Calculus III Practice Exam 2

1. A conic in the plane is given by the equation

$$x^2 - 2xy + y^2 + 2x - y = 0$$
.

- a) What conic is it?
- b) At what angle to the x-axis are the axes of the conic?
- 2. A conic in the plane is given by the equation

$$5x^2 - xy + y^2 = 50.$$

- a) What conic is it?
- b) At what angle to the x-axis are the axes of the conic?
- 3. A parabola has its vertex at the origin, and its focus at the point (3,4). Give the equation of the parabola. Recall that, for a parabola with vertex at the origin and focus at the point (p,0), the equation is $y^2 = 4px$.
- 4. Let $f(x,y) = 3x^2y + 3xy$.
- a) $\nabla f =$
- b) What is the direction of maximum increase of f at the point (1,2)?
- c) What are the critical points of f? What kind of critical points are they?
- 5. Let

$$f(x,y) = \frac{1}{x} + \frac{1}{y} .$$

- a) What is the tangent line to the curve f(x, y) = 5/6 at the point (2,3)?
- b) Find the equation of the tangent plane to the surface z = f(x, y) at the point (2,3,5/6).
- 6. Let

$$f(x,y,z) = \frac{1}{xy} + \frac{1}{yz} .$$

What is the equation of the tangent plane to the level surface f(x,y,z) = 1 at the point (1,2,1)?

- 7. Let $w = x\sqrt{y} + y\sqrt{z}$, and let γ be the curve x = -t, $y = t^2$, z = 1 + t, for t > 0. What is dw/dt at t = 1?
- 8. Let

$$f(x,y) = x^3y + \frac{1}{2}y^2x + yx^2 .$$

Find all saddle points of the surface z = f(x, y).

- 9. Find the point on the curve $2(x-1)^2 + 3y^2 = 22$ which is closest to the origin.
- 10. A rectangular box of maximum volume is to be constructed, with sides parallel to the coordinate planes, one corner at the origin and the diagonally opposite corner on the plane 2x + 3y + z = 1. What are the dimensions of the box?