod D bounded by C, so

∫

C

xdy = Area(D) =
1

2

∫ 2π

0

r2dθ =
1

2

∫ 2π

0

(1 + cos θ)2dθ
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=
1

2

∫ 2π

0

(1 + 2 cos θ +
1 + cos(2θ)

2
)dθ =

3

2
π .

19. Let C be the part of the curve y = x2(24−x) which lies in the first quadrant. Consider
it directed from the point (0,0) to the point (24,0). Calculate

∫

C

(y + 1)dx− xdy .

Solution. We can parametrize this curve by y = 24x2 − x3, 0 ≤ x ≤ 24; in which case
dy = (48x− 3x2)dx and we get

∫

C

(y + 1)dx− xdy =

∫ 24

0

(24x2 − x3 + 1)dx− x(48x− 3x2)dx

=

∫ 24

0

(−24x2 − 4x3 + 1)dx = −442344 .
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