Mathematics 2210 Calculus III Practice Final Examination

- 1. Find the symmetric equations of the line through the point (3,2,1) and perpendicular to the plane 7x 3y + z = 14.
- 2. Find the equation of the plane through the points (0,-1,1), (1,0,1) and (1,2,2).
- 3. A particle moves through the plane as a function of time: $\mathbf{X}(t) = t^2 \mathbf{I} + 2t^3 \mathbf{J}$. Find the unit tangent and normal vectors, and the tangential and normal components of the acceleration.
- 4. A particle moves through space as a function of time:

$$\mathbf{X}(t) = \cos t \mathbf{I} + t \sin t \mathbf{J} + t \mathbf{K} .$$

For this motion, find **T**, **N**, the the tangential and normal components of the acceleration, and the curvature at time $t = 3\pi/2$.

- 5. The particle of problem 3 moves in opposition to the force field $\mathbf{F}(x, y, z) = x\mathbf{I} y\mathbf{J} \mathbf{K}$. How much work is required to move the particle from (1,0,0) to $(1,0,2\pi)$?
- 6. Find the critical points of

$$f(x,y) = 3xy + \frac{1}{x} - \ln y$$

in the first quadrant. Classify as local maximum or minimum or saddle point.

- 7. The temperature distribution on the surface $x^2 + y^2 + z^2 = 1$ is given by T(x, y, z) = xz + yz. Find the hottest spot.
- 8. What is the equation of the tangent plane to the surface $z^2 3x^2 5y^2 = 1$ at the point (1,1,3)?
- 9. Consider the surface Σ

$$f(x,y) = \frac{x^2}{4} + y^2 + \frac{z^2}{9} = 1$$
.

- a) At what points on Σ is the tangent plane parallel to the plane 2x + y z = 1?
- b) What constrained optimization problem is solved by part a)?
- 10. Find the volume of the tetrahedron in the first octant bounded by the plane

$$\frac{x}{5} + \frac{y}{3} + \frac{z}{2} = 1$$
.

1

- 11. a) Find the volume of the solid in the first quadrant which lies over the triangle with vertices (0,0), (1,0), (1,3) and under the plane z=2x+3y+1.
- b) Find the area of that segment of the plane.
- 12. Find the area of the region in the first quadrant bounded by the parabolas

$$y^{2}-x=1$$
, $y^{2}-x=0$, $y^{2}+x=5$, $y^{2}+x=4$.

- 13. Find the mass of a lamina over the domain in the plane $D: 0 \le y \le x(1-x)$, if the density function is $\delta(x,y) = 1 + x + y$.
- 14. Find the center of mass of the piece of the unit sphere in the first octant:

$$x^2 + y^2 + z^2 \le 1$$
, $x \ge 0$, $y \ge 0$, $z \ge 0$.

15. Let

$$f(x,y,z) = \frac{x}{y} + \frac{y}{z} + \frac{z}{x} .$$

Find a) ∇f , b) curl ∇f , c) div ∇f , d) ∇ (div ∇f).

16. Let $\mathbf{F} = (y + 2xz)\mathbf{I} + (x + z^2 + 1)\mathbf{J} + (2yz + x^2\mathbf{K}$. Find a function f such that $\mathbf{F} = \nabla f$.

17. Let C be the curve in space given parametrically by the equations

$$x = t^2 - 3t + 5$$
, $y = (t^3 - 2)^2$, $z = t^4 + t^3 - t^2$, $0 \le t \le 1$,

and \mathbf{F} the vector field

$$\mathbf{F}(x,y,z) = x\mathbf{I} + z\mathbf{J} + y\mathbf{K} .$$

What is $\int_C \mathbf{F} \cdot d\mathbf{X}$?

- 18. Let C be the curve given in polar coordinates by $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$. Calculate $\int_C x dy$.
- 19. Let C be the part of the curve $y = x^2(24-x)$ which lies in the first quadrant. Consider it directed from the point (0,0) to the point (24,0). Calculate

$$\int_C (y+1)dx - xdy .$$